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Abstract

Many magnetic structures in the solar atmosphere evolve rather slowly, so they can be assumed as (quasi-)static or
(quasi-)stationary and represented via magnetohydrostatic (MHS) or stationary magnetohydrodynamic (MHD)
equilibria, respectively. While exact 3D solutions would be desired, they are extremely difficult to find in stationary
MHD. We construct solutions with magnetic and flow vector fields that have three components depending on all
three coordinates. We show that the noncanonical transformation method produces quasi-3D solutions of stationary
MHD by mapping 2D or 2.5D MHS equilibria to corresponding stationary MHD states, that is, states that display
the same field-line structure as the original MHS equilibria. These stationary MHD states exist on magnetic flux
surfaces of the original 2D MHS states. Although the flux surfaces and therefore also the equilibria have a 2D
character, these stationary MHD states depend on all three coordinates and display highly complex currents. The
existence of geometrically complex 3D currents within symmetric field-line structures provides the basis for
efficient dissipation of the magnetic energy in the solar corona by ohmic heating. We also discuss the possibility of
maintaining an important subset of nonlinear MHS states, namely force-free fields, by stationary flows. We find
that force-free fields with nonlinear flows only arise under severe restrictions of the field-line geometry and of the
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magnetic flux density distribution.
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1. Introduction

Many structures in the atmosphere of the Sun and in solar-
type stars evolve on relatively large timescales, so they can be
described within the frame of quasi-stationary or quasi-static
magnetohydrodynamics (MHD). Prominent examples are solar
arcade structures, loops, and prominences. To represent them,
typically  magnetohydrostatic =~ (MHS) equilibria  (e.g.,
Low 1982; Solov’ev & Kirichek 2015) or stationary-state
models, that is, stationary MHD equilibria, are calculated (e.g.,
Petrie & Neukirch 1999; Petrie et al. 2005).

Generally, it would be desirable to have a full 3D
representation of the MHD equilibrium states. However, as
was already mentioned by Parker (1972), it is normally not
possible to construct 3D states in the functional vicinity of 2D
states. This means that 2D equilibria on which perturbations are
imposed typically do not relax into smooth 3D states
(Tsinganos 1982). Instead, the resulting equilibria must contain
tangential discontinuities, that is, singular current sheets. This
is known as Parker’s conjecture (Parker 1983a, 1983b, 1988),
which states that no regular equilibria exist without a
symmetry. In this context, symmetry does not necessarily
imply that the system has an ignorable coordinate (Low 1985),
where ignorable coordinate means that in a specific coordinate
system the physical values do not depend on this coordinate.
We note that under specific circumstances a few regular classes
of 3D MHS states have been found (see, e.g., Low 1982;
Neukirch 1995), and a set of exact analytical 3D stationary
MHD flows exists as well (see, e.g., Bogoyavlens-
kij 2001, 2002). However, the computation of these solutions
requires that a complete stationary flow must already be
known.

According to Parker, the appearance of singular current
sheets could provide a suitable mechanism for acceleration and
heating of the coronal plasma via ohmic heating, i.e., joule
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dissipation, caused by magnetic reconnection within these
current sheets. To guarantee that heating is provided on a
regular basis (i.e., also during times with no huge eruptions),
successive heating should take place. This can only be achieved
considering quasi-continuous small-scale eruptions, the so-
called nanoflares (Parker 1988). However, it is still highly
debated whether large-scale eruptions or small-scale nanoflares
are the major mechanism for the heating of the solar coronal
plasma (see, e.g., Parnell & de Moortel 2012; Svanda &
Karlicky 2016).

Shearing motions of the magnetic field lines, such as at the
footpoints of arcade structures, can be used to produce
nanoflares (see, e.g., Bingert & Peter 2011; Bourdin
et al. 2013; Hansteen et al. 2015) or large-scale eruptions
(e.g., Manchester 2003; Kotr¢ et al. 2013; Toriumi et al. 2013;
Leake et al. 2014). Such a procedure does not necessarily
converge into an equilibrium state anymore. Therefore, in
numerical simulations, these sheared field lines might be forced
to relax into an equilibrium state by introducing numerical
resistivities and viscosities (e.g., Wilmot-Smith et al. 2011;
Prior & Yeates 2016).

Another approach for small-scale eruptions and heating was
made by Pongkitiwanichakul et al. (2015), who applied a so-
called volumetric Parker model. This model is not based on the
shearing motions of the footpoints. Instead, a large-scale
motion of the magnetic field lines is applied throughout the
volume of the fluid. This large-scale motion is driven by an
initial stationary flow, generated by a time-dependent stream
function whose Fourier components are kept fixed at each time
step. These stationary flows generate additional turbulent flows,
which are allowed to evolve in time.

Alternatively, a model including self-consistent plasma flows
was developed by Nickeler et al. (2013, 2014). This model
produces highly fragmented, strongly peaked currents and
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vortices spreading from large to small scales, while the system
remains in a well-defined equilibrium.

