

Stellar winds from B supergiant stars: Exploring the δ -slow hydrodynamic solution

Roberto O. J. Venero

Institute of Astrophysics of La Plata (CONICET-UNLP)

Facultad de Ciencias Astronómicas y Geofísicas (FCAG)

La Plata National University (UNLP)

Argentina

Physics of Extreme Massive Stars Marie-Curie-RISE project funded by the European Union

Roberto O. J. Venero

Rio de Janeiro, June 2024

IALP - CONICET - FCAG - UNLP

Stellar winds from B supergiant stars: Exploring the δ -slow hydrodynamic solution

Monthly Notices

ROYAL ASTRONOMICAL SOCIETY MNRAS 527, 93–111 (2024) Advance Access publication 2023 October 31

https://doi.org/10.1093/mnras/stad3030

The wind of rotating B supergiants – II. The δ-slow hydrodynamic regime

R. O. J. Venero⁹, 1.2* M. Curé, 3* J. Puls, 4 L. S. Cidale, 1.2* † M. Haucke, 5 I. Araya⁹, 6

A. Gormaz-Matamala^{7,8,9} and C. Arcos⁰³

¹Departamento de Espectroscopía, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plasa, Paseo del Bosque S/N, BF1900FWA La Plata, Buenos Aires, Argentina

²Instituto de Astrofísica de La Plata, CCT La Plata, CONICET-UNLP, Pasco del Bosque SN, BF1900FWA La Plata, Buenos Aires, Argentina ²Instituto de Física y Astronomia, Facultad de Corocier, Universidad de Valgaraizo, An Grans Bretaña 1111, Casilla 5030, Valgaraizo, Chile ²UM Univescio, Diversito Obrevatores, Scheineres 1, 81679 Michen Germany

⁵ Facultad de Ingeniería, Universidad Nacional de La Plata, Av. 1 No. 750, B1900TAG La Plata, Buenos Aires, Argentina

⁶Centro Multidisciplinario de Física, Vicerrectoría de Investigación, Universidad Mayor, 8580745 Santiago, Chile

⁷Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, ul. Bartycka 18, 00-716 Warsaw, Poland

⁸Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibáñez, Av. Padre Hurtado 750, Viña del Mar, Chile

⁹Instituto de Astrofínica, Facultad de Física, Pontificia Universidad Católica de Chile, 782-0436 Santiago, Chile

Accepted 2023 October 3. Received 2023 October 2; in original form 2023 June 23

ABSTRACT

The theory of line-driven winds can explain many observed spectral features in early-type stars, though our understanding the winds of B supergiants remains incomplete. The hydrodynamic equations for slowly rotating stellar winds predict two regimes

Roberto O. J. Venero

Rio de Janeiro, June 2024

2 / 37

IALP - CONICET - FCAG - UNLP

B-type supergiant stars

Main properties

- Heterogeneous group of stars.
- Diversity of evolutionary phases (blue region⇔red region of HR diagram).
- Photometric and spectroscopic variability.

Fundamental parameters

- 8 M $_{\odot} \lesssim$ Mass \lesssim 50 M $_{\odot}$
- $10^{4,7}~L_{\odot}$ \lesssim Luminosity $\lesssim 10^{5,6}~L_{\odot}$
- 12000 K $\lesssim T_{\rm eff} \lesssim 25\,000$ K
- $1.7 \lesssim \log g \lesssim 3$
- 20 R $_{\odot} \lesssim$ Radius \lesssim 70 R $_{\odot}$
- v sin i $\lesssim 100~{
 m km~s^{-1}}$

Region of the HR diagram occupied by B-type supergiant stars

IALP - CONICET - FCAG - UNLP

B-type supergiant stars

Wind Parameters

Mass-loss rates:

From
$$\dot{M} \sim 10^{-7}$$
 to $5{ imes}10^{-6}$ M $_{\odot}$ yr $^{-2}$

Terminal velocities:

From $v_\infty \sim 200 \mbox{ km s}^{-1}(\mbox{late})$ to $1\,500 \mbox{ km s}^{-1}$ (early)

Optical depth invariant - Wind strength parameter

$$\begin{cases} Q_{res} = \frac{\dot{M}}{R_* v_{\infty}^2} & \text{Resonance} \\ \\ Q_{rec} = \frac{\dot{M}}{(R_* v_{\infty})^{1.5}} & \text{Recombination} \\ \\ \text{lines} (H\alpha) \end{cases}$$

Spectral variability

 ${\rm H}\alpha$ line profiles of 55 Cygni (B3 Ia) from July to August 2013 (Haucke+,2016).

