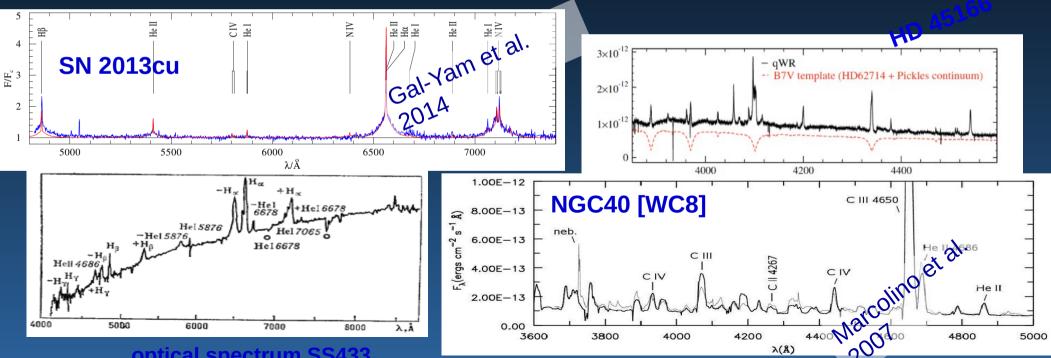


Unveiling the Evolutionary Journey of J040901.83+323955.6

Aynur Abdulkarimova, Olga Maryeva, Sergey Karpov

Shamakhy Astrophysical Observatory

Astronomical Institute of the Czech Academy of Sciences Institute of Physics of the Czech Academy of Sciences


Physics of Extreme Massive Stars Marie-Curie-Rise project funded by European Union

Abstract: The resemblance in wind conditions between low-mass post-asymptotic giant branch stars and evolved massive stars gives rise to the phenomenon of spectral mimicry. LAMOST J040901.83+323955.6 (J0409+3239) was identified as a WR star in the LAMOST spectroscopic database through machine learning methods. The various spectral type classifications of this object have created the initiative for a detailed investigation. The position of J040901.83+323955.6 's in the Galaxy and its placement on the color-magnitude diagram, let us conclude that it is a low-mass object with WR phenomenon, i.e. [WR], or a central star of planetary nebula (CSPN). The star shows the irregular variability with an amplitude of up to ≈ 0.2 mag, as revealed by new and archival photometric data. Moreover, a spectra obtained in 2022 and 2014 illustrates evidence of spectral variability. Estimations of J0409+3239's mass based on evolutionary tracks indicate that it is less than 0.9 M_{\odot} , with a luminosity of $L_*= 1000 L_{\odot}$ and an effective temperature of Teff =40,000 K.The star, a low-mass star in a rare transitional phase towards becoming a central star of a planetary nebula.

Wolf-Rayet Phenomenon

- "classical" WR stars descendants of massive (M>25 M_{\odot}) O-type stars
- very massive stars (VMS) with $M > 100 M_{\odot}$
- [WR] central stars of planetary nebula
- young supernovae (SNe), which reveal WR-like spectra

Galactic Wolf Rayet Catalogue

v1.28 (Gaia DR3), 669 WR stars, Jun 2023

				Hom	e Refs	History Addition	ns Or	nissions	IDs	Des	scription		
D	WR#	Reference	HD	Alias1	Alias2	Alias3	Right Ascension J2000	Declination J2000	Galactic Longitude (deg)	Galactic Latitude (deg)	Spectral Type	Spectral Type Reference	
1	1	<u>VII</u>	HD 4004	HIP 3415			00 43 28.39	<u>+64 45 35.4</u>	122.0825	1.9012	WN4b	SSM96	
2	<u>2</u>	<u>VII</u>	HD 6327	HIP 5100			<u>01 05 23.03</u>	<u>+60 25 18.9</u>	124.65	-2.41	WN2b	SSM96	
<u>3</u>	<u>3</u>	<u>VII</u>	HD 9974	HIP 7681			<u>01 38 55.62</u>	<u>+58 09 22.6</u>	129.1797	-4.1382	WN3ha	MMC04	
4	4	<u>VII</u>	HD 16523	HIP 12527			<u>02 41 11.67</u>	<u>+56 43 49.8</u>	137.5948	-2.9839	WC5+?	VI	
5	5	VII	HD 17638	HIP 13380			02 52 11.66	+56 56 07.1	138.8668	-2.1530	WC6	VI	

