Mass loss in Dwarf and Evolved B stars

Alex C. Carciofi, Amanda Rubio, Tajan Amorim

(Universidade de São Paulo)

Jonathan Labadie-Bartz

(Obs. de Paris)

Dietrich Baade

(ESO)

The Be star Achernar in true color (HDUST model)

Mass loss in Dwarf and Evolved B stars Mass loss in Be stars

- 1) Be stars:
	- What are they?
	- Where they come from?
	- Why are they important?
- 2) News from the **mass loss front…**
- 3) News from the **disk front…**

The Be star Achernar in true color (HDUST model)

Young Open Clusters

- **Multiple** main sequences
- **Extended** main sequences
- **Uncertain** turn-off points
- What are the causes?
	- **○ Binarity**
	- **○ Fast rotation,** etc.
- **Be stars certainly are part of the explanation…**

The **black dots** represent normal stars The **red dots** indicate Halpha emitters (Milone+2018)

Be Stars: overview

Three main characteristics:

- 1) They are **all fast rotators**
- 2) They sometimes possess a **circumstellar disk**
- 3) **All are non-radial pulsators**

Spectroscopy is historically (by very far) the main source of information about the central star and its disk

Polarization and **photometry** also important Recently, **space photometry** playing major role **The disk of zeta Tau (Carciofi+2009)**

The Central Star

- **Main sequence** (or post-MS?)
- Most rapid massive rotators known to exist
	- **○ Geometrical flattening**
	- **○ Gravity darkening** ➜ poles are much hotter than the equator
	- **○ Internal coupling**
- **●** Differences vs. slower rotators (normal B stars) in **structure**, **chemistry**, **evolution** etc.
- Be stars are key to models of fast-spinning stars

(shown are HDUST models)

Crosses (Fremat et al. 2005)

Green circles - shell stars (Rivinius et al. 2006)

Blue Triangles - interferometry (Meilland et al. 2012)

Achernar (Domiciano de Souza et al. 2014)

Rotational rates of Be stars derived from different techniques (Rivinius, Carciofi and Martayan 2013)

 $W = 0.62$

 $W = 0.90$

Surface Temperature

Line absorption

(Rivinius, Carciofi and Martayan 2013)

(Georgy et al. 2013)

MS lifetime enhancement as a function of mass & for different metallicities Different colors indicate different rotation rates, from *W = 0.1* to **W = 0.95**

(Georgy et al. 2013)

Chemical enrichment at the surface as a function of mass & for different metallicities Different colors indicate different rotation rates, from *W = 0.1* to *W = 0.95*

Be Stars: incidence

- Be stars are **quite common**
	- 5-20% of all B stars in the Galaxy
	- Up to 50% (or more) in the SMC
	- \circ Recent results indicate ~ 60% in some spectral subtypes in the SMC! (Navarete et al. 2024)

Right: composite **BVI image** of the young stellar cluster NGC 330

Navarete et al. (2024)

Be Stars: incidence

● Be stars are **quite common**

- 5-20% of all B stars in the Galaxy
- \circ Up to 50% (or more) in the SMC
- \circ Recent results indicate ~ 60% in some spectral subtypes in the SMC! (Navarete et al. 2024)

Right: composite **BVI image** of the young stellar cluster NGC 330

Red/pink are almost all Be stars!

Navarete et al. (2024)

Be Stars: incidence

- Be stars are **quite common**
	- 5-20% of all B stars in the Galaxy
	- Up to 50% (or more) in the SMC
	- \circ Recent results indicate ~ 60% in some spectral subtypes in the SMC! (Navarete et al. 2024)

Navarete et al. (2024)

Be Stars: formation scenarios

1) Be stars are born as rapid rotators

- Both models and observations still quite uncertain
- Key point: there exists Be stars even in the youngest YOCs known

2) Evolutionary spin-up

- \bullet Fast rotation already at $t = 0$
- **● Angular momentum is transferred from the contracting core to the surface**

Evolution of the **rotational velocity vs. time**, for stars with different velocities at the ZAMS

(Granada et al. 2013)

Be Stars: formation scenarios

2) Evolutionary spin-up

One of the predictions of the evolutionary spin-up scenario is that **once a Be star reaches the critical limit, it stays there until the end of the MS**

However, cluster studies suggests that the Be/(B+Be) fraction **does not peak at the TAMS**

What is causing this? Unclear at the moment… **Be/(B+Be) as a function of age**

(McSwain & Gies 2005)

Be Stars: formation scenarios

3) Binary evolution

- Star was spun up in a past mass & angular momentum exchange phase
- **Primary (mass & AM donor)** evolves to become a sdO or sdB star
- **Secondary (mass & AM gainer)** evolves to become a fast-spinning B star
- End system in **nearly circular orbit**
- Wang+2018 and others: over 20 systems Be+sdOB known ➜ **why so few?**

Two stars out orbiting

© Ylva Götberg

Where do Be stars come from?

