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Massive Stars and their winds
2

“The massive star zoo”: Massive stars appear in various flavours
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Stellar winds appear across the upper HRD

Most of the evolutionary lifetime is spent at hot
(Teff > 10 000K) temperatures:

→ flux maximum in the UV
↪→ line-driven winds

→ spectral types: B, O, WNh, WN, WC, WO

→ lots of open questions about the evolutionary
connections in the “zoo”

Several possible paths, but which are real?
→ study the observed different “zoo” members
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Hot Massive Stars
3

Photometry alone is usually
insufficient to understand
hot stars
It’s blue:
You can fit any model with Teff ≳ 20 kK...

Spectroscopy is key
▶ fundamental stellar

parameters
→ Balmer jump

vanishes for
hottest stars

▶ abundance information
▶ wind diagnostic(s)
▶ ...
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Hot Massive Stars
4

So how to deal with hot, massive stars?
▶ Perform quantitative spectroscopy to get reliable parameters

Pauli et al. (2023)

▶ Requires a physical model of the outermost layers of the star: model atmosphere



Quantitative Spectroscopy
5

One coherent model needs
to explain the full spectrum
and reproduce the SED
▶ Usually no

de-composition into
element-specific
models possible

▶ Several specific
challenges for hot,
massive stars

▶ Atomic (electronic)
data of many species
needed



Quantitative Spectroscopy
5

One coherent model needs
to explain the full spectrum
and reproduce the SED
▶ Usually no

de-composition into
element-specific
models possible

▶ Several specific
challenges for hot,
massive stars

▶ Atomic (electronic)
data of many species
needed



Quantitative Spectroscopy – Diagnostics
6

For most stars: Teff only from
line ratios (e.g., He I vs. He II)

Plus:
▶ N III, N IV, N V for early

O stars
▶ Si II, Si III, Si IV,

He I/Mg II for B stars
▶ Rotational broadening

from metals
▶ Microturbulence
▶ Macroturbulence
▶ wind and clumping

diagnostics (UV, Hα)



Quantitative Spectroscopy – UV Diagnostics
7

Credit: NASA, ESA, Z. Levy Credit: NASA, ESA, Z. Levy



The physical roots of quantitative spectroscopy
8

Stars are giant balls of gas:
▶ no hard boundary (→ non-trivial radius definition)

▶ spectrum stems from a transition layer: stellar atmosphere

stellar atmosphere models
=

fundamental tool of astrophysics

Spectrum formation in hot, massive stars:
- far outside of thermodynamic equilibrium
- stellar winds → expanding atmosphere
- ionization changes throughout the atmosphere
- emission and absorption lines with multiple broadening mechanisms
⇒ many physical and numerical challenges
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The challenges of expanding stellar atmosphere modelling
9
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non-LTE
10

O I
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dni
dt = 0 ⇒ ni

∑
i ̸=j

Pij︸ ︷︷ ︸
total loss rate

=
∑
i ̸=j

njPji︸ ︷︷ ︸
total gain rate

Departures from LTE are much larger in
hot stars than in cool stars:
→ non-LTE cannot be treated as a

correction
→ complete non-LTE treatment for

establishing the atmosphere
stratification

→ iterative solution of the statistical
equilibrium equations required
(modern models have often 1000 . . . 2000
explicit levels)

→ abundance changes in one element
can affect lines of other elements



Winds of hot stars: fundamental principles
11

Stellar winds are ubiquitous in massive stars
→ can alter the spectrum, need to be modeled
→ expanding atmosphere model required

Radiation pressure dominates in hot stars:
▶ Momentum transfer from photons to matter

▶ Subject to instabilities, but existence of
time-averaged stationary solutions

Radiative acceleration vs. gravity in 1D:

Γrad(r) := arad(r)
g(r) = κF (r) L

4πcGM

κF : flux-weighted mean opacity

⇒ main wind-defining quantities: L, M, κF
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The flux-weighted opacity
12

Major source of complication: κF ̸= κRosseland
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Radiative driving depends on
flux-weighted opacity (red) instead
of Rosseland opacity (blue):

Opacities significantly higher in the
wind than e.g. given by OPAL, due
to Doppler-shifting of the lines:

λ0λ0-∆λmax
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⇒ can use much wider λ-range



The flux-weighted opacity
12

Major source of complication: κF ̸= κRosseland

OB star

κF

κRoss

R2/3R
Ross

R2/3R
F

Rcrit

AS

τRoss

20 10 5 1 0.1 0.01 0.001

12.0

12.5

13.0

-2 -1 0 1

log (r/R∗ − 1)

lo
g

(κ
ρ
−1

[c
m

5
g−

2 ])

Sander (2022)

Radiative driving depends on
flux-weighted opacity (red) instead
of Rosseland opacity (blue):

Opacities significantly higher in the
wind than e.g. given by OPAL, due
to Doppler-shifting of the lines:

λ0λ0-∆λmax

Line Opacity

D
is

ta
n

c
e

 f
ro

m
 t

h
e

 S
ta

r 

⇒ can use much wider λ-range



Comoving Frame (CMF) Radiative Transfer Calculations
13

“Brute Force” numerical solution of the (spherical) radiative transfer equation(s)
▶ Opacities/Emissivities (κν , ην) stay isotropic (despite the expanding atmosphere)
▶ typically 200 000 ... 400 000 wavelength points λk (depending on required line width resolution)

▶ initial value problem: start at blue edge, solve for each λk using solution for λk−1
▶ at each λk : equation system coupled in space (r)

⇒ ∼ 109 intensities (λk · rl · pj )

Benefits:
▶ implicit multiple scattering and line overlapping
▶ no Sobolev approximation → realistic line force

arad(r) = 4π

c

∞∫
0

κνHνdν = κF L
4πcr2

Each RT computation with detailed atomic data takes few minutes
⇒ Atmosphere codes with iterated CMF RT require hours to days
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The complexity of non-LTE stellar atmosphere modelling
14

Radiation Transfer

Symbolically: linear mapping Λ

J = Λ S(~n)

Rate Equations (Statistical Equilibrium)

Set of linear eqns. at each spatial point

~n · P(J) = [0, ..., 0, 1]

radiation    source     population       pop. numbers        transition

  field           function    numbers         (at 1 depth point)      rates

 Coupling in space  Coupling in frequency

Radiative transition rates:

Frequency integrals

Rlu =

∫
4π
hν
σlu(ν) Jν dν

  high-dimensional, non-linear, fully coupled in space and frequency



Hot star atmosphere models: State of the art
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Schematic overview of stellar atmosphere calculations:
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What about different model atmosphere codes?
16

How much do the results differ between different
analysis methods?

▶ XShootU Paper IV (Sander et al., submitted)
▶ “blind test”

→ avoid any aims to meet “expected” values
▶ Concept: Everybody does what they “usually do”

exceptions: We use the same spectra
(re-normalization allowed) and photometry

▶ 3 expanding atmosphere codes:
CMFGEN, FASTWIND, PoWR

▶ 8 different methods
(from coarse grids to tailored models)
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Comparison of different hot star atmosphere codes
17

static — expanding —
TLUSTY FASTWIND CMFGEN PoWRhd

geometry plane-parallel spherical spherical spherical
blanketing yes approx. (v10) yes yes
wind + X-rays no yes yes yes
clumping no micro+macro micro micro
HD wind option no wind yes (v11) yes (LambertW) yes
calculation time hours < 1 hour (v10) hours hours
spectral synthesis SYNSPEC included included included

Considerable differences in the implementations, e.g.:
▶ Clumping formalism and onset description
▶ Treatment of wind-intrinsic X-rays
▶ more approximations in FASTWIND (v10) to gain speed −1 0 1 2 3

log (3 [km s−1])
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3sonic
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Results from different atmosphere codes
18

Results from XShootU IV:
▶ Comparable parameters, a bit more scatter than expected
▶ Tailored fits generally better, reddening differences matter
▶ Turbulent pressure promising to reduce mass discrepancy
▶ It is usually okay to combine results from different methods
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Empirical stellar and wind parameters
19