Roberto O. J. Venero

Rotating radiation-driven winds

Equations for a rotating wind

1D symmetry in the equatorial plane.

Mass conservation: $F_m = 4\pi r^2 \rho v = \text{constant}$

Momentum equation: $v \frac{dv}{dr} = -\frac{1}{\rho} \frac{dp}{dr} - \frac{G M_*(1-\Gamma)}{r^2} + \frac{v_{\phi}^2(r)}{r} + g^L \left(\rho, \frac{dv}{dr}, n_e\right)$

Energy equation \rightarrow Isothermal wind

Centrifugal force
$$v_{\phi}^2/r = v_{\rm rot}^2 R_*^2/r^3$$

 $v_{\rm rot}$ is the equatorial rotation speed

Rotational rate $\boldsymbol{\Omega}$

$$\Omega = v_{
m rot}/v_{
m crit}$$
 $0 \leqslant \Omega < 1$
 $v_{
m crit} = \sqrt{rac{2GM_*}{3R_*}}$
Maeder & Meynet (2000).

Roberto O. J. Venero

Introduction Solution Domains Comparison with observations

IALP - CONICET - FCAG - UNLP

Parameterization of the radiation force

Castor, Abbott, & Klein (1975)

$$g_{rad}^{L} = \frac{\sigma_{e}F}{c}\mathcal{M}(t)$$

Force multiplier

$$\mathscr{M}(t) = \sum_{lines} \frac{\Delta \nu_D F_{\nu}}{F} \frac{1}{t} (1 - e^{-\eta t})$$

$$\eta = \frac{\pi e^2}{m_e c} g_u f_{ul} \frac{n_l / g_l - n_u / g_u}{\rho \sigma_e \Delta \nu_D}$$

Force multiplier (Abbott, 1982)

$$\mathcal{M}(t) = k t^{-\alpha} \left(\frac{n_e}{W(r)}\right)^{\delta}$$

with parameters k , lpha y δ

Interpretation of parameters

- k →Effective number of contributing lines for momentum
- $\alpha \rightarrow \text{Slope of line intensity distribution}$

$$dN(\nu, \kappa_L) = -N_0 f_{\nu}(\nu) \kappa_L^{\alpha-2} d\nu d\kappa_L$$

 $\delta \rightarrow$ changes in ionization along the wind

Line-force parameters Fuente T_{eff} log g k δ α [K]1.5 0.36 0.54 0.05 A82 15 0 0 0 2.0 0.26 0.51 0.12 A82 20 000 2.5 0.32 0.56 0.02 P86 30 0 00 3.5 0.17 0.59 0.09 P86

A82: Abbott(1982) - P86: Pauldrach+(1986)

IALP - CONICET - FCAG - UNLP

Hydrodynamic solutions

Fast Solution

- Classical (~m-CAK) solution
- High values of the terminal velocity
- Ω < 0.75 (slow rotators)

$\Omega_{\rm slow}$ solution

- Found by Curé (2004)
- Ω > 0.75 (high rotators)
- Low terminal velocities and dense flows

Figures from Curé & Araya (2023) O5V star with $T_{\rm eff}{=}~45\,000$ K, log g= 4.0, $R/R_{\odot}~=~12$

$\delta_{ m slow}$ solution

- Found by Curé et al. (2011)
- For high values of parameter δ (changes in ionization)
- Low terminal velocities and dense flows

IALP - CONICET - FCAG - UNLP

Hydrodynamic solutions

β -velocity law

Approximation to the hydrodynamic solution

$$v(r) = v_{\infty} \left(1 - b \frac{R_*}{r}\right)^{\beta}$$

with

$$b = 1 - \left(rac{v(R_*)}{v_\infty}
ight)^{rac{1}{eta}}$$

This velocity law is commonly used with β values of 2, 3 or higher, particularly in B supergiants.

Roberto O. J. Venero

IALP - CONICET - FCAG - UNLP

Questions to answer

What hydrodynamic solutions can we use to model the wind of supergiants B?