Born as fast rotators

vs.

Evolutionary spin-up

vs.

Binary evolution

IMPORTANT: At least some AM transfer is necessary to counteract the spin-down as the star expands during the MS

> **The truth likely is a combination of the processes…**

Recent spur of interest in the literature

Be Stars: the disk (Carciofi et al. 2009)

- **● Brightest example pieces to study disk physics**, with impacts on all scales
- **●** Created by the star through **mass loss**
	- **○** Matter is somehow ejected from the star
	- **○ Viscous diffusion transports matter and AM outwards**
- **●** Viscous Decretion Disk (**VDD**) Model. Ingredients:
	- 1) **Viscosity** (alpha disk)
	- 2) **Mass** and **angular momentum injection rate**
- **Intrinsically variable** on several timescales

Model image of zeta Tau's disk showing a one-armed density wave

Disk variability

Mass loss in action…

Lightcurve of Be star SMC_SC5_32652

Outburst stars at HJD~1600, building in a disk that makes the system **brighter and redder Dissipation** begins at HDJ~2500. System goes back to baseline along 14+ years!

Disk variability

Spectroscopic variability of the Be star QR Vul (data BESS database)

At least two complete cycles of disk formation/dissipation

Third one ongoing

How a Be disk is formed?

Main ingredients:

- 1) Material is **ejected from the star**, most likely close to the equator
- 2) Part of the material acts like a **donor of AM momentum**, falling back to the star. In typical models, 99.9% of the ejected mass falls in this category
- 3) The material that gains sufficient angular momentum attains progressively larger orbits, making the disk grow ➜ **disk grows inside out**
- 4) When mass loss is interrupted, **the star no longer supports the disk**, and its inner part is reaccreted back to the star
	- ➜ **disk dissipates inside out**

Disk growth and dissipation

Pole-on case

Disk growth and dissipationDisk growth and dissipatio

Isolated disk events

Fitting disk events

By modeling a disk event we can obtain

- The viscosity of the disk
- The rate of AM $\&$ mass loss

(Granada+2013, Ghoreyshi+2022)

Estimated values of the viscosity parameter for Red lines: models a sample of 54 SMC stars

Red dots: observations

Rímulo, Carciofi et al. (2018)

Mass loss in Be stars

- 1) Be stars:
	- What are they?
	- Where they come from?
	- Why are they important?

2) News from the **mass loss front…**

3) News from the **disk front…**

The Be star Achernar in true color (D. M. Faes)

The disk: mass injection

TESS photometry of j Cen

~500 stars observed by TESS (Labadie-Bartz+2022)

- 97% have **detectable pulsation**
- 87% have **frequency groups**
- 18% (31% of early-type) show 1+ mass outburst
- 83% **increase pulsation amplitude during outburst**
- 15% have high-frequency pulsation (p modes)

Asteroseismology : determines interior stellar properties by quantifying pulsation

Main result: mass loss (or mass injection into the disk) is **unequivocally** related to pulsation **KEY POINT**: Space photometry is quite sensitive to small mass ejection events, however it is (almost) **completely blind to the geometry of ejecta**

Solution: **simultaneous high-cadence, high-resolution spectroscopy!**

In a rotating disk (or ring), **different spectral channels map different disk positions**

The FRISBEEE project

The FRISBEEE project

Following **R**eally **I**ntensively with **S**pectroscopy: **B**e **E**mission **E**vents

Strategy:

- Tabulate when TESS will observe **every known bright Be star**
- **Select Be stars that are likely to eject mass** during TESS observations (based on archival data, previous monitoring, etc.)
- Monitor every night with spectroscopy; **analyze data immediately**
- When spectra show mass ejection, **increase cadence**

Results:

● After a **4-yr long effort** we have **13 well-documented cases of mass ejection both from TESS and spectroscopy** (+ another 7 from literature)

f Car (B3Ve) (PRISTINE)