Quantitative spectral analysis

Standard wind description:
▶ assumed β- oder 2β-velocity

law for v(r)
▶ choice of v(r) affects predicted

spectrum
▶ formally “independent”

adjustment of stellar and wind
parameters

Unified model for star and wind
→ consistent parameters?
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Stellar properties versus wind assumptions
20
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→ force balance violated
→ global balance does

not ensure local balance

v dv
dr + g ̸= arad + apress
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Prediction of wind parameters via Hydrodynamics
21

Inherent inconsistencies between star and wind
→ balance of rad. pressure and gravity is violated
→ wind is too strong/weak for what can be driven
→ degeneracies for different wind assumptions
⇒ no insights on radiative driving

Solution: Consistent hydrodynamical treatment
Use radiative
acceleration arad
from detailed
radiative transfer

arad(r) = 1
c

∞∫
0

κν(r)Fν(r)dν

Radiative Transfer:
Jν = ΛνSν (⃗n, v)

Jν : radiation field (angle-averaged intensity)
n⃗: atomic level population numbers

Rate Equations:
n⃗ · P(J) = b⃗

v(r): wind velocity (as a function of radius)
Ṁ: wind mass-loss rate

Fixed wind stratification:
ρ(r), v(r), Ṁ
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→ balance of rad. pressure and gravity is violated
→ wind is too strong/weak for what can be driven
→ degeneracies for different wind assumptions
⇒ no insights on radiative driving

Solution: Consistent hydrodynamical treatment
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acceleration arad
from detailed
radiative transfer

arad(r) = 1
c

∞∫
0

κν(r)Fν(r)dν

Radiative Transfer:
Jν = ΛνSν (⃗n, v)

Jν : radiation field (angle-averaged intensity)
n⃗: atomic level population numbers

Rate Equations:
n⃗ · P(J) = b⃗

v(r): wind velocity (as a function of radius)
Ṁ: wind mass-loss rate

Consistent wind stratification:
ρ(r), v(r), Ṁ

Hydrodynamics:
dv
dr = −g

v
F̃(J, n⃗)
G̃(v , n⃗)



The complexity of non-LTE stellar atmosphere modelling
22

Radiation Transfer

Symbolically: linear mapping Λ

J = Λ S(~n)

Rate Equations (Statistical Equilibrium)

Set of linear eqns. at each spatial point

~n · P(J) = [0, ..., 0, 1]

radiation    source     population       pop. numbers        transition

  field           function    numbers         (at 1 depth point)      rates

 Coupling in space  Coupling in frequency

Radiative transition rates:

Frequency integrals

Rlu =

∫
4π
hν
σlu(ν) Jν dν

  high-dimensional, non-linear, fully coupled in space and frequency
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Radiation Transfer
Symb.: lin. mapping Λ

J=ΛS(~n, 3)

Hydrodynamics
non-lin. differential eqn.

dv

dr
= −

g

v

F̃(J, ~n)

G̃(v, ~n)

Rate Eqns. (Stat. Eq.)
Linear eqn. set / point

~n · P(J) = ~b

radiation  source     pop.    velocity         velocity          pop. numbers      transition
  field         func.    numb.    gradient           field           (at 1 depth point)      rates

 Coupling in space  Adjustment of Ṁ  Coupling in frequency

Radiative transition rates:
Frequency integrals

Rlu =

∫
4π

hν
σlu(ν) Jν dν

  high-dimensional, non-linear, fully coupled in space and frequency



Hot star atmosphere models with dynamical consistency
23

Inclusion of stationary hydrodynamics yields a new generation of stellar atmospheres:
(Sander et al. 2017, 2018, 2020, 2023)

Iterative Corrections

Temperature Strat.

Stat. Equilibrium

Radiative Transfer

Wind Stratification

Input

Stellar Parameters

Wind Stratification

Emergent spectrum
if converged

(changes < ε)

Additional Iteration Scheme:
▶ v(r) via integrating the hydrodynamic

equation of motion
▶ adjustment of Ṁ via boundary constraint

(e.g., total opacity conservation)
⇒ prediction of wind parameters from given

stellar parameters
Rcrit =  Rsonic

d3

dr
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Dynamical consistency: local force balance
24

Detailed local arad(r) is used to obtain
wind solution:

Implemented in multiple atmospheres codes,
can be used to predict Ṁ and v∞, e.g. in
→ METUJE (e.g., Krtička & Kubát 2010, 2017, 2018)
→ PoWR (e.g., Gräfener & Hamann 2005; Sander et al. 2017)
→ FASTWIND (Sundqvist et al. 2019, Björklund et al. 2020)
→ CMFGEN (via LambertW, Gormaz-Matamala et al. 2021)

careful:
significant differences in the detailed methods
(e.g., assumptions, num. treatment, locality)

Hydrodynamic coupling numerically expensive
→ limited to 1D in the foreseeable future
→ 3D effects only in parametrized form
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Theoretical insights: Studying hot star wind driving
25

Use detailed (CMF)
atmosphere models
to investigate
contributions to arad
on the level of:

▶ elements
▶ individual ions

Example:
O supergiant ζ Pup
Teff = 41 kK
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Radiative driving: OB-type winds
26

Teff = 25 kk
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▶ Fe opacities usually play key role for launching winds
▶ Acceleration in the (outer) wind maintained by a variety of elements:

Individual importance depends significantly on the stellar parameters



Wolf-Rayet Winds
27
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Wolf-Rayet (WR)
stars are a
spectroscopic
definition:
▶ optical spectra with strong and broad emission lines
▶ WR star spectra indicate strong mass outflow (Beals 1929)

Two (main) flavours:

▶ classical WR stars: core He-burning, evolved
↪→ partially or completely depleted in hydrogen

▶ very massive WNh stars: core H-burning, barely evolved
↪→ extension of the main sequence (“O stars on steroids”)

Thor’s Helmet (NGC 2359) around WR 7 (Credit: Rogelio Bernal Andreo, Ray Gralak)
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The Wolf-Rayet radius problem
28

T
*

/kK
40506080100120150200

ZA
M

S

H
e-ZA

M
S

no H  H

WNE-w

WNE-s

WNL

WC

4.5

5.0

5.5

6.0

6.5

5.2 5.0 4.8 4.6

log (T
*

/K)

lo
g

 (
L

/L
)

Hamann et al. (2019)

Combined HRD with Milky Way WR
analyses results:
▶ WNh stars close to the main sequence

as expected
→ could be H-burning or He-burning

▶ WNE and WC stars have no hydrogen
→ must be (at least) He-burning

▶ WNE and WC should sit on the
HeZAMS, but most do not

⇒ Wolf-Rayet Radius Problem:
Discrepancy between empirical para-
meters and stellar structure models
→ similar results for other galaxies

and different metallicities
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The Wolf-Rayet radius problem
29

Two possible solutions:
▶ inflated hydrostatic radii
▶ deep wind launching (“dynamical inflation”)

→ coupling of structure and wind physics

Different radius definitions and multiple meanings for Teff:
▶ T∗ defined at τ ≫ 1

(typical choices: 20 or 100)

▶ T2/3 defined at the more common τ = 2/3

Problem:
For some purposes, T2/3 and R2/3 are more “robust”,
but T2/3 does not reflect the radiation field of a WR star
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Grassitelli et al. (2018)
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Deep launching as a solution to the WR radius problem
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Spectral analysis with
dynamically-consistent model atmospheres:
▶ New, complex technique

(e.g. v∞ not a free parameter)
▶ First example cases show:

H-free WN and WC stars can move to
the HeZAMS

▶ Viable for all WRs?
→ open question (Sander et al. 2023)

→ 3D wind onset models could help
→ see next talks
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Optically thick WR winds (valid for most, but not all WRs):
Even the continuum is produced in expanding layers with v ≫ vsonic (e.g. Gräfener & Hamann 2004, Sander et al. 2020)

▶ inferred stellar radii more compact with HD velocity laws
▶ similar radius problems for (some) WNhs and LBVs



Radiative driving: Wolf-Rayet winds
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Dynamically-consistent atmospheres crucial to understand cWR stars:
▶ Crucial role of Fe M-Shell opacities in wind launching

(Gräfener & Hamann 2005; Sander et al. 2020, 2023)
▶ Strong non-monotonic behaviour of κF
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Breakdown of the CAK description in WR winds
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Failure of the CAK parametrization for cWR winds:
▶ optically thick, but supersonic layers
▶ optical depth parameter t not monotonic in τ or r
▶ multi-peak structure in the opacities not mapped



