Hydrodynamic solutions for radiation-driven winds in transition regions

Student : Melina Carla Fernandez

Directors: Dr. Lydia S. Cidale Dr. Roberto O. J. Venero

Physics of Extreme Massive Stars

Facultad de Ciencias Astronómicas

Marie-Curie-RISE project funded by the European Union

B supergiant stars

8 < M/M_☉ < 50 5 < log(L/L_☉) < 5.6

Stellar winds

Evidences: P Cygni profile

Taken from Lamers & Cassinelli (1999)

Wind parameters:

- Mass loss rate M
 between 10⁻⁶ and 10⁻⁷ M_o/yr
- Terminal velocity of the wind V_∞ between 100 and 2000 km/s

Discrete Absorption Components (DACs)

Taken from Lamers+ (1982)

Objectives:

- exploring solutions for radiation-driven winds,
- obtaining the synthetic profiles of Si IV searching for a possible relation with DACs,
- incorporating an additional broadening mechanism (Stark) to the code that solves the radiative transfer equation,
- comparing synthetic profiles with observations of a B supergiant star.

1

Radiation-driven winds

3 Line profiles calculations **4** Synthetic line profiles

Radiation-driven winds

m-CAK theory, hydrodynamic codes Hydwind and ZEUS-3D

Mass conservation

 $\dot{M} = 4\pi r^2 \rho v = constant$

Energy conservation

Temperature law

Momentum conservation

Velocity law

m-CAK theory

Pauldrach+ (1986) Friend & Abbott (1986)

$$g_{
m rad}^L = rac{C}{r^2} CF \left(rac{n_e}{W(r)}
ight)^{oldsymbol{\delta}} (r^2 v rac{{
m d} v}{{
m d} r})^{oldsymbol{lpha}} \quad C = {oldsymbol{k}} GM_* \Gamma \left(rac{4\pi}{\sigma_e \dot{M} v_{th}}
ight)^{oldsymbol{lpha}}$$

$$\Big(1-rac{a^2}{v^2}\Big)vrac{dv}{dr}=rac{2a^2}{r}+g_{ ext{eff}}(r)+g^L_{ ext{rad}}(r,v,dv/dr)$$

Fast solutions (classical)

Slow rotation $~\Omega \lesssim 0.8~$

 $\delta \lesssim 0.2$

Taken from Curé & Araya (2023)

Taken from Venero+ (2016)

Hydwind code

Curé (2004)

Fast and $\boldsymbol{\delta}$ -slow solutions

Teff = 18000 K log(g) = 2.5 R = 23 R_{*} Ω = 0.27 k = 0.104 α = 0.515 \dot{M} = 0.05 x 10⁻⁷ M_☉/yr

gap in $0.20 < \delta < 0.24$

ZEUS-3D code

Clarke (1996, 2010), Araya+ (2018)

Fast and $\boldsymbol{\delta}$ -slow solutions

Teff = 18000 K log(g) = 2.5 R = 23 R_{*} Ω = 0.27 k = 0.104 α = 0.515 \dot{M} = 0.05 x 10⁻⁷ M_☉/yr

New solutions

Continuous transition between fast and $\boldsymbol{\delta}$ -slow solutions!

Line profile calculations

MULITAS code

3

MULITAS code

MUlti Line Transfer for Active Stars

Statistical equilibrium equations for Si IV populations

Emergent flux

need:

- Model parameters
- Temperature law
- Velocity law

Si IV atom with 6 levels + continuum

Line profiles

$$v_0 = \frac{E_f - I}{h}$$

Radiative (or natural) broadening Lorentz profile

Thermal (or Doppler) broadening Gauss profile

Collisional broadening (Stark) Lorentz profile

width and frequency shift

STARK - B database

Sahal-Brechot+ (2008)

Improvement to the MULITAS code: Stark effect for Si IV through using a voigt profile

Synthetic line profiles

4

HD 41117 B2 la Teff = 19000 K, $\log(g) = 2.3$, R = 23 R_{*}, v sen(i) = 40 km/s, $\Omega = 0.27$

Ηα Haucke+ (2018) Venero+ (2023) βlaw Fast solution δ -slow solution $\beta = 2.0$ k = 0.113k = 0.095 $\alpha = 0.520$ $\alpha = 0.510$ $\dot{M} = 0.17 \times 10^{-6} M_{\odot}/yr$ δ = 0.0 $\delta = 0.240$ $V_{\infty} = 510 \text{ km/s}$ \dot{M} = 0.089 × 10⁻⁶ M_☉/yr \dot{M} = 0.179 × 10⁻⁶ M_o/yr Vmacro = 65 km/s $V_{\infty} = 306.9 \, \text{km/s}$ $V_{m} = 160.0 \text{ km/s}$ Vmicro = 10 km/s

Teff = 18000 K, log(g) = 2.5, R = 23 R_{*}, v sen(i) = 40km/s, Ω = 0.27 α = 0.515, k = 0.104, \dot{M} = 0.05 x 10⁻⁶ M_☉/yr

 $\boldsymbol{\delta}$ = 0.0 fast V_{∞} = 537.4 km/s

k = 0.104 α = 0.515 \dot{M} = 0.05 × 10⁻⁶ M_☉/yr Vmacro = 40 km/s Vmicro = 20 km/s

 $\boldsymbol{\delta} = 0.3 \quad \boldsymbol{\delta}$ -slow V_{∞} = 211.9 km/s

δ = 0.225 gap V_∞ = 276.1 km/s

Conclusions :D

Conclusions:

- new solutions in the transition regimen between fast and δ-slow solutions are stables, and have a kink. the convergence is independent on the initial solution,
- we calculated UV profiles, considering Stark broadening (incorporated in the MULITAS code),
- these kinks don't generate DACs, at least in the model explored,
- comparing with an observed spectra, the fast solution seems to be the more appropriate for modeling HD 41117.