Most of B-type supergiants are not fast rotators ($\Omega \leq$ 0.6)

i.e.: Howarth(2004),Hunter+(2008),Vink+(2010),de Burgos+(2023) We can rule out the Ω_{slow} solution

We can choose between *fast* and $\delta_{
m slow}$ solutions

Questions

- In what cases does each solution appear? Can the domains of each solution be delimited in the space of the radiation force parameters?
- Can the wind of B-type supergiants be effectively modeled using δ_{slow} solutions?
- Could the transition between one solution and another explain the variability observed in the spectrum?

IALP - CONICET - FCAG - UNLP

Calculation of wind models

Option 1	Option 2	Option 3				
Self-consistent models	Partially consistent models	Non-consistent models				
Input values	Input values	Input values				
$T_{\rm eff}$, log g, R_*, abundances, $\Omega.$	T_{eff} , log g, R_* , Ω ,abundances, $lpha$, δ , k .	${\rm T}_{\rm eff}$, log g, ${\rm R}_{*}$, Ω , abundances, β , \dot{M} , ${\rm v}_{\infty}$.				
Method						
	Method	Method				
 Solving hydrodynamic equations and radiation transport in moving media, including radiative acceleration calculated consistently with NLTE 	 Solving the hydrodynamic equations adopting a parameterization for the radiative acceleration. 	 Employing a β velocity law instead of solving the hydrodynamic equations. 				
rates. 2) Generating the synthetic spectrum. 3) Comparison with observations.	 Solving the radiation transport equation for moving media, using the hydrodynamic solution. 	2) Solving the radiation transport equation for moving media, using the β law.				
4) Iterative refinement process.	3) Generating the synthetic spectrum.	3) Obtaining the synthetic spectrum.				
Mostly for O-type and WR stars.	4) Comparison with observations.	4) Comparison with observations.				
Pauldrach+(1994), Krtička & Kubát(2001, 2017),	5) Iterative refinement process.	5) Process iteration.				
Sander+(2017), Sundqvist+(2019), Björklund+(2021), Poniatowski+(2021,2022).	Taresch+(1997), Pauldrach+(2001), Noebauer & Sim(2015), Lattimer & Cranmer(2021)	Crowther+(2006), Markova & Puls(2008), Searle+(2008), Haucke+(2018)				

Roberto O. J. Venero

Rio de Janeiro, June 2024

IALP - CONICET - FCAG - UNLP

Calculation codes

We choose option 2 because, currently, there are no self-consistent codes that produce the δ_{slow} solution.

Hydrodinamic equations

HYDWIND

Curé and collaborators (Univ. Valparaíso, Chile)

Basic features

- Input: Fundamentales parameters, Ω , k, α y δ .
- Spherical Symmetry Equatorial plane
- Inner boundary condition adopted:

$$\int_{R_*}^{\infty} \sigma_e \rho(r) dr = 2/3 \text{ or } \rho(R_*) = \rho_*$$

- Execution time: few minutes.
- It gives *fast*, Ω_{slow} , or δ_{slow} solutions.
- Output: radial grid, velocities and densities for the wind.

Radiative transfer

FASTWIND

Puls and collaborators (LMU Munich)

Basic features

- Input: Fundamental parameters, hydro solution (or β , v_{∞} , \dot{M}).
- Spherical Symmetry.
- NLTE code considering line blanketing.
- Radiative transfer in Sobolev approximation and CMF.
- Unified model (photosphere + wind).
- Diagnostic range: optical.
- Execution time: 15 30 min.
- Output: continuum radiation distribution + line profiles (H, He, Si, C, N, O).

IALP - CONICET - FCAG - UNLP

Most suitable δ values for B-type supergiants

Do values of δ higher than ${\sim}0.25\,$ exist in a stellar wind to achieve a $\delta_{\rm slow}$ solution?

Early calculations indicate $\delta \lesssim 0.12$ (Abbott, 1982; Pauldrach+. 1986).

Most recent non-LTE calculations for line-force parameters assume the material to be 'frozen in

ionization' (δ = 0), e.g. Noebauer & Sim(2015), Lattimer & Cranmer (2021), or are limited to O-type supergiants (Gormaz-Matamala+2019,2022).

Puls, Springmann & Lennon (2000) analytically derived $\delta \gtrsim 1/3$ for a medium composed of neutral hydrogen as a trace element.

