

Toward spectral analysis with 3D model atmospheres Lara Delbroek

& 'SUPERSTARS-3D' team:

Jon Sundqvist Luka Poniatowski Olivier Verhamme Dwaipayan Debnath Nicolas Moens Frank Backs Cassandra Van der Sijpt Pieter Schillemans

Why 3D radiative transfer techniques/models?

spectroscopic observations: indications for 3D, time-dependent effects

Lepine & Moffat (1999)

Why 3D radiative transfer techniques/models?

• Higher mass stars: can't resolve surface (contrast to Sun)

- Need 'quantitative spectroscopy' to test models and compare these models with observations
- Post-Processing 3D-RT packages building on Hennicker et al. (2020,2021)

Which techniques and advantages

- 3D radiative transfer techniques (building from Hennicker et al. 2021) applied to the first 3D unified atmosphere and wind simulations of O-type stars.
- 3D model: Moving away from 'free parameter heaven/hell'

log(Rho (g/cm^3))

Which techniques and advantages

3D model: Moving away from 'free parameter heaven/hell'

1D models		3D models
Μ	β	Μ
L	Vmic	L
R	Vmac	R
[Fe/H]	fcl	[Fe/H]
v sin i	fvel	
Ŵ	vcl	
٧∞		

log(Rho (g/cm^3))

KU LEUVEN

6

O-star view from orbit

xy-axis/Rstar = 0.2

- Emergent intensity (surface brightness) at one frequency point in the optical continuum (LTE)
- HUGE fluctuations across surface in emergent radiation temperature
- We cannot resolve surface of O-stars (contrast to Sun) => Need of flux profiles for full star (not just patch!)
- Transition: 3D box to sphere

• Time-independent equation of radiative transfer:

$$\boldsymbol{n}\boldsymbol{\nabla}I_{\nu} = \eta_{\nu} - \chi_{\nu}I_{\nu} = \chi_{\nu}(S_{\nu} - I_{\nu})$$

 I_v = specific intensity ; η_v = emissivity ; χ_v = opacity ; $S_v = \eta_v / \chi_v$ = source function

Surface brightness/emergent flux profiles

To be explored

Summary

- 3D-RT package to explore effects on spectra (Multi-D O-star atmosphere with wind models)
- Very turbulent atmosphere, large velocity fields and density variations also in photosphere
- Unlike 1D-atmosphere codes no micro- or macroturbulence needed
- Observed (high-resolution, high S/N) line widths, shapes, and shifts might be used as critical tests
- Relative 3D effects on chemical abundance and stellar parameter derivation to be explored (See also talk by Gemma Gonzalez)

Supplementary slides

• Time-independent equation of radiative transfer:

$$\boldsymbol{n}\boldsymbol{\nabla}\boldsymbol{I}_{\nu}=\eta_{\nu}-\chi_{\nu}\boldsymbol{I}_{\nu}=\chi_{\nu}(\boldsymbol{S}_{\nu}-\boldsymbol{I}_{\nu})$$

 I_v = specific intensity ; η_v = emissivity ; χ_v = opacity ; $S_v = \eta_v / \chi_v$ = source function

 angular moments of the specific intensity :

 J_v = mean intensity ; H_v = Eddington flux K_v = 2nd moment ; P_v = radiation pressure F_v = flux ; E_v = energy density

$$J_{\nu} = \frac{1}{4\pi} \int I_{\nu} d\Omega = \frac{c}{4\pi} E_{\nu},$$

$$H_{\nu} = \frac{1}{4\pi} \int I_{\nu} n d\Omega = \frac{1}{4\pi} F_{\nu},$$

$$K_{\nu} = \frac{1}{4\pi} \int \underbrace{nI_{\nu}n}_{\text{dyadic product}} d\Omega = \frac{c}{4\pi} P_{\nu},$$

Solve radiative transfer (in a pz-type geometry) to obtain surface brightnesses/ emergent flux profiles

- To get emergent intensity: formal integral
 - Get emergent intensity at each point on surface for each frequency: solve RT equation
 - For this you need: opacities AND source functions at all spatial points
 - Assumption: opacities (line and continuum) and source functions can be calculated locally for a given 3D structure (temperature, velocity, density)
- To get emergent flux: angle integration over projected surface

Post-Processing 3D-RT packages building from Hennicker et al. (2020,2021) Line opacity method: Poniatowski et. (2022)

- Assumptions LTE: opacities via Saha-Boltzmann relations and source functions via planck function
- Assumptions aNLTE: it approximates NLTE deviations from LTE by a local approach, it modifies the Saha-Boltzmann relations when computing number densities (refs, Lucy & Abbott 1993, Springmann & Puls, 'fastwind')
- For full NLTE (NOT IN USE YET, much more time consuming): source functions DEPEND on J_v (zero angular moment). Need to solve RT equation for I_v and angular moment to get J_v for ALL points in atmosphere. THEN with this new J_v update values for S_v, repeat process. Done until S_v converged: Lambda iteration (accelerated technique: accelerated lambda iteration (ALI)). Built in for a source function containing scattering.

Post-Processing 3D-RT packages building from Hennicker et al. (2020,2021) Line opacity method: Poniatowski et. (2022)

Modelspec:

LTE

VS

aNLTE

- Continuum opacity: Use Thomson scattering opacity
- Line opacities: LTE (LTE opacity package by Poniatowski et. (2022))
- Continuum source function:
 Planck function
- Line source function: Planck function

- Continuum opacity: Use Thomson scattering opacity
- Line opacities: aNLTE (modifies the Saha-Boltzmann relations when computing number densities), (updated from LTE opacity package by Poniatowski et. (2022))
- Continuum source function: Planck function (T_rad)
- Line source function: Planck
 function with aNLTE modifications

Model 3 Average velocities

V = 0 averaged in modelspec V = v_av averaged in modelspec

V = 0 averaged in spec V = V_av averaged in spec

Which techniques and advantages

3D model: Moving away from 'free parameter heaven/hell'

```
Input parameters (1D and 3D):
```

M, L, R, [Fe/H], v sin i

Additional (free) parameters in 1D:

- Global wind parameters: Ṁ, v∞, β - Vmic, Vmac, wind structure (fcl, fvel, vcl, …)

Parameters defining the presented 3D models:

M, L, R, [Fe/H]

No micro-/macroturbulence added in spectral line formation!

log(Rho (g/cm^3))

Surface brightness/emergent flux profiles

Toward spectral analysis with 3D model atmospheres Lara Delbroek

- 3D-RT package to explore effects on spectra (Multi-D O-star atmosphere with wind models)
- Very turbulent atmosphere, large velocity fields and density variations also in photosphere
- no micro- or macroturbulence needed
- Observed (high-resolution, high S/N)
 line widths, shapes, and shifts might be used as critical tests
- Relative 3D effects on chemical abundance and stellar parameter derivation to be explored (See also talk by Gemma Gonzalez)

KU LEUVEN

3D model <1D> v = 0