Hydrodynamic solutions for radiation-driven winds in transition regions

Student : Melina Carla Fernandez

Directors: Dr. Lydia S. Cidale Dr. Roberto O. J. Venero

Physics of Extreme Massive Stars

Marie-Curie-RISE project funded by the European Union

B supergiant stars

8 < M /M $_{\odot}$ < 50 5 < log(L/L $_{\odot}$) < 5.6

Stellar winds

Evidences: P Cygni profile

1.8 $\sin 10$ $\frac{1}{2}$ 1.6 1.4 1.2 F_{λ}/F_{c} 0.8 0.6 0.4 0.2 Ω 1385 1390 1395 1400 1405 1410 λ [Å]

Wind parameters:

- Mass loss rate M between 10 $^{-6}$ and 10 $^{-7}$ M $_{\odot}$ /yr
- Terminal velocity of the wind V_{∞} between 100 and 2000 km/s

Taken from Lamers & Cassinelli (1999)

Discrete Absorption Components (DACs)

Taken from Lamers+ (1982)

Objectives:

- exploring solutions for radiation-driven winds,
- obtaining the synthetic profiles of Si IV searching for a possible relation with DACs,
- incorporating an additional broadening mechanism (Stark) to the code that solves the radiative transfer equation,
- comparing synthetic profiles with observations of a B supergiant star.

Radiation-driven winds

3 Line profiles calculations 4 Synthetic line profiles

Radiation-driven winds

m-CAK theory, hydrodynamic codes Hydwind and ZEUS-3D

1

Mass conservation

 $\dot{M}=4\pi r^2\rho v=constant$

Energy conservation

Temperature law

Momentum conservation

Velocity law

m-CAK theory Pauldrach+ (1986)

Friend & Abbott (1986)

$$
g^L_{\rm rad} = \tfrac{C}{r^2} C F \Bigl(\tfrac{n_e}{W(r)}\Bigr)^\delta (r^2 v \tfrac{\mathrm{d} v}{\mathrm{d} r})^\alpha \quad C = k G M_* \Gamma \Bigl(\tfrac{4 \pi}{\sigma_e \dot M v_{th}}\Bigr)^\alpha
$$

$$
\Big(1-\tfrac{a^2}{v^2}\Big)v\tfrac{dv}{dr}=\tfrac{2a^2}{r}+g_{\text{eff}}(r)+g^L_{\text{rad}}(r,v,dv/dr)
$$

Fast solutions (classical)

Slow rotation $\Omega \lesssim 0.8$

 $\delta \lesssim 0.2$

 $\delta > 0.2$

-**slow solutions**

Taken from Curé & Araya (2023)

Taken from Venero+ (2016)

Hydwind code

Curé (2004)

Fast and δ -slow solutions

Teff = 18000 K $log(g) = 2.5$ $R = 23 R_*$ $\Omega = 0.27$ $k = 0.104$ $\alpha = 0.515$ $\dot{\mathsf{M}}$ = 0.05 x 10⁻⁷ M $_{\odot}$ /yr

gap in $0.20 < \delta < 0.24$

ZEUS-3D code

Clarke (1996, 2010), Araya+ (2018)

Fast and δ -slow solutions

Teff = 18000 K $log(g) = 2.5$ $R = 23 R_*$ $\Omega = 0.27$ $k = 0.104$ $\alpha = 0.515$ $\dot{\mathsf{M}}$ = 0.05 x 10⁻⁷ M $_{\odot}$ /yr

New solutions

Continuous transition between fast and δ -slow solutions!

Line profile calculations

MULITAS code

3

MULITAS code

MUlti LIne Transfer for Active Stars

Radiative transfer equation (radiation continuum + lines) Statistical equilibrium equations for Si IV populations

Emergent flux

need:

- Model parameters
- Temperature law
- **Velocity law**

Si IV atom with 6 levels + continuum

Line profiles

$$
\gamma_0 = \tfrac{E_f-1}{h}
$$

Radiative (or natural) broadening Lorentz profile

Thermal (or Doppler) broadening Gauss profile

Collisional broadening (Stark) Lorentz profile

width and frequency shift

STARK - B database

Sahal-Brechot+ (2008)

Improvement to the MULITAS code: Stark effect for Si IV through using a voigt profile

Synthetic line profiles

4

HD 41117 B2 la Teff = 19000 K, log(g) = 2.3, R = 23 R_{*}, v sen(i) = 40 km/s, Ω = 0.27

Haucke+ (2018) β law $β = 2.0$ $\dot{\mathsf{M}}$ = 0.17 \times 10⁻⁶ M $_{\odot}$ /yr V_{∞} = 510 km/s Vmacro = 65 km/s Vmicro = 10 km/s **Venero+ (2023)** $\overline{\mathbf{b}}$ -slow solution $\overline{\mathbf{b}}$ -slow solution $k = 0.113$ k = 0.095 $\alpha = 0.520$ $\alpha = 0.510$ $\delta = 0.0$ $\delta = 0.240$ \dot{M} = 0.179 \times 10⁻⁶ M_{\odot}/yr /yr Ṁ= 0.089 x 10-6 ^M☉ /yr V ∞ $= 306.9$ km/s V ∞ $= 160.0$ km/s $H\alpha$

Teff = 18000 K, log(g) = 2.5, R = 23 R_{*}, v sen(i) = 40km/s, Ω = 0.27 α = 0.515, k = 0.104, M = 0.05 \times 10⁻⁶ M_☉/yr

 $\delta = 0.0$ fast V_{∞} = 537.4 km/s

 $k = 0.104$ $\alpha = 0.515$ M = 0.05 × 10⁻⁶ M _⊙/yr Vmacro = 40 km/s Vmicro = 20 km/s

 $\delta = 0.3$ δ -slow V_∞ = 211.9 km/s

 $\delta = 0.225$ gap $δ = 0.3$
 $V_{\infty} = 21$
 $δ = 0.225$ gap
 $V_{\infty} = 276.1$ km/s

Conclusions :D

Conclusions:

- \bullet new solutions in the transition regimen between fast and δ -slow solutions are stables, and have a kink. the convergence is independent on the initial solution,
- we calculated UV profiles, considering Stark broadening (incorporated in the MULITAS code),
- these kinks don't generate DACs, at least in the model explored,
- comparing with an observed spectra, the fast solution seems to be the more appropriate for modeling HD 41117.