In most of the aforementioned approaches, the initial
condition is either a static or some arbitrary field that is not
compatible with the resulting flow field. The numerically
calculated corresponding changes of the fields are, therefore,
based either on linear or nonlinear perturbation theory or on
stochastics. What is often neglected is that observations imply
stationary flows in active regions and coronal holes rather than
pure force-free or static fields (Winebarger et al. 2001, 2002;
Marsch et al. 2004; Wiegelmann et al. 2005). Also, during
preflare stages, upflows in the photosphere and flows along
loops were observed (e.g., Yoshimura et al. 1971; Harvey &
Harvey 1976; Wallace et al. 2010). Hence, an initial condition
including stationary flows, as was presented by Nickeler &
Wiegelmann (2010, 2012), seems more appropriate.

Nonlinear MHD flow models for loops, sunspots, and
magnetic arcade structures exist (see, e.g., Tsinganos et al.
1993; Petrie & Neukirch 1999; Petrie et al. 2002, 2005), but
they were not developed explicitly for the purpose of
explaining coronal heating. Nevertheless, nonlinear MHD
theory provides the proper tool for particle acceleration via
generation of electric fields in a slightly nonideal/resistive
environment and, therefore, for local heating processes
(Nickeler et al. 2014).

In this paper, we wish to reinforce Parker’s conjecture of
heating via multiple current sheets and multiple reconnection
sites. In connection with the equilibrium problem introduced by
Parker (1972), we need therefore a proper method that allows
slight deviations from symmetric 2D to (almost) 3D structures.
The known magnetic flux densities and the corresponding
derived currents obtained from observations are far below the
threshold for sufficient dissipation of magnetic energy in
general, i.e., joule heating by extremely strong currents in the
case of, for example, Spitzer resistivity, or the threshold for
anomalous resistivity to trigger magnetic reconnection. This
implies that the current density on these scales is too low to
produce current-driven microinstabilities. However, the
observed large-scale fields might display steep gradients on
smaller scales. Complex flow patterns and steep gradients in
active regions indicate the existence of shear flows, as was
reported by Marsch et al. (2004). The changing of the magnetic
field structure often seems to coincide with sharp changes in the
flows. Hence, this trend might be expected to continue when
going to even smaller, yet-unresolved scales.

For a better comprehension of ohmic heating and accelera-
tion of plasma and particles, we need more detailed information
about current sheet structures in the solar atmosphere. While
both observations and numerical simulations currently cannot
resolve small-scale structures, an analytical approach is a useful
physical approximation that provides detailed information
down to the theoretical dissipation scales, which are for solar
corona conditions below 10m. Based on the noncanonical
transformation method developed by Gebhardt & Kiessling
(1992) and utilized by, for example, Cicogna & Pegoraro
(2015), we will show that there is a connection between the
breaking of the symmetry and the down-cascading of the
current sheet scales. The breaking of the symmetry is done by
field-aligned flows that have a strong gradient perpendicular to
the field lines. These flows cause strong gradients of the
magnetic field strength normal to the field lines, implying
small-scale current sheets.
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2. Problem Description and Basic Assumptions

The magnetic field structures in the solar atmosphere,
especially in the corona, resemble magnetic arches and also
closed field-line structures emulating flux ropes, surrounded by
bundles of open field lines. These magnetic structures form the
stage on which chromospheric and coronal heating takes place.
For a reasonable representation of these structures, it is
necessary to calculate the nonlinear fields forming the magnetic
scaffold in the frame of stationary MHD.

2.1. Stationary MHD Equations

We focus on incompressible field-aligned sub-Alfvénic
flows, because they are exclusively related to MHS states.
This has been proved by Gebhardt & Kiessling (1992),
Nickeler et al. (2006), and Nickeler & Wiegelmann (2010),
who found that only incompressible field-aligned MHD flows
can be unambiguously reduced to MHS-type equations. MHS
equilibria are therefore an infinitesimally small subset of field-
aligned incompressible flows.

Another advantage of field-aligned flows is that they
guarantee that, according to ideal Ohm’s law, the electric field
in ideal MHD vanishes,

E+vxB=0 = E=0, (1)

and, therefore, fulfills automatically the condition that the
electric field is stationary.

To simplify the representation of the equations, we introduce
normalized parameters. These require the definition of normal-
ization constants I§, D, [ , Vs, and p. Let v be the plasma
velocity normalized by the normalized Alfvén velocity
VA = é/ Hop, p the mass density normalized by p,
J=YV x B the current density vector normalized by
I§/ (11ol) with [ as the characteristic length scale, and p the

scalar plasma pressure normalized by p = éz/ 1. Hence, the
set of equations of stationary, field-aligned incompressible
MHD, consisting of the mass continuity equation, the Euler
equation, the definition for field-aligned flow and Alfvén Mach
number M, the incompressibility condition, and the solenoidal
condition for the magnetic field, can be written in the following
form:

V- (pv) =0, )
p(v-V)y=jxB— Vp, (3)
. MAB’ @

JP
Vv =0, 5)
V- B=0. (6)

The combination of Equations (5) and (4) yields the conserved
values, B+ Vp =0 and B+ VM, =0, and therefore also
v+ Vp=0andv - VM, = 0. Consequently, the Alfvén Mach
number and the density are constant along field lines, and the
magnetic and the velocity field are integrable, i.e., nonergodic
(Grad & Rubin 1958; Stern 1970).

