Physics of Extreme Massive Stars Rio de Janeiro June 24th, 2024

Winds of Massive Stars Insights from expanding stellar atmosphere models

Andreas A.C. Sander

Emmy Noether Research Group Leader ZAH/ARI, Universität Heidelberg

Group Members: V. Ramachandran, G. Gonzalez-Tora, R.R. Lefever, M. Bernini Peron, C.J.K. Larkin, E.C. Schösser, J. Josiek, S. Kapoor, L. Tschesche

Massive Stars and their winds

"The massive star zoo": Massive stars appear in various flavours

Stellar winds appear across the upper HRD

Most of the evolutionary lifetime is spent at hot ($T_{\rm eff} > 10\,000$ K) temperatures:

- \rightarrow spectral types: B, O, WNh, WN, WC, WO
- \rightarrow lots of open questions about the evolutionary connections in the "zoo"

Massive Stars and their winds

"The massive star zoo": Massive stars appear in various flavours

Stellar winds appear across the upper HRD

Most of the evolutionary lifetime is spent at hot ($T_{\rm eff} > 10\,000$ K) temperatures:

- \rightarrow spectral types: B, O, WNh, WN, WC, WO
- \rightarrow lots of open questions about the evolutionary connections in the "zoo"

Several possible paths, but which are real? \rightarrow study the observed different "zoo" members

Hot Massive Stars

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

3

Photometry alone is usually insufficient to understand hot stars

It's blue: You can fit any model with $T_{eff}\gtrsim 20$ kK...

${\sf Spectroscopy} \text{ is key}$

- fundamental stellar parameters
 - → Balmer jump vanishes for hottest stars
- abundance information
- wind diagnostic(s)

Hot Massive Stars

So how to deal with hot, massive stars?

Perform quantitative spectroscopy to get reliable parameters

Requires a physical model of the outermost layers of the star: model atmosphere

Quantitative Spectroscopy

One coherent model needs to explain the full spectrum and reproduce the SED

- Usually no de-composition into element-specific models possible
- Several specific challenges for hot, massive stars
- Atomic (electronic) data of many species needed

Quantitative Spectroscopy

One coherent model needs to explain the full spectrum and reproduce the SED

- Usually no de-composition into element-specific models possible
- Several specific challenges for hot, massive stars
- Atomic (electronic) data of many species needed

Quantitative Spectroscopy – Diagnostics

For most stars: T_{eff} only from line ratios (e.g., He I vs. He II)

Plus:

- N III, N IV, N V for early O stars
- Si II, Si III, Si IV, He I/Mg II for B stars
- Rotational broadening from metals
- Microturbulence
- Macroturbulence
- wind and clumping diagnostics (UV, Hα)

UNIVERSITÄT HEIDELBERG

Quantitative Spectroscopy – UV Diagnostics

Credit: NASA, ESA, Z. Levy

TRACING AN ELEMENT IN TWO STARS

UNIVERSITĂ

Credit: NASA, ESA, Z. Levy

Stars are giant balls of gas:

▶ no hard boundary (\rightarrow non-trivial radius definition)

- ▶ no hard boundary (→ non-trivial radius definition)
 - spectrum stems from a transition layer: stellar atmosphere

UNIVERSITĂ

Stars are giant balls of gas:

- ▶ no hard boundary (\rightarrow non-trivial radius definition)
- spectrum stems from a transition layer: stellar atmosphere

stellar atmosphere models = fundamental tool of astrophysics UNIVERSITĂ

Stars are giant balls of gas:

- ▶ no hard boundary (\rightarrow non-trivial radius definition)
- spectrum stems from a transition layer: stellar atmosphere

stellar atmosphere models = fundamental tool of astrophysics

Spectrum formation in hot, massive stars:

- far outside of thermodynamic equilibrium
- stellar winds \rightarrow expanding atmosphere
- ionization changes throughout the atmosphere
- emission and absorption lines with multiple broadening mechanisms \Rightarrow many physical and numerical challenges

hot dense opaque interior

The challenges of expanding stellar atmosphere modelling

UNIVERSITÄT HEIDELBERG non-LTE

 $\frac{\mathrm{d}n_{i}}{\mathrm{d}t} = 0 \quad \Rightarrow \qquad \underbrace{n_{i}\sum_{i\neq j}P_{ij}}_{\text{total loss rate}} = \underbrace{\sum_{i\neq j}n_{j}P_{ji}}_{\text{total gain rate}}$

