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Introduction
The correct selection of the governing equations to describe structures
in circumstellar matter around massive stars is fundamental for mod-
eling the observed phenomenon. This kind of scenario arises in prob-
lems where it’s necessary to model an interaction term through a con-
stitutive rule, for example the density. From the fact that the model
response must be able to also describe astronomical observations, the
theoretical approach should maintain both rigor and adaptability. In
this work a discussion on the formulation of mathematical station-
ary two-dimensional models in a magneto-hydrodynamic framework
is presented.

This Work
• We continue the discussion presented in [3] on the use of classical

analytical tools to explain the occurrence of circumstellar matter
structures.

• The aim corresponds to describing fundamental aspects of the ve-
locity field that can be useful for analyzing structures around B[e]
supergiants.

• The focus lies on the impact of the representation used for terms
describing the contributions due to pressure and gravity.

• The problem is reduced to the analysis of a Poisson-like differential
equation described for a 2-dimensional stationary stream function.

• Starting with a linear analysis to identify potential challenges in the
modeling process, we address the nonlinear model formulation by
determining the shape in which gravity and pressure terms interact.

Case Study: LHA 120-S 73
• In [1] is indicated that observation of LHA 120-S 73 with the

Spitzer Space Telescope IRS revealed an intense mid infrared ex-
cess emission with clear indication of amorphous silicate dust.

• Ring distances for M∗ = 27M⊙

Ring No. Element(s) vrot R

(km s−1) (AU)
1 [Ca II] ([O I] λ 577) 39 15.7
2 [O I] λ 6300, CO 34 20.7
3 [Ca II]([O I] λ 5577) 22 49.5
4 [O I] λ 6300 16 93.6

• The objective is to fit the observational data presented in the previ-
ous table to a mathematical model that allows for the development
of descriptions of the gas mass and velocity.

Basic equations
• The governing equations read as follows:

∇ · (ρv) = 0, ρ (v · ∇) v = −∇p + ρg (1)

in which ρ is the mass density, v the gas velocity, p is the gas pres-
sure and g is the gravitational acceleration of the star with the grav-
itational potential ϕ. We assume a 2D scenario and ∇ · v = 0.

• Considering w =
√
ρv, the incompressibility assumption implies

∇ · w = 0. Thus, a scalar function ψ can be introducing from
the relationship w(x, y) = ∇ψ(x, y)× ez.

• The model formulation is developed considering the total pressure
Π(x, y) = p + 1

2∥w∥2. See [3] for further details.
• Under the assumption that ∇ψ and ∇ψ are linearly independent, it

can be proven that Π0 = Π0(ψ) satisfying

∂Π

∂ψ
= ∆ψ,

∂Π

∂ϕ
= −ρ(ψ) (2)

• Thus, integrating the second relation in (2) and inserting in the first
one follows

∆ψ = −ρ′(ψ)ϕ + Π′
0(ψ) (3)

where the functions ρ(ψ) and Π0(ψ) are not known, and therefore
they must be proposed for the development of the analysis.

• Eq. (3) is called the Grad-Shafranov equation and corresponds to
the model used in the present work. The type of dependency of
the functions with respect to ψ leads to either linear or nonlinear
Poisson-type equations.

Preliminaries results: Linear Analysis
• Proposal:

ρ(ψ) = ρ∞ + a0ψ +
a1
2
ψ2, Π0(ψ) = b∞ + b0ψ +

b1
2
ψ2 (4)

• The contribution Φ ∼ R−1, with R =
√
x2 + y2, induce the trans-

formation x = R cos(θ) and y = R sin(θ). The model is expressed
as follows

R
∂

∂R

(
R
∂ψ

∂R

)
+
∂2ψ

∂θ2
= (GM∗a0R+b0R

2) + (GM∗a1R+b1R
2)ψ

(5)
with ai and bi for i = 0, 1 free parameters.

• The solution is construted considering ψ(R, θ) = ψh(R, θ) +
ψp(R) with ψp(R) a particular radial solution of (5).

• Similar than [2], the problem is treated considering the ansatz
ψh(R, θ) = f (R)g(θ), from which are deduced (with γ ∈ C)

R
d

dR

(
R
df

dR

)
−
(
GM∗a1R + b1R

2
)
f = −γ f, (6a)

d2g

dθ2
= γ g (6b)

• Necessary regularity constraint yield us to impose periodic condi-
tions g(0) = g(2π) and g′(0) = g′(2π). In this way, a Sturm-
Liouville problem is formulated from which is concluded that
γ = −k2 with k = 0, 1, . . . . Thus, for each k ∈ N we have

gk(θ) = Ak cos(kθ) +Bk sin(kθ) (7)

• The solution is expressed from the superposition of each contribu-
tion as follows

ψh(R, θ) = A0f0(R) +
∞∑
k=1

Akfk(R) cos(kθ) + Bkfk(R) sin(kθ)

where the coefficients Ak and Bk are new free parameters.
• To obtain conditions for the parameters, we consider the gauge

transformation fk(R) = r̂−1/2Zk(r̂), with r̂ = R/R∗, from which
Eq. (6a) becomes

d2Z

dr̂2
−

(
β1 +

α1
r̂

−
1
4 − k2

r̂2

)
Z = 0 (8)

with α1 = GM∗R∗ and β1 = b1R
2
∗.

