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Whlle the Fourler method is W|dely known and used for frequency analysis, it has been found to be madequate for signals with time-varying perlods or W|th hlgh amplltude noise. The emplrlcal ensemble mode
decomposition (EEMD) is a powerful tool that uses the Hilbert-Huang transform (HHT) to decompose non-stationary and nonlinear signals into finite and linear independent components called intrinsic modal
functions (IMFs). To demonstrate its application, we choose a set of simple synthetic signals with single frequencies up to signals with multiple frequency components. In addition, we added random noise to
the signal to test the sensitivity of this method in the presence of noise with different amplitudes. Furthermore, to investigate the effectiveness of this method, we apply EEMD for detecting frequencies in real

light curves of selected known pulsating stars.
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EMD is a signal analysis approach that breaks down multi- One challenge of EMD is mode mixing, where
component signals Y(t) into a finite number of adaptive simple different signal components are not properly
oscillatory modes, h; known as intrinsic mode functions (IMFs) separated. This can occur when the signal

This object is a B supergiant star, proposed to be in the Terminal Age Main Sequence [4]. We used the 2 min TESS
cadence from Sector 43. Our main interest in this the presence of red noise that usually affect the frequency spectra of B
supergiants.
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HD 42089 : We consider an effective temperature (Teff) of 18200 K as our first approximation and calculated evolutionary
Case 2 : LOW & HIGH FREQ. white noise(o0=5) with Signal = sin(2m0.3x) + sin(2m0.5x) + tracks with Teff=18200K and Mini=26, 28 and 30 Mo within the error box from [4] (see Fig.1). For each model we computed
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overshooting included. We used the Henyey convection theory.

Case 3 : LOW & HIGH FREQ. Brownian noise with Signal = sin(2m0.3x) + sin(2m0.5x) +

24 iy iy T 4 T T
H H H H = A non—:d::b:t:E A ad?abat?c
sin(2m0.7x) + sin(2m0.9x) + sin(2n5x) + sin(2m5.5x) + sin(2n7Xx) A s . coserved X - il 3 : oo movadmee o
20 | A : A ] | A <
CASE 3 | X § . _ 3 . . ;
LS-ORIGINAL LS-IMF4-5/ LS-IMF6- — s 6| : A A o 2| * B A
12 ] ‘SB 110 g 14 % % % %
Recover the true high Recover the true high N § 5 . £ X 3 % T N A A
freq. but the lowest. freq. m =T i % i =Ll x % X
_g | — Pure signal _:‘1’ - 105 10 L i s X & X
Recover the low freq.  Recover the low freq. 0 - s 5 8 1o R S S S N : A R 1| i i i
but they are not but they are not 8 ° ) 0 WH%%M = A N i ; , i
sufficiently accurate. sufficiently accurate. = ‘ — Mot 2: 10 . 61 n A n . - 0.5 _
Y Y B p ° = T o Fig.3 . 2 5 Fig. 4 ’f ’f ’f Fig. 5
= T R Nabe 39 3% 38 386 38 n 0 1 2 3 4 5
Good SNR but red Improved SNR R 2' ; é : : M\WVWWM[W\F\W i et Nurer ° 1 " ol Number 4 5
noise is present. without red noise. 5 s { s L
High power peaks for High power peaks for 0 g Y P RESULTS: Our non-adiabatic models do not reproduce the observed g-modes below 0.8 c/d, questioning the mode
Eo solnest; L > — siontwitnbrowrian e b _\/\/v\/\ iclassification in [7]. We noticed prominent spikes in the Brunt Vaisala frequency at the end of the convective
Some false lowfreq.  Some false low freq. : : * Time °© é 3 S W lcore indicating strong steep chemical transition between the H-core and the envelope when using the Henyey
T ———— Lomb-Scargle Periadogram _j;’j_m o _/\/ convection theory in contrast with the classical MLT, which affect the low g-modes frequency range. The excited
| @ Original synthetic signal ; IMF 4-12 | - low p-modes frequencies suggest a misclasification for modes in this range. However rotation should be included
- :,:::.—{—\ - _\ in our models to compare both results.
Conclusions zind fuiurs woric We have demonstrated the potential of the EEMD method to retrieve
d D i _ frequencies in synthetic data. We could detected high frequencies in HD 42087 of uncertain origin. A
e 3 7‘-5 . = = > Time computing depends full simulation design, including pulsations and exhibiting excess power at low frequencies (red noise
o S e _ Lomo-Scarle Prodogran strongly on the amount of sample phenomena) will be carried out to explore the performance of EEMD. Numerical improvements in
o IMF 6-12 gatla. e E pulsational codes are needed to retrieve non-adiabatic modes in the case of highly non-adiabatic
3 > ion F . E -
o the s.to 2k anvelopes. Differe pnvection theories and rotation should be further explore for our COROT star.
. grouped depends on the signal. Refences:
g g [1] Huang and Shen 2014. World Scientific Publishing Co. Pte. Ltd.
] i [2] Huang et al. 1998. Proceedings: Mathematical, Physical and Engineering Sciences, 454, 903-995. Acknowledgement : This project has received funding from the European
) [3] Gaci, 2016. Energy Procedia 97, 84 — 91. Union’s Framework Programme for Research and Innovation Horizon 2020
l il AL L 1 e o S, e e scenesneenns [4] Sanchez Arias, J. P. et al. 2023. Galaxies, vol. 11, issue 5, p.93. (2014-2020) under the Marie Sktodowska-Curie
oo 2 50 7 160 00 25 50 75 100 [5] Paxton B., et al., 2019, APJS, 243, 1. Grant Agreement No. 823734.
fHengy equoney [6] Townsend R. H. D., Teitler S. A., 2013, MNRAS, 435, 3406.

[7] Sanchez Arias, J. P. et al.2023. A&A, 676, p.11.




	Slide 1