Integrable, divergence-free fields, such as the magnetic field,
can be represented by so-called Euler or Clebsch potentials, f
and g, via the form

B=Vfx Vg 7
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In general, these Euler potentials are functions of all three
coordinates x, y, z. The representation can also be made by
alternative Euler potentials, say « and (3, if these are related to
the original ones via the mapping o = «a(f, g) and
6= pB(f, g), and if, in addition, the Poisson bracket is
identical to unity, meaning that

_O0adB 0o df _

Bl = 22 ga gl . 8

Then the field remains unchanged and can be written as
B=VfxVg=VaxVg3=I|a, Bl Vfx Vg. (9

This kind of transformation is called canonical transformation.

A noncanonical and hence “active” transformation, on the
other hand, is performed in case the Poisson bracket is not
identical to unity. It was shown by Gebhardt & Kiessling
(1992) that such an active transformation reflects the similarity
between MHS states and stationary states in incompressible
MHD. This can be seen from the following.

If we start from the momentum equation of MHS given by

Vps =js X Bs = (V X Bs) x By (10)
and represent the MHS magnetic field, Bg, via the Euler
potentials f and g (where in the following the Euler potentials f

and g refer to MHS fields and « and ( to stationary MHD
fields),

By = Vf x Vg, 1)

then the MHS pressure, pg, can always be written locally as an
explicit function of f and g:

ps = ps(f, &) (12)

Let us now assume we know a solution (pg, Bs) for
Equation (10) in which the magnetic field and the pressure
are given in the form of the Equations (11) and (12). If we
additionally define a relation between the Alfvén Mach number
M, and the Poisson bracket of the form

([f, glap)* =1 - Mg >0 (13)

or, equivalently,

([ev, Blyg)* =

> 1, 14
- (14)

where M can always be regarded as an explicit function of «
and [ (or fand g) bounded by one, then

B=VaxVp 15)
can be considered as a magnetic field of a stationary MHD

equilibrium. This means that the corresponding velocity field
can be written as

,_ MiB
N

while the magnetic field, the corresponding current density, and
the plasma pressure take the form

) (16)

By

N

B = [O[, /B]f"g BS = (17)
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. Mp VM X Bg jS

, (18)
(1 — M) (1 — M2
1
p=ps — —pv’ (19)
2
for sub-Alfvénic flows, and
B
B =[a, Bl Bs = ———, (20)
ME — 1
. My VM, X B ]
j=— A2 A325+ 2]512, Q1)
My — 1)/ Mz — DY
1 2
P=DPy —Ps — EPV (22)

for super-Alfvénic flows, implying that the stationary MHD
equations (Equations (2)—(6)) are fulfilled. The parameter p
represents here a pressure offset, necessary to avoid negative
pressure values and to provide boundary conditions. In any
case, the plasma density, p, and the Alfvénic Mach number
are explicit functions of the Euler potentials f and g. If these
can be constrained by reasonable boundary conditions (e.g.,
from observations), the velocity and pressure, and corre-
spondingly the complete stationary equilibrium, can be
calculated from a known solution of pg and Bs. One property
of the transformation is that the geometrical and topological
field-line structures of the initial MHS state remain
unchanged. A second one is that the flow induces current
fragmentation whereby the flow itself is generated via
variations of the pressure. Current fragmentation induced by
pressure pulses that originate close to magnetic null points
was also reported by Jelinek et al. (2015).

2.2. General Parameterization of the Transformation

In the previous section we showed that a transformation
method exists. What is needed next is to find a way to calculate
explicitly the transformation from the initial potentials f and g
to the final ones o and (3.

The sub-Alfvénic Poisson bracket relation Equation (14)
and, therefore, also the sub-Alfvénic M, can generally be
represented via

My = tanh M(f, g)
([ Bl = —— = (cosh M(f, 92 > 1. (23)

1 - M

The function M should be at least twice continuously
differentiable. The condition Equation (23) guarantees that
the Alfvén Mach number is bounded by one. Keeping the
polarity of the mapped magnetic field (see Equation (9)),
Equation (23) results in a linear partial differential equation for
« and [ as functions of f and g:
[a, Blr,e = 3_048_ﬂ — 3_048_5 = cosh M (f, g), 24)
of og  Og of
which could basically be solved based on the method of
characteristics.
Searching for a method to reduce Equation (24) to a
generally simpler form can be done by assuming without loss



THE ASTROPHYSICAL JOURNAL, 837:104 (11pp), 2017 March 10

of generality

apg = ag(f), (25)

—1
ﬁoz(ddi;)) [ osh M7, 9y dg + B (H). (26)

which automatically satisfies Equation (24). The functions
o (f) and Boo (f) can be chosen arbitrarily to satisfy boundary
conditions and constraints for the magnetic and the velocity
fields. All equivalent transformations o« = «(f, g) and
08 =p0(f,g) can be found by corresponding canonical
transformations of a and [y.