Kudritzki (2002) demonstrated that $\delta\sim 1$ for winds of low optical depth and very low metalicity.

We postulate that BSGs have a different ionization structure compared with O-type stars.

IALP - CONICET - FCAG - UNLP

Solution domains in δ and Ω space

First, we examine the distribution of solution domains based on the values of the line-force parameters (k, α , δ).

There exists a distinct gap between fast and $\delta_{\rm slow}$ solutions. The HYDWIND code does not identify any stationary solution within the gap.

The gap is consistently present in all models, regardless of the values of $T_{\rm eff}$, log g, or Ω .

Rio de Janeiro, June 2024

Line profiles from different wind regimes

Roberto O. J. Venero

Rio de Janeiro, June 2024

14 / 37

IALP - CONICET - FCAG - UNLP

$H\alpha$ line profiles

$H\alpha$ line profiles for different wind regimes (model T19) Ω=0.0 Ω=0.2 Ω=0.4 Ω=0.6 720 698 671 504 0.47 0.50 0.57 0.76 δ=0.0 Dependence of -13.01 -12.97 -12.84 -12.57 $H\alpha$ on Ω and δ 2 543 525 0.47 468 241 0.44 0.56 0.78 δ=0.1 Sample of $H\alpha$ line profiles for model T19. -12.86 -12.81 -12.66 -12.09 2 409 391 221 0.38 0.41 0.64 Terminal velocities and Flux/Fc Gap δ=0.2 1 mass-loss rates [in -12.74 -12.67 -12.11 units of 2 266 255 232 $10^{-6} M_{\odot} \text{ yr}^{-1}$]. The 202 0.29 0 48 0.27 0.36 values of log Q are at δ=0.3 bottom right. -12.60 -12.55 -12.40 -12.18 2 231 225 208 183 0.07 0.08 0.12 0.25 δ=0.4 -13.10 -13.02 -12.78 -12.40 185 898 λ(Å)

Roberto O. J. Venero

Rio de Janeiro, June 2024

IALP - CONICET - FCAG - UNLP

Comparison with observations

IALP - CONICET - FCAG - UNLP

Comparison with observations

Star	S pectral type	T _{eff} (kK)	log g (dex)	<i>R</i> ∗ (R _☉)	$\log L/L_{\odot}$ (dex)	$v \sin i$ (km s ⁻¹)	v_{rot} (km s ⁻¹)	v_{mic} (km s ⁻¹)	v_{mac} (km s ⁻¹)
HD 47 240	B1 Ib	19.0	2.40	30	5.02	95	122	10	60
HD 99 953	B1/2 Iab/b	19.0	2.30	25	4.87	50	64	18	50
HD 41 117	B2 Ia	19.0	2.30	23	4.79	40	51	10	65
HD 80 077	B2 Ia + e	17.7	2.20	195	6.53	10	13	10	10*
HD 92 964	B2.5 Ia	18.0	2.20	70	5.67	45	58	11	40
HD 53 138	B3 Ia	18.0	2.25	46	5.30	40	51	10	80*
HD 75 149	B3 Ia	16.0	2.10	61	5.34	40	51	11	52
HD 42 087	B4 Ia	16.5	2.45	55	5.31	80	103	15	80
HD 58 350	B5 Ia	15.0	2.00	54	5.12	40	51	12	70
HD 79 186	B5 Ia	15.8	2.00	61	5.32	40	51	11	53
HD 74 371	B6 Iab/b	13.7	1.80	73	5.23	30	39	10	60
HD 34 085	B8 Iae	12.7	1.70	72	5.08	30	39	10	52

We adopt the stellar parameters from Haucke et al. (2018)

Roberto O. J. Venero

Rio de Janeiro, June 2024

17 / 37

IALP - CONICET - FCAG - UNLP

Comparison with observations

Observations were performed at CASLEO using the REOSC spectrograph (2005-2015).

A subsample of stars was selected based on the presence of emission in the $H\alpha$ line profile.

IALP - CONICET - FCAG - UNLP

Comparison with observations

IALP - CONICET - FCAG - UNLP

Comparison with observations

 $\delta_{\rm slow}\,$ regime fittings

The wings appear slightly improved compared to the *fast* case.

However, many absorption components are still too deep.

IALP - CONICET - FCAG - UNLP

Comparison with observations

There are no significant differences between the H α fittings for both the *fast* and δ_{slow} regimes.