Departures from LTE are much larger in hot stars than in cool stars:

- $\rightarrow\,$ non-LTE cannot be treated as a correction
- \rightarrow complete non-LTE treatment for establishing the atmosphere stratification
- \rightarrow iterative solution of the statistical equilibrium equations required (modern models have often 1000 ... 2000 explicit levels)
- $\rightarrow\,$ abundance changes in one element can affect lines of $other\,$ elements

Winds of hot stars: fundamental principles

Stellar winds are ubiquitous in massive stars \rightarrow can alter the spectrum, need to be modeled \rightarrow *expanding* atmosphere model required

Radiation pressure dominates in hot stars:

Momentum transfer from photons to matter

Winds of hot stars: fundamental principles

Stellar winds are ubiquitous in massive stars \rightarrow can alter the spectrum, need to be modeled \rightarrow *expanding* atmosphere model required

Radiation pressure dominates in hot stars:

- Momentum transfer from photons to matter
- Subject to instabilities, but existence of time-averaged stationary solutions

Radiative acceleration vs. gravity in 1D: $\Gamma_{rad}(r) := \frac{a_{rad}(r)}{g(r)} = \varkappa_F(r) \frac{L}{4\pi c G M}$

 \varkappa_F : flux-weighted mean opacity

 \Rightarrow main wind-defining quantities: L, M, \varkappa_F

The flux-weighted opacity

Major source of complication: $\varkappa_{F} \neq \varkappa_{\mathsf{Rosseland}}$

Radiative driving depends on flux-weighted opacity (red) instead of Rosseland opacity (blue):

The flux-weighted opacity

Major source of complication: $\varkappa_F \neq \varkappa_{\mathsf{Rosseland}}$

Radiative driving depends on flux-weighted opacity (red) instead of Rosseland opacity (blue):

Opacities significantly higher in the wind than e.g. given by OPAL, due to Doppler-shifting of the lines:

 \Rightarrow can use much wider λ -range

Comoving Frame (CMF) Radiative Transfer Calculations

"Brute Force" numerical solution of the (spherical) radiative transfer equation(s)

- Opacities/Emissivities ($\varkappa_{\nu}, \eta_{\nu}$) stay isotropic (despite the expanding atmosphere)
- ► typically 200 000 ... 400 000 wavelength points λ_k (depending on required line width resolution)
- ▶ initial value problem: start at blue edge, solve for each λ_k using solution for λ_{k-1}
- at each λ_k : equation system coupled in space (r)
- $\Rightarrow~\sim 10^9$ intensities $(\lambda_k \cdot r_l \cdot p_j)$

Benefits:

- ► implicit multiple scattering and line overlapping
- ▶ no Sobolev approximation \rightarrow realistic line force

$$a_{
m rad}(r) = rac{4\pi}{c} \int\limits_{0}^{\infty} \varkappa_{
u} H_{
u} \mathrm{d}
u = rac{\varkappa_{
m F}L}{4\pi cr^2}$$

Each RT computation with detailed atomic data takes few minutes \Rightarrow Atmosphere codes with iterated CMF RT require hours to days

13

HEIDELBER

The complexity of non-LTE stellar atmosphere modelling

14

UNIVERSITÄT HEIDELBERG

→ high-dimensional, non-linear, fully coupled in space and frequency

Hot star atmosphere models: State of the art

Schematic overview of stellar atmosphere calculations:

Input

Stellar ParametersWind Stratification

Iterative Corrections

- Temperature Strat.
- Stat. Equilibrium
- Radiative Transfer

Hot star atmosphere models: State of the art

Schematic overview of stellar atmosphere calculations:

What about different model atmosphere codes?