Predictions from dynamically-consistent models
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PoWRhd model series: H-free WR
stars with WN composition

- variables: L/M, Z
- fixed He-ZAMS L(M)
- fixed T∗

Model sequences yield two
regimes with different trends:

- dense winds (≈LTE at Rsonic)

- optically thin winds
- transition correlates, but not

coincides with η ≈ 1
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Metallicity-dependent breakdown of WR-type mass loss
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Different breakdown for different masses:
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⇒ (qualitatively) in line with observations



Radius/Temperature-dependency of Wolf-Rayet winds
36

Extended atmospheres → radius-dependency study in Sander et al. (2023)
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⇒ can be treated as
“correction” to
Sander & Vink (2020)



Limits of deep wind launching
37

Can we explain all WR stars as compact stars with extended wind envelopes?
(i.e., is the radius problem solved?)

→ we obtain “hard boundaries” for wind launching from the hot iron bump
→ late WR subtypes should always have huge emission lines → not observed
⇒ there is probably also a regime with inflated hydrostatic radii
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Wind driving and mass-loss rates of classical WR stars
38

HD atmosphere models enable pioneering theoretical insights on Wolf-Rayet winds:
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▶ cWR Winds are launched deep in the optically thick atmosphere (at Te ≈ 200 kK)

▶ cWR winds scale fundamentally different than OB star winds
▶ surprisingly shallow metallicity-scaling for dense winds: Ṁ ∝ Z 0.3

▶ strong L/M- and Z-dependent breakdown of Ṁ → consequences for observed WR pop.
▶ for constant L and M: Ṁ ∝ R3

crit ∝ Teff(τcrit)6



The Ionizing Flux of hot, massive stars
39
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Hot stars are not black bodies

▶ (non-LTE) opacities in the stellar atmosphere
change the spectral shape

▶ strong “blanketing” effect by Fe line opacities

Number of photons beyond an ionization edge:

Qedge =
∞∫

νedge

Fν

hν
dν

Most common: λedge νedge

Q0 aka QH I 911.6 Å 13.6 eV
Q1 aka QHe I 504.3 Å 24.6 eV
Q2 aka QHe II 227.9 Å 54.4 eV
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Hot Stars on the Main Sequence
40

Climbing up the main sequence:
▶ Gradual increase in QH I and QHe I towards higher MS masses (and thus luminosities)
▶ Only the hottest, i.e. most massive MS stars contribute non-negligible QHe II
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Evolved stars with Teff ≤ TZAMS:
→ stars reach higher L
→ more ionizing flux, but

Teff-dependency dominates
→ little contribution to QHe II

What about Wolf-Rayet stars?
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Observations of WR stars with strong ionizing flux
41
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Above: WN5h star in the LMC
→ too strong wind
→ insignificant QHe II

Right: WN3ha star in the SMC
→ huge source of He II ionizing flux
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Generally: Earlier spectral types at lower Z

But: QHe II not obvious from optical spectrum
→ UV spectroscopy required

⇒ Oncoming approved HST observations for
more systematic study and quantification
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Wolf-Rayet stars and He II ionizing flux
42

Theoretical study using dynamically-consistent atmosphere models for cWR stars:
Characteristic “transformed mass-loss rate” Ṁt for regime that yields He II ionizing flux
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Summary: Studying massive star winds with atmosphere models
43

Expanding atmosphere models are a fundamental astrophysical tool:
▶ for O and WR stars: only way to determine fundamental parameters
▶ inclusion of proper wind treatment essential to get correct results
▶ frequent usage so far only in 1D, stationary models (but with full non-LTE)

Wind insights from dynamically-consistent models (PoWRHD and others)
▶ Coupling of detailed radiative transfer and hydrodynamics
⇒ high computational cost → non-standard technique (for now)
⇒ ongoing development efforts necessary (e.g., insights from 3D)
▶ OB regime: tendency towards lower, but non-negligible mass-loss rates
▶ cWR regime: dynamically inflated atmospheres, new scalings and trends
▶ lots of open questions for other regimes → ongoing efforts
▶ high-dimensional problem → observational constraints crucial
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