2.3. Basic Equations for 2D and 2.5D MHS Equilibria

The general solution for stationary equilibria presented in the
previous section is valid in all dimensions. Ideally, 3D
stationary equilibria would be desired. Computing such
equilibria via the transformation method requires the knowl-
edge of exact and analytical 3D MHS equilibria. However,
only a few such 3D MHS equilibria are known (Low 1991;
Neukirch 1995, 1997, Petrie & Neukirch 1999). Nevertheless,
for many practical scenarios, the field geometry displays some
symmetry. Translationally invariant equilibria serve as exam-
ples. These can be associated, for example, with arcade
structures above the polarity inversion line (PIL). These PILs
resemble the z axis (here the invariant direction) in the
topological sense. Therefore, a 2D or 2.5D (which means that
B, is nonzero) treatment is reasonable and provides a
sufficiently accurate approximation with respect to the physical
insights. The advantage of 2D and 2.5D equilibria is that a
widespread number of classes of magnetic configurations can
be computed based on the well-known Grad—Shafranov (or,
equivalently, Liist—Schliiter) theory (see Liist & Schliiter 1957;
Shafranov 1958). According to this theory, one needs to solve
the equilibrium condition

d B% dll
AM=——|ps+ 2= -5, 27
dA[pS 2) dA @7

which follows from the assumption of translational invariance
(0/0z = 0) and the representation of the magnetic field by

Bs = VA(x, y) X Vz + B (x, y)e. (28)

Here, B,s is the so-called toroidal component (see, e.g.,
Moffatt 1978; Schindler 2006); B,s and pg are necessarily
explicit functions of the flux function A. To solve Equation (27),
a physically motivated pressure function Ilg has to be defined.

The solutions of Equation (27) are solutions to the MHS
equations

Vps = (V x Bs) x Bs, (29)
V:Bs = 0. (30)

The two systems of equations (Equations (27)-(28) and
Equations (29)—(30)) are equivalent.

The strategy is hence the following. We first need to solve
the static Grad—Shafranov equation to obtain an MHS
equilibrium suitable to describing solar arcade structures.
Then, a reasonable mapping needs to be found that transforms
this MHS equilibrium into a stationary state.
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3. Results

3.1. Mapping from 2D to Current Sheets Varying
in the z Direction

First we want to show that even pure 2D fields can be
mapped to stationary fields that depend also on the z direction.
A translationally invariant magnetic field can be written as
Bs = VA(x, y) X Vz, in which the flux function A depends
only on x and y and the electric current has only a z component,
as is obvious from j; = —AAe,. A comparison with the
definition of the static magnetic field (Equation (11)) then
implies that f must be identical to A (x, y) and g to z. With this
definition of the magnetic field, the Grad—Shafranov equation
that needs to be solved reduces to

A~ s G1)
dA

For the transformation to the stationary magnetic field
(Equation (17)), the Poisson bracket has to be evaluated. This is
done in the following way:

_ 0005 0003
0 Phs =55 ~ B oy
_ Oa(A, z) 9B(A, 2) _ Oa(A, z) 00 (A, 2) 32)
O0A 0z 0z A

The dependence of the Poisson bracket, and therefore of the
Mach number, on z implies that the application of a
noncanonical transformation to translationally invariant MHS
equilibria creates a magnetic field and a velocity field that can
vary in the former invariant direction. From inspection of
Equation (17) it is obvious that the geometry of the field lines
(and therefore their direction) remains unchanged, while the
amplitude of the transformed fields is different from the
original one and varies nonlinearly with z.

By exploiting that M, is an explicit function of the static
Euler potentials A and z, the electric current of the transformed
field can be evaluated via the relation Equation (18). It results
to

MA2R VA — e (MA%(VAV)
B (1= M)
AAe,
- M

J
(33)

As A is a function of x and y, it is obvious that the electric
current of the transformed field now has components in all
three coordinate directions, which also depend nontrivially and
nonlinearly on all three coordinates. It is hence quasi-3D, but
the field-line structure in each x, y plane is preserved. These
additional current components, which are all perpendicular to
the magnetic field, guarantee self-consistently that the system is
kept in an equilibrium state. Moreover, the current density
deviates from the one of the pure 2D MHS field, which has
only a current component in the z direction. Hence, despite the
fact that we started from an initially highly symmetric
configuration, the resulting current displays a much more
complex structure.



THE ASTROPHYSICAL JOURNAL, 837:104 (11pp), 2017 March 10

3.2. Mapping from 2.5D to 3D

The magnetic field of solar arcade structures does not
necessarily consist of field lines that lie purely in (x, y) planes
laminated in the z direction. Instead, the field lines could
possess a helical structure, which means that the magnetic field
has a toroidal component pointing in the z direction. Such cases
require at least a 2.5D treatment. We refrain here from
discussing full 3D scenarios, because they cannot be solved
using the Grad—Shafranov theory anymore.