► XShootU Paper IV (Sander et al., submitted)

"blind test"

 \rightarrow avoid any aims to meet "expected" values

- Concept: Everybody does what they "usually do" exceptions: We use the same spectra (re-normalization allowed) and photometry
- 3 expanding atmosphere codes: CMFGEN, FASTWIND, PoWR
- 8 different methods (from coarse grids to tailored models)

16

Comparison of different hot star atmosphere codes

	static	— expanding —		
	TLUSTY	FASTWIND	CMFGEN	$PoWR^{\text{HD}}$
geometry	plane-parallel	spherical	spherical	spherical
blanketing	yes	approx. (v10)	yes	yes
wind $+ X$ -rays	no	yes	yes	yes
clumping	no	micro+macro	micro	micro
HD wind option	no wind	yes (v11)	yes (LambertW)	yes
calculation time	hours	< 1 hour (v10)	hours	hours
spectral synthesis	SYNSPEC	included	included	included

Considerable differences in the implementations, e.g.:

- Clumping formalism and onset description
- Treatment of wind-intrinsic X-rays
- ▶ more approximations in FASTWIND (v10) to gain speed

Results from different atmosphere codes

Results from XShootU IV:

- Comparable parameters, a bit more scatter than expected
- ► Tailored fits generally better, reddening differences matter
- Turbulent pressure promising to reduce mass discrepancy
- It is usually okay to combine results from different methods

Empirical stellar and wind parameters

Quantitative spectral analysis

Standard wind description:

- ► assumed β- oder 2β-velocity law for v(r)
- choice of v(r) affects predicted spectrum
- formally "independent" adjustment of stellar and wind parameters

Empirical stellar and wind parameters

Quantitative spectral analysis

Standard wind description:

- assumed β- oder 2β-velocity law for v(r)
- choice of v(r) affects predicted spectrum
- formally "independent" adjustment of stellar and wind parameters

Unified model for star and wind \rightarrow consistent parameters?

Typical hot star atmosphere models *assume* stellar winds parameters (e.g., \dot{M} , v_{∞})

20

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Typical hot star atmosphere models *assume* stellar winds parameters (e.g., \dot{M} , v_{∞})

Typical hot star atmosphere models *assume* stellar winds parameters (e.g., \dot{M} , v_{∞})

 \rightarrow force balance violated

$$v \frac{\mathrm{d}v}{\mathrm{d}r} + g \neq a_{\mathsf{rad}} + a_{\mathsf{press}}$$

Typical hot star atmosphere models *assume* stellar winds parameters (e.g., \dot{M} , v_{∞})

 $\begin{array}{l} \rightarrow \mbox{ force balance violated} \\ \rightarrow \mbox{ global balance does} \\ \mbox{ not ensure local balance} \end{array}$

$$v rac{\mathsf{d}v}{\mathsf{d}r} + g
eq a_{\mathsf{rad}} + a_{\mathsf{press}}$$

Prediction of wind parameters via Hydrodynamics

Inherent inconsistencies between star and wind

- $\rightarrow\,$ balance of rad. pressure and gravity is violated
- $\rightarrow\,$ wind is too strong/weak for what can be driven
- $\rightarrow\,$ degeneracies for different wind assumptions
- $\Rightarrow\,$ no insights on radiative driving

Radiative Transfer: $\mathbf{J}_{\nu} = \mathbf{\Lambda}_{\nu} \mathbf{S}_{\nu}(\vec{n}, v)$

 J_{ν} : radiation field (angle-averaged intensity) \vec{n} : atomic level population numbers

> Rate Equations: $\vec{n} \cdot \mathbf{P}(\mathbf{J}) = \vec{b}$

v(r): wind velocity (as a function of radius) \dot{M} : wind mass-loss rate

Fixed wind stratification: $\rho(r), v(r), \dot{M}$

Prediction of wind parameters via Hydrodynamics

UNIVERSITÄT VINIVERSITÄT VINIVERSITÄT VINIVERSITÄT VINIVERSITÄT

Inherent inconsistencies between star and wind

- $\rightarrow\,$ balance of rad. pressure and gravity is violated
- ightarrow wind is too strong/weak for what can be driven
- $\rightarrow\,$ degeneracies for different wind assumptions
- $\Rightarrow\,$ no insights on radiative driving

Radiative Transfer: $\mathbf{J}_{ u} = \mathbf{\Lambda}_{ u} \mathbf{S}_{ u}(ec{n}, v)$

J_ν: radiation field (angle-averaged intensity)
 n: atomic level population numbers