 ${\rm H}\alpha \\ {\rm dichotomy}$

IALP - CONICET - FCAG - UNLP

Wind parameters from fittings

Fast regime

Star	Ω	vcrit	v_{∞}	Ň	k	α	δ	$\log D_{mon}$
HD 47240	0.55	222.5	347.2	0.075	0.070	0.500	0.000	26.96
HD 99953	0.33	191.7	193.8	0.080	0.090	0.494	0.150	26.69
HD 41117	0.27	183.9	306.9	0.179	0.113	0.520	0.000	27.22
HD 80077	0.03	470.0	-	-	-	-	-	-
HD 92964	0.20	287.1	317.5	0.640	0.120	0.500	0.200	28.03
HD 53138	0.21	238.8	227.5	0.205	0.190	0.420	0.170	27.30
HD 75149	0.23	224.8	450.1	0.443	0.155	0.480	0.000	27.99
HD 42087	0.35	290.7	622.8	0.826	0.530	0.420	0.000	28.38
HD 58350	0.27	187.5	179.0	0.184	0.240	0.420	0.170	27.18
HD 79186	0.24	209.2	399.1	0.714	0.140	0.510	0.000	28.15
HD 74371	0.22	176.8	211.9	0.323	0.190	0.450	0.120	27.57
HD 34085	0.25	154.0	256.3	0.339	0.150	0.500	0.050	27.67

$\delta_{ m slow}$ regime

Star	Ω	$v_{\rm crit}$	v_{∞}	М	k	α	δ	$\logD_{\rm mom}$	v_{∞}^{Ha18}	\dot{M}^{Ha18}	β^{Ha18}	$\log D_{\rm mom}^{\rm Hal8}$
HD 47240	0.55	222.5	161.3	0.020	0.090	0.500	0.300	26.04	450	0.24	1	27.57
HD 99953	0.33	191.7	152.5	0.061	0.080	0.530	0.320	26.47	500	0.13	2	27.33
HD 41117	0.27	183.9	160.0	0.089	0.095	0.510	0.240	26.63	510	0.17	2	27.38
HD 80077	0.03	470.0	211.0	6.379	0.606	0.300	0.295	29.07	200	5.4	3.2	28.86
HD 92964	0.20	287.1	207.0	0.363	0.130	0.505	0.350	27.60	370	0.49	2	27.98
HD 53138	0.21	238.8	211.2	0.149	0.090	0.550	0.320	27.13	600	0.24	2	27.79
HD 75149	0.23	224.8	181.6	0.171	0.185	0.480	0.310	27.18	350	0.2	2.5	27.54
HD 42087	0.35	290.7	230.4	0.354	0.452	0.480	0.405	27.58	700	0.57	2	28.27
HD 58350	0.27	187.5	182.5	0.181	0.120	0.550	0.290	27.18	233	0.15	3	27.21
HD 79186	0.24	209.2	185.3	0.381	0.110	0.550	0.300	27.54	400	0.4	3.3	27.90
HD 74371	0.22	176.8	157.6	0.247	0.163	0.501	0.270	27.32	155	0.23	2.6	27.22
HD 34085	0.25	154.0	138.5	0.176	0.180	0.500	0.280	27.11	155	0.23	2.6	27.22

Roberto O. J. Venero

22 / 37

IALP - CONICET - FCAG - UNLP

Comparison with values from previous works

- Generally, the δ_{slow} solution yields the lowest values for the wind parameters.
- The fast solution provides values greater than those predicted by the β law.
- The measured values of v_∞ (UV) exceed those obtained by all models.

Solution domains in δ and Ω space

Upper limit for terminal velocities in the δ -slow solution

The existance of a gap between fast and δ_{slow} solutions, puts an upper limit on the terminal velocities of the δ_{slow} solution.

Roberto O. J. Venero

Rio de Janeiro, June 2024

IALP - CONICET - FCAG - UNLP

Conclusions

Domains of hydrodynamic solutions

- We determined the domains of hydrodynamic solutions. The fast and δ_{slow} regimes are separated by a gap where no stationary solutions were found using the available codes.
- Rotation affects the distribution of domains.