To compute 2.5D MHS equilibria, we need to solve the full
Grad-Shafranov Equation (27). The representation of the MHS
field via Euler potentials is more tricky in the 2.5D case,
because at least one of the Euler potentials has to depend on all
three spatial coordinates and must depend linearly on z. Hence,
we need to construct such an Euler potential.

The simplest case would be to keep for f the same prescription
as in the 2D case, i.e., f = A(x, y), and to assume that g can be
defined as g = z + A(x, y). The function /(x, y) can be chosen
such that at least locally it can be expressed by the flux function A
via h(x, y) = h(A(x, ), y). Such a choice of representation is
motivated by the fact that A has the strongest variation in the x
direction if the coordinate system is chosen in such a way that the
y direction corresponds to the vertical axis of the arcade structures,
i.e., it is perpendicular to the solar surface.

While usually the Euler potentials are used to compute the
B.s component (e.g., Schindler 2006), this cannot be done so
easily anymore for the current representation of the Euler
potentials because the function 4 is not known. Therefore, one
needs first to evaluate B,s from the Grad—Shafranov
Equation (27), and only then the function /& can be determined
under some constraints. When comparing the Euler representa-
tion for the magnetic field with the representation via the Grad—
Shafranov equation

B =Vfx Vg=VAXx Vz+ Bgse,, (34)
it follows that
oh
VA x Vh = VA x a—yey = B (A)e,. (35)

Scalar multiplication of the identity Equation (35) with e, leads to

oh O0A Oh
- — | = ——Bys(A,y) = B;s(A), 36
dy o )y ,S( y) s(A) (36)

A y
where % = —Bys(A, y) has to be considered as a function of
the chosen coordinates A and y, because the partial differential
equation Equation (36) for 4 has a solution, which is a function
of these coordinates.

The function (A, y) can thus be computed from

_ [ Bs@)
hA ) == G @

=85 [ % + o). ()
One should note, however, that the evaluation of the function
h(A, y) bears difficulties, for example, if the magnetic field has
null points. In that case, Bys(A, y) = Bys(A,y) = 0, and Z—I;
diverges. Therefore, to properly define a function 4 (A, y) in the

vicinity of a null point, the toroidal component B,g(A) must be
zero on the separatrix surface, ie., B;g(Agep) =0 with
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VAl,y.y, = 0, if the null point is of the X-point type. In the
case of an O-point null point, B,5(A) has to vanish at that point.

To perform the transformation, we recall that the Alfvén Mach
number M, is an explicit function of the static Euler potentials
f=AK,y) and g =z + h(A(x, y), y). Equations (36)-(37)
provide a representation of these Euler potentials and, therefore,
the basis for the definition of M. Hence, the electric current of the
transformed field can be evaluated via the relation Equation (18).
It results to

OMy OMy
(2va + 289g) x (VA x V2 + Be)

(1 — M;)3?
—AAe, + B (A)VA x e
(1= M)/

J =My

(38)

oM, oM, 2 oM, .
y (agA)VA —e, (6—AA(VA) + 2hva Vh)
== A

(1 — M3)*?

oM oM
a—AABZsVA X e, + agAstVh X e,

(1= M)
—AAe, + Bl (A)VA x e,
(1 — M2

My OMy,
= VA
(1 - M,§>3/2[( og ]

e, OMj + OMa Oh (VA)?
0A Og OA
+ B OMy + oMy O VA x ez—l—Bzg%a—hex
0A dg OA 0g Oy
—AAe, + BL(A)VA X e,
(1 - M)\

My OMy,
= VA
(a- M,%)W[( og )

+ My

+ (39)

oM, 0h 04
dg Oy Oy

(40)

(41)

B BMA@e N —AAe, + BL(A)VA x e,
zS X (1 —Mi)l/z .

As before (Section 3.1), the variations of the current are
induced by the flow, which itself is generated by the
noncanonical mapping.

The most interesting result is the occurrence of a current
component parallel to the poloidal magnetic field component.
Such a component does not exist in a 2D mapping of a pure
poloidal field* and also not in the quasi-laminar regime

4 Fora translationally invariant magnetic field, only x—y components exist in

the poloidal plane, and only one “toroidal” component of the current, namely
in the z direction, exists.
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discussed in Section 3.1, where only an additional component
in the VA direction exists due to the change of the Mach
number in the z direction. This additional poloidal component
VA X e, of the current exists not only because of the static
component B/s(A)VA X e, but also because of the explicit
dependence of M4 on A and g. This latter is true even if the
static component B,g is constant.

A current component in the main direction of the (poloidal)
magnetic field strengthens the character of the current toward a
more field-aligned current. Moreover, it provides the basis for
particle acceleration, as a switched-on resistivity would
generate an electric field with a strong component parallel to
the magnetic field.