Rate Equations: $\vec{n} \cdot \mathbf{P}(\mathbf{J}) = \vec{b}$

v(r): wind velocity (as a function of radius) \dot{M} : wind mass-loss rate

Fixed wind stratification: $\rho(r), v(r), \dot{M}$

Solution: Consistent hydrodynamical treatment

Use radiative acceleration *a*_{rad} from detailed radiative transfer

$$a_{\mathsf{rad}}(r) = rac{1}{c} \int\limits_{0}^{\infty} \varkappa_{
u}(r) F_{
u}(r) \mathrm{d}
u$$

Prediction of wind parameters via Hydrodynamics

UNIVERSITÄT VINIVERSITÄT VINIVERSITÄT VINIVERSITÄT VINIVERSITÄT

Inherent inconsistencies between star and wind

- $\rightarrow\,$ balance of rad. pressure and gravity is violated
- ightarrow wind is too strong/weak for what can be driven
- $\rightarrow\,$ degeneracies for different wind assumptions
- $\Rightarrow\,$ no insights on radiative driving

Radiative Transfer: $\mathbf{J}_{ u} = \mathbf{\Lambda}_{ u} \mathbf{S}_{ u}(ec{n}, v)$

 J_{ν} : radiation field (angle-averaged intensity) \vec{n} : atomic level population numbers

> Rate Equations: $\vec{n} \cdot \mathbf{P}(\mathbf{J}) = \vec{b}$

v(r): wind velocity (as a function of radius) \dot{M} : wind mass-loss rate

Consistent wind stratification: $\rho(r), v(r), \dot{M}$

Use radiative acceleration *a*rad from detailed radiative transfer

$$a_{\mathsf{rad}}(r) = rac{1}{c}\int\limits_{0}^{\infty}arkappa_{
u}(r)F_{
u}(r)\mathsf{d}
u$$

$$\rho(r), v(r), M$$
Hydrodynamics:
$$\frac{dv}{dr} = -\frac{g}{v} \frac{\tilde{\mathcal{F}}(\mathbf{J}, \vec{n})}{\tilde{\mathcal{G}}(v, \vec{n})}$$

The complexity of non-LTE stellar atmosphere modelling

22

UNIVERSITÄT HEIDELBERG

→ high-dimensional, non-linear, fully coupled in space and frequency
The complexity of non-LTE stellar atmosphere modelling

22

→ high-dimensional, non-linear, fully coupled in space and frequency

Hot star atmosphere models with dynamical consistency

Inclusion of stationary hydrodynamics yields a new generation of stellar atmospheres: (Sander et al. 2017, 2018, 2020, 2023)

Additional Iteration Scheme:

- v(r) via integrating the hydrodynamic equation of motion
- adjustment of *M* via boundary constraint (e.g., total opacity conservation)
- ⇒ prediction of wind parameters from given stellar parameters

23

INVERSITÄ

Dynamical consistency: local force balance

Detailed local $a_{rad}(r)$ is used to obtain wind solution:

24

UNIVERSITÄT HEIDELBERG

Dynamical consistency: local force balance

Detailed local $a_{rad}(r)$ is used to obtain wind solution:

Implemented in multiple atmospheres codes, can be used to predict \dot{M} and $v_{\infty},$ e.g. in

- \rightarrow METUJE (e.g., Krtička & Kubát 2010, 2017, 2018)
- \rightarrow PoWR (e.g., Gräfener & Hamann 2005; Sander et al. 2017)
- \rightarrow FASTWIND (Sundqvist et al. 2019, Björklund et al. 2020)
- \rightarrow CMFGEN (via LambertW, Gormaz-Matamala et al. 2021)

careful:

significant differences in the detailed methods (e.g., assumptions, num. treatment, locality)

Dynamical consistency: local force balance

Detailed local $a_{rad}(r)$ is used to obtain wind solution:

Implemented in multiple atmospheres codes, can be used to predict \dot{M} and v_{∞} , e.g. in

