

Determining Inclination Angles in Rapidly Rotating Massive Stars via Spectroscopic Analysis

<u>D. Turis-Gallo</u>¹, M.Curé ¹, R. Levenhagen², C. Arcos¹, I. Araya³, A. Christen¹ 1. Universidad de Valparaíso; 2. Universidade Federal de São Paulo; 3. Universidad Mayor daniela.turis@postgrado.uv.cl

Rapidly rotating massive stars

A significant feature of massive stars is their fast rotation, which is especially notable in Be stars. The near-critical rotation of these stars leads to **oblate shapes**^[1]. This deformation causes a variation in local temperatures and gravity accelerations across the stellar surface, a phenomenon known as **gravity darkening** (GD)^[2], as shown in Fig. 1. Recent advancements have refined the original formalism of GD, leading to more accurate approximations than previous models ^[3].

Modeling of HD 212076

For each star, we modeled the HeI 4471 Å line, as shown in Fig. 3 for the star HD 2102076. The parameters obtained from these models are presented in Table 1.

© I. Araya

Figure 1: Latitudinal variation of the effective temperature of an oblate star with angular rotation rate Ω =0.98.

The polar/equatorial radius and inclination angle i, are often measured from interferometry, which applies only to a few stars. Now, they can be diagnosed with the aid of GD spectral synthesis code ZPEKTR^[4].

Data and Methodology

The spectroscopic data used in this work were obtained from the Be Stars Observation Survey (BeSOS)^[5] taken with the PUCHEROS spectrograph, which

Results

We compared our results of the **inclination angle** with Cochetti et al. 2019^[7], fitting a linear function without intercept (shown in Fig. 4), obtaining: $y = 0.95(\pm 0.02) x$,

the y-axis is the interferometric measured values of the inclination angles and the x-axis corresponds to the values found in this work, with an R^2 of 0.996.

has a resolution of 17000 with a $S/N = 20^{[6]}$.

We selected **ten Be stars** with known *inclination-angles* from the sample of Cochetti et al. $2019^{[7]}$. They obtained *i* through a comparison of geometrical models with interferometric observations with the AMBER instrument installed on the VLTI.

We applied the ZPEKTR code to model the observed spectra of HeI 4471 Å line (same line used in BeSOS) taking into account the effects of fast rotation in the frame of the Espinosa-Lara's formalism. The models are built up using the TLUSTY/SYNSPEC non-LTE models ^{[8][9]}. Due to the GD effect, the line profile of the ZPEKTR models changes when the inclination angles vary, as shown in Fig. 2.

Figure 4: Linear fit between the inclination angle obtained with ZPEKTR and the values provided in Cochetti et al. 2019 for the ten Be stars (Turis-Gallo in prep 2024).

Figure 2: Six ZPEKTR models for the HeI 4471 Å line with the same input parameters (shown on the left of the panel) only changing the inclination angles for a star with rotation rate V/V_c =0.71.

For each star, we created a grid of models and we used the χ^2 -test to determine the best fit. We used the best 400 models to present our results with their corresponding errors.

Conclusions and Future Work

- We were able to estimate inclination angles for the massive stars in our sample with high accuracy, aligning well with the direct interferometric measurements performed by Cochetti et al. 2019^[7].
- To improve our results, we are currently implementing a Bayesian Neural Network using the ZPEKTR models to obtain a distribution of each output parameter, including errors.

KEY REFERENCES

[1] Tassoul, J et al. 1978
[6] Vanzi, L. et al. 2012, MNRAS 424, 2770-2777
[7] von Zeipel, H 1924, MNRAS 84, 665–683
[7] Cochetti, Y. R. et al. 2019, A&A 612, A123
[8] Hubeny, I 1988 52, 103-132
[9] Hubeny, I. et al. 1995, 439,875-904
[5] Arcos, C. et al. 2018, MNRAS 474, 5287 - 5299

ACKNOWLEDGEMENT AND PARTNERS

DT acknowledges support from ANID BECAS/DOCTORADO NACIONAL/2024-21240465. MC, CA & IA thanks Fondecyt project 1230131. This project has received funding from the European Union's Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under the Marie Skłodowska-Curie Grant Agreement