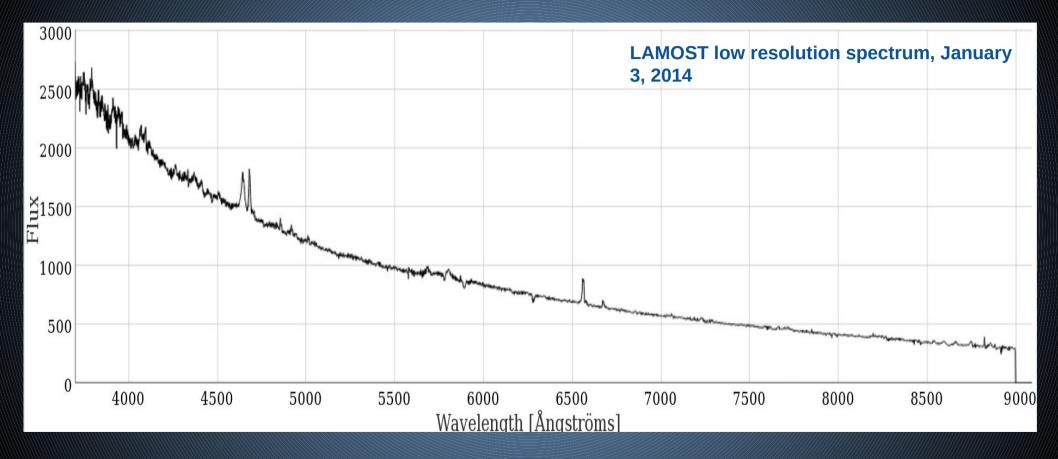
669 WR – stars discovered in the Milky Way Galaxy

Galactic Wolf-Rayet Stars - http://pacrowther.staff.shef.ac.uk/WRcat/index.php

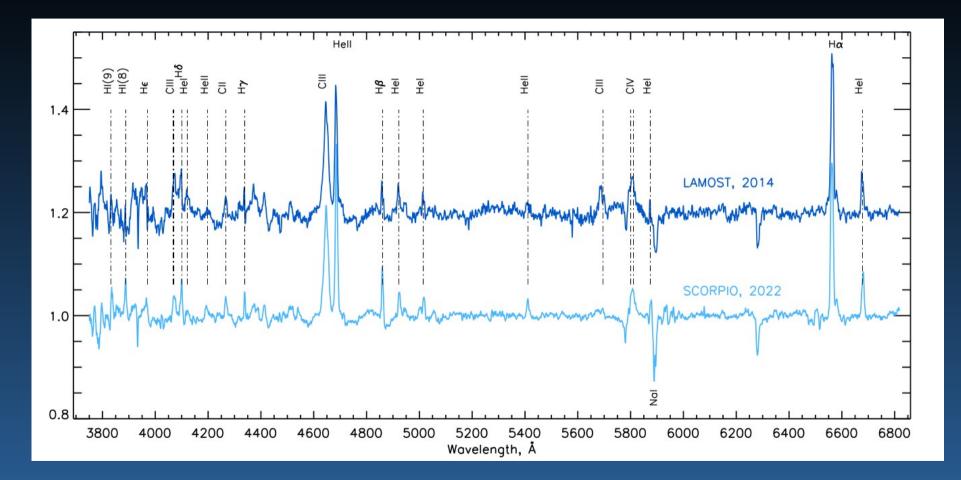
The predicted number of WR's ~1200 (Rosslowe & Crowther 2015)

The object: LAMOST J040901.83+323955.6 (J040901) properties

RA (J2000)	04h09m01s.8343	
Dec. (J2000)	+32°39′55″.7627	
l	164.°12944	
b	-13.°9698	
Dist (pc)	$2499.47^{+151.41}_{-162.44}$	Gaia DR3 [1]
V(mag)	14.678 ± 0.148	APASS-9 [2]
B (mag)	15.006 ± 0.218	APASS-9 [2]
$B_P - R_P$	0.468 ± 0.036	Gaia eDR3 [3]
E(B - V)	$0.226_{-0.01}^{0.02}$	3D Dust Mapping [4]


