From Multi-D Atmosphere and Wind models To spectral synthesis SUPERSTARS-3D

Massive star winds

In our group:

- 1D Detailed NLTE (Fastwind)
- 3D time-dep. RHD
- 3D RT, spectral synthesis

Nicolas Moens IvS - KU Leuven POEMS 2024 RJ

The TEAM

Olivier Verhamme, Cassandra Van der Sijpt, Dwaipayan Debnath, Lara Delbroek, Pieter Schillemans, Frank Backs, Luka Poniatowski, Nicolas Moens, Jon Sundqvist

3D RHD Atmospheres and Winds

Multi-D RHD calculations Built on **mpi-amrvac**

Radiation dominated Winds and Atmospheres Of hot massive stars

Local simulation on Dynamical timescales

Not spherically symmetric

PhD thesis N. Moens

Why do we need 3D models?

1D dynamics: Free parameter hell

Clumping factor

macro-turbulence

porosity

thick/thin clumping

Inter-clump density micro-turbulence

Beta-law exponent

3D spectral effects?

3D model atmosphere \rightarrow "New" Solar abundances (Asplund)

Goals?

Understood for Ostars and WR(?), How about LBV's, RSG winds?

Spectral synthesis

V [km/s]

Our work this week

EOS: gas pressure only:
$$p=\frac{e}{\gamma-1}+\frac{1}{2}\rho v^2$$
gamma 5/3, NOT Rad. fluid

$$\begin{aligned} \partial_t \rho + \nabla \cdot (\rho \vec{v}) &= 0 \\ \partial_t (\vec{v}\rho) + \nabla \cdot (\vec{v}\rho \vec{v} + p) &= -\rho \vec{g}_{grav} - \rho \vec{g}_{rad} \\ \partial_t e + \nabla \cdot (e\vec{v} + p\vec{v}) &= -\rho \vec{v} \cdot \vec{g}_{grav} - \rho \vec{v} \cdot \vec{g}_{rad} + \dot{q}_{rad} \end{aligned}$$

Radiation source terms

EOS: gas pressure only:
$$p=\frac{e}{\gamma-1}+\frac{1}{2}\rho v^2$$
gamma 5/3, NOT Rad. fluid

Non-isotropic, Time-dependent Radiation field

Radiative transfer equation: ^{7D Equation:} $\frac{1}{c} \partial_t I_{\nu} + \hat{n} \cdot \nabla I_{\nu} = \kappa_{\nu} \rho (S_{\nu} - I_{\nu})$

- + Computationally cheap
- + Captures dynamics
- No spectral info

Opacity

Depend on **gas** and **radiation** quantities, And ...

Opacity

Opacity

Source terms: $4\pi\rho\kappa_B$ $C\rho\kappa_E$ κ_{F} **Frequency-integrated opacities** $hoec{g}_{rad}$:

Atmosphere (Static, Diffusion Limit)

 $\kappa_E = \kappa_B = \kappa_F$

 $= \kappa_{Ross}(\rho,T)$ (e.g. OPAL tables)

Wind (Sobolev effect, Line driving)

$$\kappa_i = \kappa_i(\rho, T, \tau, E, \partial v / \partial r)$$

Beyond (m-)CAK Fitted from atomic database Poniatowski '22

12

Opacity recovers Mdot recipes

Simulation setup

Simulation setup

Simulation setup

Example model

Example model

O stars:

Understanding atmosphere inflation

Debnath '24

LBV stars:

S-dor like variability?

Schillemans (work in progress)

WR stars: Understanding wind dynamics

Moens '22

O stars:

Understanding atmosphere inflation

Debnath '24

LBV stars: S-dor like variability?

Schillemans (work in progress)

WR stars: Understanding wind dynamics

Moens '22

O stars

Understanding atmosphere inflation

Debnath '24

LBV stars: S-dor like variability?

Schillemans (work in progress)

Work in progress

Towards spec synth: Global reconstruction

Fill the full sphere with multiple "local" simulation boxes for spectral synthesis

Short/Long Characteristics solver

Line3D (Hennicker 2022)

Spectral synthesis

*Without assuming micro/macro turbulence, clumping, ...

Spectral synthesis

Conclusions

We developed a self-consistent **3D** massive star **atmosphere and wind** model for **dynamics** and **spectral synthesis**

Pro's:

- Self-consistent
- No ad-hoc parameters
- Capture important 3D effects
- Inform 1D methods
- Computationally cheap

Con's:

- Computationally expensive
- Sobolev approximation
- Not fully NLTE

Thank you

Flux-limited diffusion

Oth moment equation:

$$\partial_t E + \nabla \cdot (E\vec{v} + \vec{F}) = -\nabla \vec{v} : P_{rad} - \dot{q}_{rad}$$

Flux limited diffusion:

Recovers diffusive limit Recovers free streaming limit

$$\mathbf{F} = -\frac{c\lambda}{\kappa\rho}\nabla E$$

+ Computationally cheap

+ Captures dynamics

No spectral info
Analytic approximation

Radiation-hydrodynamics

$$\begin{aligned} \partial_t \rho + \nabla \cdot (\rho \vec{v}) &= 0 \\ \partial_t (\vec{v}\rho) + \nabla \cdot (\vec{v}\rho \vec{v} + p) &= -\rho \vec{g}_{grav} - \rho \vec{g}_{rad} \\ \partial_t e + \nabla \cdot (e\vec{v} + p\vec{v}) &= -\rho \vec{v} \cdot \vec{g}_{grav} - \rho \vec{v} \cdot \vec{g}_{rad} + \dot{q}_{rad} \\ \partial_t E + \nabla \cdot (E\vec{v} + \vec{F}) &= -\nabla \vec{v} : P_{rad} - \dot{q}_{rad} \end{aligned}$$

Solved with **MPI-AMRVAC** In 1D, 2D or 3D setting

- Finite volume solver
- AMR, mpi-parallel

Moens '21

Pseudo-Planar correction

As in spherical radial coordinate

WR wind morphology

Only IRON BUMP does not suffice to lift gas from gravitational well

Solution: Take into account stretched line opacities (driving force behind O,B-star winds)

WR wind morphology

Scaled Radius

LBV stars

LBV stars