- \rightarrow METUJE (e.g., Krtička & Kubát 2010, 2017, 2018)
- \rightarrow PoWR (e.g., Gräfener & Hamann 2005; Sander et al. 2017)
- \rightarrow FASTWIND (Sundqvist et al. 2019, Björklund et al. 2020)
- \rightarrow CMFGEN (via LambertW, Gormaz-Matamala et al. 2021)

careful:

significant differences in the detailed methods (e.g., assumptions, num. treatment, locality)

Hydrodynamic coupling numerically expensive

- \rightarrow limited to 1D in the foreseeable future
- \rightarrow 3D effects only in parametrized form

Theoretical insights: Studying hot star wind driving

Use detailed (CMF) atmosphere models to investigate contributions to a_{rad} on the level of:

25

UNIVERSITÄT HEIDELBERG

Theoretical insights: Studying hot star wind driving

Use detailed (CMF) atmosphere models to investigate contributions to a_{rad} on the level of:

elements

Example: O supergiant ζ Pup $T_{\rm eff} = 41 \, \rm kK$

25

Theoretical insights: Studying hot star wind driving

Use detailed (CMF) atmosphere models to investigate contributions to a_{rad} on the level of:

- elements
- individual ions

Example: O supergiant ζ Pup $T_{\text{eff}} = 41 \,\text{kK}$

25

Radiative driving: OB-type winds

- ► Fe opacities usually play key role for launching winds
- Acceleration in the (outer) wind maintained by a variety of elements: Individual importance depends significantly on the stellar parameters

Thor's Helmet (NGC 2359) around WR7 (Credit: Rogelio Bernal Andreo, Ray Grelak)

27

UNIVERSITÄT HEIDELBERG ZUKUNFT SFIT 1386

Wolf-Rayet (WR) stars are a *spectroscopic* definition:

optical spectra with strong and broad emission lines
 WR star spectra indicate strong mass outflow (Beals 1929)

Thor's Helmet (NGC 2359) around WR7 (Credit: Rogelip Bernal Andreo, Ray Grelak)

Wolf-Rayet (WR) stars are a *spectroscopic* definition:

optical spectra with strong and broad emission lines WR star spectra indicate strong mass outflow (Beals 1929)

Two (main) flavours:

- ► classical WR stars: core He-burning, evolved → partially or completely depleted in hydrogen
 - ► very massive WNh stars: core H-burning, barely evolved → extension of the main sequence ("O stars on steroids")

Thor's Helmet (NGC 2359) around WR7 (Credit: Rogelio Bernal Andreo, Ray Grelak)

The Wolf-Rayet radius problem

Combined HRD with Milky Way WR analyses results:

- WNh stars close to the main sequence as expected
 - \rightarrow could be H-burning or He-burning
- ► WNE and WC stars have no hydrogen → must be (at least) He-burning
- WNE and WC should sit on the HeZAMS, but most do not

The Wolf-Rayet radius problem

Combined HRD with Milky Way WR analyses results:

- WNh stars close to the main sequence as expected
 - \rightarrow could be H-burning or He-burning
- ► WNE and WC stars have no hydrogen → must be (at least) He-burning
- WNE and WC should sit on the HeZAMS, but most do not
- $\Rightarrow Wolf-Rayet Radius Problem:$ Discrepancy between empirical parameters and stellar structure models $\rightarrow \text{ similar results for other galaxies}$
 - and different metallicities

The Wolf-Rayet radius problem

Two possible solutions:

- ► inflated hydrostatic radii
- deep wind launching ("dynamical inflation")
- \rightarrow coupling of structure and wind physics

Different radius definitions and multiple meanings for \mathcal{T}_{eff} :

$$\blacktriangleright$$
 T_* defined at $au \gg 1$

(typical choices: 20 or 100)

 $T_{2/3}$ defined at the more common au=2/3

Problem:

For some purposes, $T_{2/3}$ and $R_{2/3}$ are more "robust", but $T_{2/3}$ does not reflect the radiation field of a WR star

Deep launching as a solution to the WR radius problem

Spectral analysis with dynamically-consistent model atmospheres:

- ► New, complex technique (e.g. v_∞ not a free parameter)
- First example cases show: H-free WN and WC stars can move to the HeZAMS
- ► Viable for all WRs?
 - \rightarrow open question (Sander et al. 2023)
 - \rightarrow 3D wind onset models could help
 - \rightarrow see next talks