Previous classifications

- Yuan H. B. et al., 2015 The first spectral observation / LAMOST Spectroscopic Survey of the Galactic Anticentre
- Škoda P., Podsztavek O., Tvrdík P., 2020 classified as a WN star
- Sesar B. et al., 2017, AJ, 153, 204 RR Lyrae stars using a machine-learning identification method


Have found the period P = 0.2847409137*d*

• Jayasinghe et al. 2018 ASAS-SN – as a non-periodic object with V = 14.48 mag & $\Delta \sim 0.39$ mag.

The spectra from LAMOST

The second spectra obtained in 2022

Identification lines and object type

	Lines	Lines			
Ηγ λ4340	Emission	C IV λ5806	Broad emission		
He I λ4471	-	C IV λ4650			
С III λ4649	Emission	N v λ4603	-		
Сш λ5696	Broad emission	Ννλ4945			
Не II λ4686	Emission	Ο VI λ3822	-		
Не II λ5412	Emission	Ο VI λ5290	-		

strong emission lines of C II λ 4267 C III λ 4647, 4650, 4652

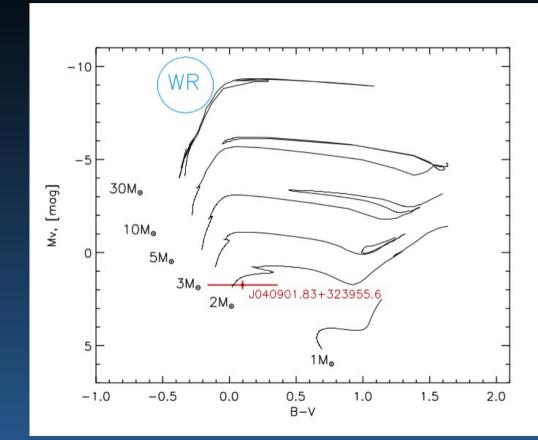
Identified

as N III by Škoda, Podsztavek & Tvrdı́k (2020) and as C III + N III by Sun et al. (2021)

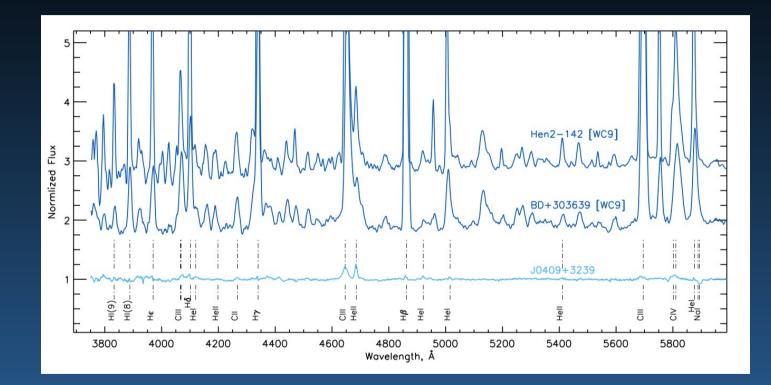
Teff ~ C III λ 4647, C IV λ 5801, 5812, He I and He II.

Teff = 37 000-41 000 K

 $L_* = 900 - 1000 L_{\odot}$

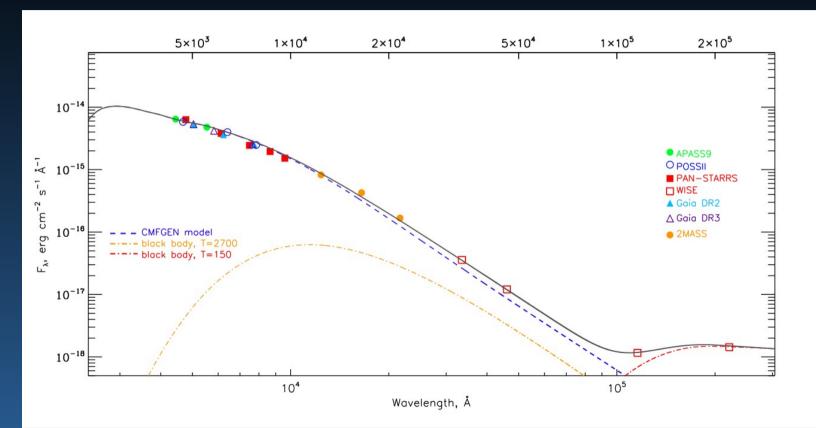

 $M_{\star} = 0.9 M_{\odot}$

Crowther, De Marco & Barlow (1998)