• Applying comparison results on (8), we conclude that there are os-
cillatory solution under the assumption β1 < 0 or when β1 = 0 to-
gether with α1 < 0.

• For the case β1 = 0 and α1 < 0, taking ψp(R) = a + bR, directly
follows ψp(R) = −a0

a1
− b0

GM∗a1
R.

Thus, the constraint for the existence of bounded solution is given
by b0 = 0, which correspond to the case Π′

0(ψ) = 0.
Moreover, the homogeous part is solved considering by η =√
−4α1r̂ and W (η) = ψ(r̂). Employing into the radial ODE in Eq.

(6a) we obtain η2W ′′ + ηW ′ +
(
η2 − (2k)2

)
W , and therefore an

asymptotic description of the form fk(R) ∼ 1
R1/4G(R) with G(R) a

superposition of sin and cos functions.
• From the previous analysis, the only admissible configuration cor-

respond to β1 < 0. This point was also proven through asymptotic
analysis and exact solutions, which are related to Coulomb wave
functions

Main results: Non-Linear Model
• The expression for the density and the presure contribution are

given by

ρ(ψ) = ρ∞ +
α

β
eβψ, Π0(ψ) = Π∞ +

α2
2β
e2βψ (9)

• Considering ψ̃(ζ, θ) = βψ + ln(R) the model is reduced as follows

∂2ψ̃

∂ζ2
+
∂2ψ̃

∂θ2
= α̃1e

ψ̃ + α̃2e
2ψ̃ (10)

with ζ = ln(R), α̃ = GM∗αβ and α̃2 = α2β. Writing

α̃1e
ψ̃ = (α̃1 + α̃1ψ + . . . ) , α̃2e

2ψ̃ = (α̃2 + 2α̃2ψ + . . . ) (11)

from the linear analyisis follows that α̃2 < 0. Related to the density
description, we select α̃1 > 0 to the analysis.

• Identifying α̃1 > 0 and α̃2 < 0, we select the traveling-wave solu-
tion presented in [4] Section 9.2.1 (see formula 9.2.1.2.3◦), obtain-
ing

eβψ(x,y) =
C1

(1 + γ sin(C1 ln(R) + C2θ + C3))R
(12)

with Ci free parameters, and γ =
√
α̃21 + α̃2(C

2
1 + C2

2)/α̃1.

C2 = 2 C2 = 10

• Various aspects can be described based on the selection of parame-
ters.
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γ=0.5 γ=0.95

Regarding the study related with the parametric dependence, in this
figure are presented the Log-Log plots of eβψ. It is presented the
behavior with respect to the radius and the incidence of γ. Cases
γ =0.5 and γ =0.95.

γ =0.5 γ=0.95

• Considering the quasi-Keplerian expected behavior of the orbits,
we select ρ(ψ) = (α/β)eβψ, obtaining

∥vvv∥2 = g(R, θ)(1 + C1G(R, θ)
2 + (C2G(R, θ))

2)

β(C2
1 + C2

2)R
(13)

for r(R, θ) and G(R, θ) oscillatory functions, satisfying ∥vvv∥2 ∼
R−1 for R large.

Application on the LHA 120-S 73 data

• The procedure is based on the following steps:

Step 1 Find C1, C2 and γ from
∂ρ

∂R
= 0.

Step 2 For these values, fit β using (13).
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• Description obtained for the values
(C1, C2, γ, β) =(7.20682,-5,0.2529,6.68758×10−6)

Conclusions and Future Directions

• The linear approach allows identifying essential relationships in the
model parameters, and therefore distinguishing constraints in more
complex models.

• The parametric analysis of the solution enhances the understanding
of the problem.

• From the solutions of the linear and non-linear versions of the Grad-
Shafranov equation, the expected behaviors of the physical problem
are described.

• It was possible to fit the parameters of the mathematical solution to
the observational data. The procedure can be applied to the process
of describing other structures in circumstellar matter.

• It is necessary to analyze the procedure for fitting the mathematical
model more rigorously given the limited observational information.

• The treatment of temporal dependency is one of the works that we
will address soon.
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