Deep launching as a solution to the WR radius problem

31

UNIVERSITĂ

Optically thick WR winds (valid for most, but not all WRs):

Even the continuum is produced in expanding layers with $v \gg v_{\text{sonic}}$ (e.g. Gräfener & Hamann 2004, Sander et al. 2020)

- inferred stellar radii more compact with HD velocity laws
- ► similar radius problems for (some) WNhs and LBVs

Radiative driving: Wolf-Rayet winds

 $\label{eq:Dynamically-consistent atmospheres crucial to understand cWR \ stars:$

- Crucial role of Fe M-Shell opacities in wind launching (Gräfener & Hamann 2005; Sander et al. 2020, 2023).
- Strong non-monotonic behaviour of \varkappa_F

Breakdown of the CAK description in WR winds

Failure of the CAK parametrization for cWR winds:

- optically thick, but supersonic layers
 - optical depth parameter t not monotonic in τ or r
 - multi-peak structure in the opacities not mapped

PoWR^{HD} model series: H-free WR stars with WN composition

- variables: L/M, Z
- fixed He-ZAMS L(M)
- fixed T_*

 $PoWR^{\rm HD}$ model series: H-free WR stars with WN composition

- variables: L/M, Z
- fixed He-ZAMS L(M)
- fixed \mathcal{T}_*

Model sequences yield two regimes with different trends:

- dense winds (\approx LTE at R_{sonic})
- optically thin winds
- transition correlates, but not coincides with $\eta\approx 1$

 $PoWR^{\rm HD}$ model series: H-free WR stars with WN composition

- variables: L/M, Z
- fixed He-ZAMS L(M)
- fixed \mathcal{T}_*

Model sequences yield two regimes with different trends:

- dense winds (\approx LTE at R_{sonic})
- optically thin winds
- transition correlates, but not coincides with $\eta\approx 1$

PoWR^{HD} model series: H-free WR stars with WN composition

- variables: L/M, Z
- fixed He-ZAMS L(M)
- fixed T_*

Model sequences yield two regimes with different trends:

- dense winds (\approx LTE at R_{sonic})
- optically thin winds
- transition correlates, but not coincides with $\eta\approx 1$

Metallicity-dependent breakdown of WR-type mass loss

35

UNIVERSITÄT HEIDELBERG ZUKUNFT SFIT 1386

Metallicity-dependent breakdown of WR-type mass loss

 \Rightarrow (qualitatively) in line with observations

35

UNIVERSITÄT HEIDELBERG

Radius/Temperature-dependency of Wolf-Rayet winds

Extended atmospheres \rightarrow radius-dependency study in Sander et al. (2023)

36

UNIVERSITÄT HEIDELBERG

Limits of deep wind launching

Can we explain all WR stars as compact stars with extended wind envelopes? (i.e., is the radius problem solved?)

 \rightarrow we obtain "hard boundaries" for wind launching from the hot iron bump \rightarrow late WR subtypes should always have huge emission lines \rightarrow not observed \Rightarrow there is probably also a regime with inflated *hydrostatic* radii

37

UNIVERSITĂ

Wind driving and mass-loss rates of classical WR stars

UNIVERSITÄT HEIDELBERG ZUKUNET SEIT 1396

HD atmosphere models enable pioneering theoretical insights on Wolf-Rayet winds:

- ▶ cWR Winds are launched deep in the optically thick atmosphere (at $T_e \approx 200 \text{ kK}$)
- cWR winds scale fundamentally different than OB star winds
- surprisingly shallow metallicity-scaling for dense winds: $\dot{M} \propto Z^{0.3}$
- ▶ strong L/M- and Z-dependent breakdown of $\dot{M} \rightarrow$ consequences for observed WR pop.
- for constant L and M: $\dot{M} \propto R_{
 m crit}^3 \propto T_{
 m eff}(au_{
 m crit})^6$

The lonizing Flux of hot, massive stars

Hot stars are not black bodies

- (non-LTE) opacities in the stellar atmosphere change the spectral shape
- strong "blanketing" effect by Fe line opacities

Number of photons beyond an ionization edge:

$$Q_{ ext{edge}} = \int\limits_{
u_{ ext{edge}}}^{\infty} \, rac{F_{
u}}{h
u} \, \mathrm{d}
u$$