Line profiles

- For the first time, we have fitted synthetic line profiles computed with the hydrodynamic solution δ_{slow} to observed ones for B supergiant stars.
- H α line profiles can be fitted with both fast and δ_{slow} models.
- The \u03c6_{slow} solution could be suitable for modeling the winds of certain B supergiants.
- However, this solution is constrained by the maximum terminal velocity. Consequently, it cannot account for the measured (or estimated) v_∞ values in the UV for B supergiants.

Future work

- Hα may not be the most suitable line for determining the most appropriate wind regime. A multiwavelength analysis is required.
- This study analyzed only 12 stars. A larger sample is needed.
- Since the only hypergiant B in the sample was fitted exclusively with the δ_{slow} solution, a sample of hypergiants B should be studied.

IALP - CONICET - FCAG - UNLP

Discussion

The gap and the variability

- A change in wind regime can occur as a result of variations in δ.
- A higher rotational rate Ω reduces the required change in δ to transition between regimes.
 - Could these changes in regime be due to binaries or stellar pulsations?

Jumping the gap

IALP - CONICET - FCAG - UNLP

Introduction Solution Domains Comparison with observations Discussion and Conclusions

IALP - CONICET - FCAG - UNLP

The End

Roberto O. J. Venero

IALP - CONICET - FCAG - UNLP

Gap Properties

Gap location

- δ_m represents the average value of δ across the edges of the gap.
- The location of the gap is almost independent of T_{eff}.
- For B supergiants exhibiting higher rotation rates, the gap is located at small values of δ.

Gap width

- $\Delta \delta$ is the width of the gap in δ values.
- The width decreases as Ω increases.
- Gaps are narrower in models with lower $T_{\rm eff}.$

IALP - CONICET - FCAG - UNLP

Gap Properties

The jump increases in magnitude for faster rotators.

- The jump in M is smaller for larger rotators.
- M
 ⁱ can double its value if changes in δ result in crossing the gap.

IALP - CONICET - FCAG - UNLP

Interaction between k and δ , and the wind parameters

Model T19

 $egin{array}{c} lpha &= 0.5 \ \Omega &= 0 \end{array}$

The value of v_{∞} remains unchanged when different values of *k* are considered.

There is no change in the position or width of the gap (in δ space).

Interaction between k and δ , and the wind parameters

Dependence of solutions on the parameter k

Model T19

The change in the slope of \dot{M} as a function of $\delta_{\rm slow}$ for k = 0.1, 0.2, and 0.32. In contrast, the slope in v $_{\infty}$ does not change.

IALP - CONICET - FCAG - UNLP

Interaction between α and δ , and the wind parameters

Model T19

In contrast to the parameter k, α completely modifies the terminal velocities.

 \dot{M} is also highly sensitive to this parameter.

Changing the value of α also alters the gap in δ .

IALP - CONICET - FCAG - UNLP

$H\alpha$ line profiles

IALP - CONICET - FCAG - UNLP

$H\alpha$ line profiles

IALP - CONICET - FCAG - UNLP

Discussion

Wind momentum - Luminosity relation

- The WLR based on the δ_{slow} solution models is close to the empirical behaviour of the mid-B supergiants (Kudritzki+,1999).
- The WLR based on the *fast* solution is in better agreement with the results from Haucke+(2018) using a β-law.
- Both relations show a considerable dispersion.

Linear regressions

 $\delta_{
m slow}$ regime

$$\log D_{mom} = 1,48 \log L/L_{\odot} + 19,30$$

fast regime

 $\log D_{mom} = 1.43 \log L/L_{\odot} + 20.11$

Stellar winds from B supergiant stars: Exploring the δ -slow hydrodynamic solution

Roberto O. J. Venero

IALP (CONICET-UNLP) - FCAG (UNLP) - Argentina

B-type supergiant stars are a heterogeneous group of objects with strong stellar winds. The hydrodynamic equations for rotating radiation-driven winds predict three kinds of solutions. In this presentation, we evaluate the " δ -slow" solution for the first time, in predicting the H α line profile for B supergiants.

The observed H α line can be reproduced by both "fast" and " δ -slow" hydrodynamic wind regimes with similar precision. These findings raise a dichotomy, because mass-loss rates and terminal velocities for each solution are quite different.

However, the " δ -slow" solution predicts maximum values for v_∞ that are systematically lower than those measured in the ultraviolet. Multiwavelength analyses and a larger sample of stars are needed to reach a definitive conclusion.

Roberto O. J. Venero

Rio de Janeiro, June 2024