3.3. (Non)existence of 3D Force-free Fields

The prerequisites of our investigations on stationary MHD
flows and their current structures are MHS equilibria. Force-
free states are an important subclass of MHS states. They
correspond to states of minimum magnetic energy into which
each equilibrium after distortion should relax according to
variational calculus (e.g., Sakurai 1979).

The following vivid illustration, which is based on the
original ideas of Kippenhahn & Moellenhoff (1975) and Parker
(1972), will help to elucidate why force-free states occur. Let
us consider that we have a small domain with an interlaced
field topology so that one field line is interwoven in such a way
that this single field line fills basically the complete volume.
Then, by knowing that the pressure is constant along each
individual field line,

Vps =(V xBg) x By = Bg-Vpg =0, (42)

which is a necessary MHS condition, it follows that the pressure is
constant in this whole volume. This leads automatically to a force-
free state because Vpy = (V x Bg) x Bs = 0. In this context,
a constant pressure inside the volume hence guarantees that
influences from outside are switched off.

In contrast, if the considered field line extends beyond the
border of the domain, the condition Equation (42) implies that
the pressure inside this volume is, at least partially, determined
by constraints from outside (see Parker 1972), and the state is
not necessarily force-free.

Recent investigations, allowing at least for field deforma-
tions via boundary footpoint displacements, also minimize the
influence on the outer boundaries of the MHS environment,
such as by the severe assumption that the velocity of the
footpoints should vanish at the boundary (see, e.g., Low 2010;
Parker 2012). This means that no flow can leave the volume,
and any flows that might occur along field lines are basically
ignored.

If we were dealing with an exclusively magnetohydrostatic
atmosphere where stationary flows could be completely
excluded, the force-freeness could be a reasonable assumption.
However, as observations have shown, flows are naturally
occurring in the solar atmosphere (e.g., Yoshimura et al. 1971;
Harvey & Harvey 1976; Wallace et al. 2010) so that the MHS
states are embedded in regions in which flows can occur
locally. Hence, it is not necessarily always possible to eliminate
external influences, but, in contrast, the occurrence of flows can
be utilized, because they help to determine exactly the
“integral” parameters like the plasma pressure.

We want to test whether or under which circumstances the
states after noncanonical transformations can be force-free. For
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this, we regard the transformation method in analogy to
quantum mechanics. The set of equilibria (before and after the
transformation) can be considered as a family of stationary
states, all having the (geometrically and topologically) identical
field-line structure. In this family, the MHS equilibrium defines
the ground state (M, = 0, for all x, y, z). All other stationary
states with flow can then be regarded as excited states. With
this interpretation in mind, there are two possible scenarios for
which force-free states can be expected: (1) if the ground state
is already force-free, meaning that j; X By = Vpg = 0, or (2)
if the original non-force-free ground state turns into a force-free
final state when performing the transformation, such as by the
application of a flow.

In general, the direction of the magnetic field remains
unchanged under the transformation. If we demand that the
transformed field be force-free, the following equivalence is
valid:

jxB=0%jxBs=0. (43)

After inserting the general form of the transformed current
(Equation (18)), the equation on the right-hand side of
Equation (43) delivers

BV M;

—— 2 = Vp.. 44
2(1—M§) Ps (44)

Let us start with the first case of a force-free ground state.
Then Equation (44) implies that Vpg = 0. This means that,
without loss of generality, M, must be constant throughout the
whole considered domain. This is an extreme constraint for the
whole nonlinear MHD flow and is only fulfilled in exception-
ally rare cases. A similar result was obtained by Khater &
Moawad (2005), who investigated pure 2D nonlinear force-free
magnetic fields with mass flow. Field-aligned flows can be
regarded as nonlinear perturbation of the MHS state. In analogy
to linear perturbation theory, i.e., linear stability analysis, we
may say that any unstable mode that might occur will occur.
This means that if a self-consistent pressure perturbation,” like
the one given by Equation (19), will occur (not only at the
footpoints of the magnetic field structure), the force-free
magnetic field cannot be maintained. Therefore, we can
conclude that in any region in which nonlinear flows can
occur and are not suppressed, force-free fields will not exist or
will vanish.

Turning to the second case, we can decompose the pressure
gradient Vpg = Vpo(f, g) and the gradient of the square of
the Alfvén Mach number VMK (with My = Mj (f, g)) in the
following way:

2 2
Lz% — % (45)
2(1 — My) of af

_ B oMy _ s (46)
2(1 — M3) Og Og

These two equations imply that the expression B must be an
explicit function of f and g only, and hence B? as well as B2
must be constant along field lines. An additional restriction is
introduced by the fact that for a given MHS equilibrium
(defined by Bg, pg) two first-order differential equations result

5 Here, self-consistent means that the pressure variation supports the field-
aligned equilibrium flow.
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for one function, i.e., M. This implies that M, is an explicit
function of BZ. Considering that M3 represents the ratio
between kinetic and magnetic energy density, this causes a
strong correlation between the magnitude of the energy
partition and the magnetic field strength. Such severe
restrictions tremendously limit on the one hand the number
of basic eligible MHS equilibria that can be used for such a
transformation, and on the other hand also the freedom of
choice of reasonable Mach numbers and consequently of the
flow. This leads to the conclusion that force-free is not a
generic result® but will occur only for rare cases with severe
constraints.