The lonizing Flux of hot, massive stars

 (non-LTE) opacities in the stellar atmosphere change the spectral shape

39

strong "blanketing" effect by Fe line opacities

Number of photons beyond an ionization edge:

$$Q_{
m edge} = \int\limits_{
u_{
m edge}}^{\infty} rac{F_{
u}}{h
u} \, {
m d}
u$$

lost common:	$\lambda_{\rm edge}$	$\nu_{ m edge}$
Q_0 aka $Q_{\rm HI}$	911.6 Å	13.6 eV
Q_1 aka Q_{Hel}	504.3 Å	24.6 eV
Q_2 aka Q_{HeII}	227.9 Å	54.4 eV

Hot Stars on the Main Sequence

Climbing up the main sequence:

- Gradual increase in Q_{H1} and Q_{He1} towards higher MS masses (and thus luminosities)
- ► Only the hottest, i.e. most massive MS stars contribute non-negligible Q_{HeII}

Hot Stars on the Main Sequence

Climbing up the main sequence:

- Gradual increase in Q_{H1} and Q_{He1} towards higher MS masses (and thus luminosities)
- ▶ Only the hottest, i.e. most massive MS stars contribute non-negligible Q_{HeII}

40

UNIVERSITÄT HEIDELBERG

Evolved stars with $T_{eff} \leq T_{ZAMS}$: \rightarrow stars reach higher L \rightarrow more ionizing flux, but T_{eff} -dependency dominates \rightarrow little contribution to Q_{HeII}

Hot Stars on the Main Sequence

Climbing up the main sequence:

- Gradual increase in Q_{H1} and Q_{He1} towards higher MS masses (and thus luminosities)
- ▶ Only the hottest, i.e. most massive MS stars contribute non-negligible Q_{HeII}

Evolved stars with $T_{eff} \leq T_{ZAMS}$: \rightarrow stars reach higher L \rightarrow more ionizing flux, but T_{eff} -dependency dominates \rightarrow little contribution to $Q_{He II}$

What about Wolf-Rayet stars?

Observations of WR stars with strong ionizing flux

41

UNIVERSITÄT HEIDELBERG

Above: WN5h star in the LMC

- \rightarrow too strong wind
- ightarrow insignificant $\mathit{Q}_{\mathsf{He\,II}}$
- Right: WN3ha star in the SMC \rightarrow huge source of HeII ionizing flux

Observations of WR stars with strong ionizing flux

Above: WN5h star in the LMC

- ightarrow too strong wind
- \rightarrow insignificant $\mathit{Q}_{\mathsf{He\,II}}$

Right: WN3ha star in the SMC \rightarrow huge source of HeII ionizing flux

41

INVERSITÄ

Generally: Earlier spectral types at lower Z But: $Q_{\text{He II}}$ not obvious from optical spectrum \rightarrow UV spectroscopy required

 \Rightarrow Oncoming approved HST observations for more systematic study and quantification
Wolf-Rayet stars and HeII ionizing flux

Theoretical study using dynamically-consistent atmosphere models for cWR stars: Characteristic "transformed mass-loss rate" \dot{M}_t for regime that yields He II ionizing flux

Summary: Studying massive star winds with atmosphere models

43

UNIVERSITÄT HEIDELBERG

Expanding atmosphere models are a fundamental astrophysical tool:

- ► for O and WR stars: only way to determine fundamental parameters
- ▶ inclusion of proper wind treatment essential to get correct results
- ▶ frequent usage so far only in 1D, stationary models (but with full non-LTE)

Wind insights from dynamically-consistent models (PoWR^{HD} and others)

- Coupling of detailed radiative transfer and hydrodynamics
- \Rightarrow high computational cost \rightarrow non-standard technique (for now)
- \Rightarrow ongoing development efforts necessary (e.g., insights from 3D)
- ► OB regime: tendency towards lower, but non-negligible mass-loss rates
- ▶ cWR regime: dynamically inflated atmospheres, new scalings and trends
- \blacktriangleright lots of open questions for other regimes \rightarrow ongoing efforts
- \blacktriangleright high-dimensional problem \rightarrow observational constraints crucial