criteria of Weidmann et al. (2020)

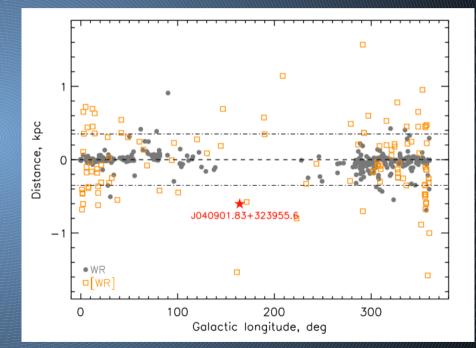
C IV λ5801, 5812/C III λ5696 According equivalent width ratios, J0409+3239 is a [WC8-9] C IV λ5801, 5812/C II λ4267

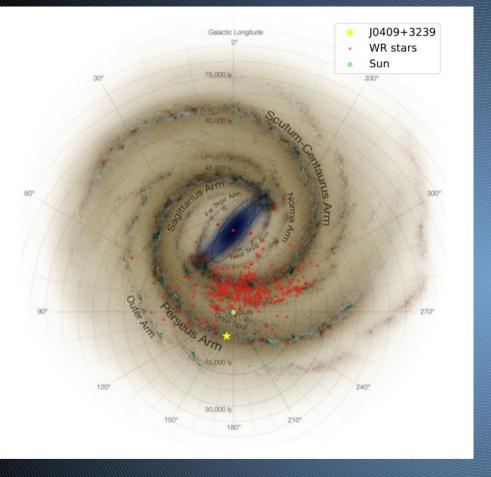
Location in the HR diagram and the evolutionary status of J0409+323



Comparison of normalized spectra of J0409+3239 and [WC9] type stars

Reddening J0409+3239 ~ E(B - V) = 0.6.

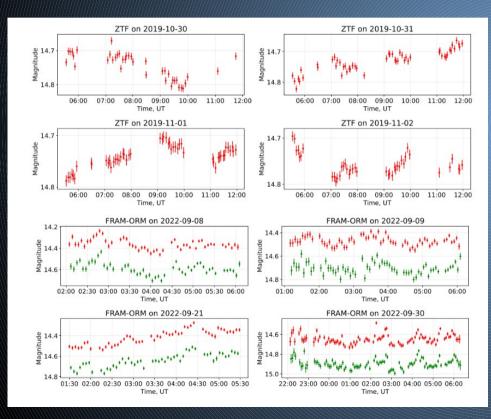

This is 2.6 times larger than the total Galactic reddening in this direction

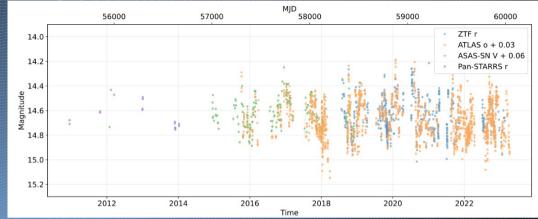


Forbidden nebular lines [O III] λ 4959, 5007 and [N II] λ 5755

Position in the Galaxy

member of the Galactic halo




ll 138.9 - 227.8 – WR free zone

d=2.5 kpc Gaiadr3 z= -0.725 kpc

Photometry

Zwicky Transient Facility (ZTF) 27 March 2018 - 19 February 2023

ZTF data, Pan-STARRS1, ATLAS and ASAS-SN

irregular variability

J040901.83+323955.6 is a low-mass star in a rare transitional phase towards becoming a central star of a planetary nebula.

Thank you for attention!