How can we interpret these findings? As we said earlier, the
MHS solutions are in general a small subset of the field-aligned
incompressible flows. As we could show in almost every case,
any of these flows either destroys the initial force-free property
of the magnetic field, or the transformed equilibrium of
arbitrary topology and geometry cannot be force-free anymore.

The force-free property is not compatible with an equili-
brium flow, having a larger cardinality than the original set of
MHS states. We excluded non-field-aligned flows in our
investigation, as they do not have this strong affinity to MHS
states.

4. Examples

We wish to stress that the equations for the transformation of
the current derived in Sections 3.1 and 3.2 are generally valid
and are limited to neither a particular initial physical scenario
nor a specific flow pattern, determined by M. In the following,
for pure demonstration purposes, we chose two specific ground
states, i.e., MHS states, one for a 2D equilibrium and the other
for a 2.5D equilibrium. To each, specific flow patterns are
applied, and the transformed current is computed. The Mach
number profiles are chosen such that significant current
fragmentation is achieved. Current fragmentation is an
indispensable physical process for plasma heating applications,
such as in the solar corona. We thus pick a physical
environment for our model calculations that can be considered
representative for (subareas) of coronal arcade structures and
loops.

4.1. 2D Scenario

We start from a 2D potential field as a current free MHS
state. To simulate the footpoint region of a typical solar arcade
or of some other monopolar domain of the magnetic field in the
solar atmosphere, we superimpose a line dipole, which is
located at the solar surface, and a homogeneous field. Our
coordinate system has its origin on the solar surface with the x
and z axes being tangential to the surface and the y axis
perpendicular.

The field configuration is computed from the complex
potential A(u) with u = x + iy and

A(w) = iu — 0'—6i, 47

u

© The force-free paradigm for the solar corona plasma was also criticized by
Peter et al. (2015) based on different physical aspects.
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Figure 1. 2D potential field zoomed-in to the dipole region.

where the imaginary part of A is the magnetic flux function A:

0.6x
JA) =A@k, y) =x — . 48
(A) = A, y) g (48)

The magnetic field then results to

By= o 20 49)

Oy o7 +y?)?

0A 0.6y> — 0.6x?

Bs=—"—-=—-14—"—"F——. 50
w8 Ox (x? + y?)? G0

This process delivers an X-type magnetic null point at
(v, yy) = (0, \/% ) in the upper half domain y > 0. For
illustration, the field lines of this particular potential field are
shown in Figure 1.

The general form of the Mach number profile is given by
Equation (23). We chose the function M (f, g) = M(A, z) in
the following parameterized form:

sin(kA(1 + kzz))]
1 + 0522 |

M@, z) = [ (5D
where the parameters k; and k, are constants. The choice of the
sine function guarantees that the Mach number profile has a
wavy shape, which causes gradients that produce great spatial
variations in the resulting current. A nonconstant Mach number
that varies spatially on small scales is motivated by the analogy
to perturbation theory. Every flow induced by the Mach
number should optimize the current distribution to guarantee
efficient dissipation of magnetic energy in the form of ohmic
heating.

To study the influence of the choice of the Mach number
profile on the resulting current structure, we compute two
scenarios: one of them is symmetric with respect to the z = 0
plane, and the other one asymmetric. For the first, symmetric
case, we set k; = 1.57 and k, = 0. With these values, the Mach
number profile, which is shown in Figure 2, has a very smooth,
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only mildly varying shape. Application of this Mach number
profile to the MHS state results in the formation of quasi-3D
tube-like current filaments. A selection of current isocontours
of these filaments is depicted in the bottom panel of Figure 2.
The current of this MHD flow has a 3D character, as can be
seen in the middle panel of Figure 2, where we plot the current
density vector. The current density is strongest in the vicinity of
the dipole field and around z = 0.

For the second example, we use the following values for the
constants in Equation (51): k; = 1.57 and k, = 0.75. The
resulting Mach number profile is depicted in the top panel of
Figure 3, and the isocontours of the current filaments and the
current density vector are shown in the bottom and middle
panels of Figure 3, respectively. The choice of k, = 0 results in
an asymmetry with respect to the z = 0 plane in the Mach
number profile. In addition, the profile displays clearly stronger
gradients. This leads to currents with very narrow, highly
filamentary structures, as can be seen in the image of the
isocontours.

4.2. 2.5D Scenario

For the 2.5D scenario, we start from a linear force-free field
as initial MHS equilibrium. Such fields are typically chosen to
model coronal magnetic fields (see the review by Wiegelmann
& Sakurai 2012). We restrict our investigation to constant
force-free fields, which means that the electric current density
is given by j = c¢B, where c is a constant, and we represent our
force-free field with the Euler potentials f and g:

Bs = Vf x Vg, (52)
f = Bycos (kx) exp (—vy), (53)
g=z+x, (54)

1%

where v = Vk? — ¢2. For the presented case, we fix the
constants at the following values: By = 1, k= 1.3, and ¢ = 1.2.

