Whispering in the dark: Faint X-ray emission from BH+OB star binaries

Koushik Sen

Institute of Astronomy, Nicolaus Copernicus University, Torun

Physics of Extreme Massive Stars Conference, Rio de Janeiro June 28, 2024

NATIONAL SCIENCE CENTRE Opus

with I. El Mellah, N. Langer, X.-T. Xu, Martin Quast, D. Pauli

Massive binaries

ZAMS

Searching techniques for BH+OB binaries

- strong X-ray emission (e.g. Walter et al. 2015; Motta et al. 2021).
- astrometric variations (e.g Breivik et al. 2017; Mashian & Loeb 2017; Yamaguchi et al. 2018; Andrews et al. 2019).
- photometric variability (Zucker et al. 2007; Masuda & Hotokezaka 2019).
- spectroscopic monitoring (e.g. Geisers et al. 2018, Thompson et al. 2019, Mahy et al. 2022, Shenar et al. 2022).

Accretion onto stellar mass BHs

figure not to scale

5

Matter is accreted
from the stellar wind
(v_{wind}) of the O star
Accretion radius of
the compact object
(Davidson+1973)
Bondi-Hoyle mass
accretion rate
$$\frac{\dot{M}_{acc}}{\dot{M}_{W}} = \frac{\pi R_{acc}^2}{4\pi a^2} \frac{v_{rel}}{v_{W}}$$

(Bondi+1944)

Chaty/ESA

Radiative efficiency of accreting BHs

$$L_{\rm X} = \epsilon \dot{M}_{\rm net} c^2$$

 ϵ = radiative efficiency

$$\boldsymbol{\epsilon} = \boldsymbol{\epsilon} (\dot{M}_{\text{net}}, \delta)$$

 δ = electron heating parameter

Xie & Yuan (2012)

Grid of binary evolution models

 $M_{donor,i} = 10 - 90 M_{sun}$ $q_i = M_{accretor,i} / M_{donor,i} = 0.25 - 0.95$ $P_{orb,i} \sim 1 - 3162 \text{ days}$

Population syn* of BH+OB binaries

*weighted by the Salpeter IMF, initial binary distribution functions, and the time spent in the BH+OB phase

arXiv:2406.08596

X-ray luminosity of BH+OB star binaries

X-ray luminosity of BH+OB star binaries

Number predictions for the LMC

Percentage of BH+OB star binaries (δ = 0.001)

≅ <u>28 X-ray-faint systems in the LMC</u>

Percentage of BH+OB star binaries (δ = 0.5)

≅ <u>72 X-ray-faint systems in the LMC</u>

A smoking gun: HD 96670

 $M_{BH} = 6.2$ Msun, $M_{OB} = 22.7$ Msun

 $P_{orb} = 5.28 \text{ d}, R_{OB} = 17.1 \text{ Rsun}$

Teff = 38000 K (Hohle+2010)

Observed Lx = 2.2e32 erg/s (NuSTAR, Gomez+2021) to 2.4e34 erg/s (XMM-Newton, Saxton+2008)

Predicted Lx = 8e33 erg/s

*stellar parameters not well-constrained (Gomez+2021, Wang+2022) => excellent target for follow-up spectroscopy and a Chandra proposal

Observable properties of X-ray-faint systems

arXiv:2406.08596 ¹²

erved in fa binaries to SITA survey

ay.

X-ray-quiet

X-ray-faint

Whispering in the dark: Faint X-ray emission from BH+OB star binaries

Koushik Sen

Institute of Astronomy, Nicolaus Copernicus University, Torun Physics of Extreme Massive Stars Conference, Rio de Janeiro June 28, 2024

with I. El Mellah, N. Langer, X.-T. Xu, Martin Quast, D. Pauli

Number predictions for the LMC

- 120 BH+OB star binaries in 10-40
 Msun range (Langer+2020).
- 136 BH+OB star binaries in 10-90
 Msun range (this work).
- 10 BH+OB are X-ray-bright.
- For δ = 0.001, 28 are X-ray-faint.
- For δ = 0.1, 44 are X-ray-faint.
- For δ = 0.5, 72 are X-ray-faint.

Percentage of BH+OB star binaries (δ = 0.001)

arXiv:2406.0859615

Whispering in the dark: Faint X-ray emission from BH+OB star binaries

Lx > 10³¹ erg/s can be detected (Crowther+2022) ⇒ "X-ray-faint" BH+OB star binaries