We chose the Euler potentials such that f represents a
component of the Fourier expansion of this force-free field (see,
e.g., Wiegelmann 1998), and the second term of g describes the
component of the field in the z direction, i.e., the toroidal
component, where z is chosen as the invariant direction. The
force-free magnetic field is shown in Figure 4, where we plot
its direction and strength (top panel) and the projection of the
field lines into the x—y plane (bottom panel). The magnetic
field is strongest for y = 0 and decays with increasing values of
y. Consequently, the current density also has its maximum at
y = 0. Moreover, with the chosen representation of the Euler
potentials, the current density is a pure function of y and decays
exponentially. Selected isocontours of this initial current
density are shown in the top panel of Figure 5. Obviously,
the isocontours are parallel to the x—z plane, and the maximum
value of the current density is reached for y = 0, where it has a
numerical value of 1.56.

We define the Mach number profile in the following form,

My = tanh [ sin(2.5fg)], (55)

to provide a spatially strongly oscillating function. It is shown
in the middle panel of Figure 5. The results from applying this
profile to the static equilibrium are shown in the bottom panel
of Figure 5. Obviously, the former isocontour planes of the
current density now display wavy structures with dependency

Nickeler et al.

Figure 2. Mach number profile (top) for the values of k; = 1.57 and k, = 0
plotted over the phase space f= A(x, y) and g = z, current density vectors
(middle), and isocontours of the current (bottom) for this Mach number profile.
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Figure 3. Mach number profile (top) for the values of k; = 1.57 and k, = 0.75
plotted over the phase space f = A(x, y) and g = z, current density vectors
(middle), and isocontours of the current (bottom) for this Mach number
profile.
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Figure 4. Direction and strength of the initial force-free magnetic field (top)
and the projection of the field lines of this field (bottom) into the x—y plane in
the 2.5D case. The color coding refers to magnetic flux (function).

in the initially invariant direction, and their surfaces are
enlarged. Moreover, the numerical values of the mapped
current density are larger, especially in the regions of high
initial values of the magnetic field strength. These properties of
the mapped current density (enlargement of both the isocontour
surfaces and their numerical values) favor such configurations
for ohmic dissipation.

5. Discussion and Conclusions

We present a general parameterization for the calculation of
noncanonical transformations in the sub-Alfvénic case. This
parameterization provides an ideal tool to calculate all possible
transformations for a given MHS equilibrium, represented by
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Figure 5. Isosurfaces of the initial current density (top) and Mach number
profile (middle), and isosurfaces of the transformed current density (bottom) in
the 2.5D case.

the Euler potentials f and g. We apply this parameterization on
2D and 2.5D MHS equilibria and obtain symmetry breaking of
the current, resulting in three current components depending on
all three spatial coordinates. The symmetry breaking implies
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that the magnetic field lines can have high symmetry and are
ordered and nonchaotic (nonergodic), but due to strong
gradients of the flow the current distribution appears strongly
shredded, displaying complex lamination. The additional
fragmentation of the current filaments from Figure 2 into the
highly filamentary structures seen in Figure 3, which is caused
by only a slight change in the Mach number profile, shows that
it is possible to obtain highly complex current distributions
from an initially stationary and ordered magnetic field. These
results demonstrate that, to achieve strong currents, it is
sufficient to have ordered fields and ordered flows. These
currents are in principle suitable for triggering magnetic
reconnection or pure ohmic heating. Moreover, our results
imply that, in contrast to Parker’s idea of coronal heating, pure
singular current sheets, i.e., tangential discontinuities, are not
necessarily required. It is sufficient to have current sheets that
are strong enough to overcome instability thresholds for
magnetic reconnection or to achieve the required ohmic heating
rates. Such currents can easily be achieved with our model of
symmetry breaking. However, it would be desirable to obtain
those current density distributions that have sufficient strength
and a suitable structure at the right locations to trigger current-
driven instabilities. For this, an optimization procedure for the
Mach number profile needs to be developed.

Another aspect of our studies is devoted to the question
whether force-free fields are generic. Although flows support-
ing force-free states were a subject of investigation already in
the 1970s (Sreenivasan 1973; Sreenivasan & Thompson 1974),
only a limited set of such flows could be calculated. However,
these flows must obey very specific conditions, which means
that the force-free state is not arbitrarily free, and even the
force-free parameter o has to obey severe restrictions. As an
example, Sreenivasan & Thompson (1974) found that for axis-
symmetric cases o must be a function of space and time, while
recent studies of Paccagnella & Guazzotto (2011) revealed that
confined solutions that necessarily need a monotonically
decreasing pressure cannot exist.

Our analysis confirms and reinforces these previous findings.
Moreover, it shows that force-free magnetic fields can be
maintained by flows either only for specific geometries or for
constant Mach numbers.
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