2 mass outbursts (**flickers**) in 50 days of TESS

No disk prior to these events ➜ **pristine environment for disk formation**

f Car (B3Ve)

* Short-term temporal variability, in timescales of **hours**

* Shown are **emission spectra**, i.e., with the photospheric profile subtracted

* **First panel** ➜ Initially no disk

*** Second panel on** ➜ disk starts to form

Line measurements:

- **Equivalent Width** ➜ measure of total emission
- **V/R ratio** ➜ measure of asymmetry (what to do with more than 2 peaks?)
- EW_v/EW_R → measure of asymmetry (deals well with complex profiles)

f Car (B3Ve)

- *** Two flickers** during the TESS observations
- ***** Photometric flicker evolves **much faster** than the Halpha EW
- ***** Halpha profiles are **highly asymmetrical** and vary with a **period of ~ 1.7 c/d**
- ***** Asymmetries are **maximum at the earliest stages** and dampens out slowly

V 767 Cen (B2Ve) (CLEAR)

- * gamma Cas analog (X-ray emission)
- * The star **had a disk prior to TESS**
- * Several small outbursts and a large one starting at the end of the TESS window

* **Halpha asymmetry also cyclic** with much shorter periods **(0.77 - 0.87 c/d)**

12 Vul (B2.5Ve) (COMPLEX)

- Permanently active?
- Several overlapping outbursts?
- **Halpha asymmetry also cyclic**
- Periods vary from **1.6 to 1.9 c/d**

The full sample

Mix of pristine, clear and complex cases

EW_v / EW_R ranging between **0.3 – 1.9 c/d**

Stars with multiple flickers always present similar EW_v / EW_R periods

Pulsational frequencies

All stars in the sample have clear NRP frequencies

Ex: V767 Cen has a mode with a frequency of 0,979 c/d

Pulsation and mass loss

For **all** flickers observed, there is an **increase in the pulsation power during the outburst**

The full sample

Mix of pristine, clear and complex cases

EW_v / EW_R ranging between **0.3 – 1.9 c/d**

All stars have spectroscopic frequencies measured. They are always larger than the EWV / EWR frequencies

The full sample

Frequency spectra of all 13 stars are **typical of Be stars**

- Frequency groups
- Spec. frequencies (**blue**) always on the large frequency side of group

Halpha asymmetry frequencies (**red**) are **always shorter than the spectroscopic frequencies**

Comparing frequencies

How the observed EW_v / EW_R compares with the **characteristic frequencies** of the system?

* **Orbital frequency at stellar equator (***W* **< 1)**

$$
\omega=\frac{1}{2\pi}\sqrt{\frac{GM}{R_{\rm eq}^3}}
$$

* **Critical frequency (orbital freq. for** *W* **= 1)**

$$
\omega=\frac{1}{2\pi}\sqrt{\frac{GM}{(1.5R_{\rm pole})^3}}
$$

* **Rotational frequency**

$$
\omega = \frac{V_{\rm eq}}{2\pi R_{\rm eq}}
$$

Shape of star for different values of *W*

Comparing frequencies

Red - orbital frequency

- **Blue critical frequency**
- **Green rotational frequency**

- **Important conclusion**: what is causing the line asymmetries is **material orbiting very close to the stellar surface**
- Seemingly obvious, but not quite so…

Stellar parameters from Fremat et al. (2016)

The full sample: conclusions from the FRISBEE project

- 1) We identified about **50 flickers in 13 targets** for which we had simultaneous TESS and high-resolution, high-cadence spectroscopy
- 2) 100% of them showed **strong EW_v / EW_R asymmetries,** with similar behavior (cyclic variation that dampens out after a few cycles)
- 3) Therefore, **in ALL cases, mass loss was highly asymmetrical**
- 4) Material orbits **very close to the stellar surface. How close?**

Labadie-Bartz, Carciofi et al. (in preparation)

Flicker analysis

* We measure the length of the outburst (**blue**) and the length of the dissipation (**orange**)

* From that we can estimate the **duty cycle**, the **fraction of time the star is actively losing mass**

$$
\Delta X(t) = \Delta X_{\text{bu}}^{\infty} \left\{ \begin{array}{ll} \left(1 - \frac{1}{1 + [C_{\text{bu}}(t - t_1)]^{\eta_{\text{bu}}}}\right), & t_1 \leq t < t_2\\ \left(1 - \frac{1}{1 + [C_{\text{bu}}(t_2 - t_1)]^{\eta_{\text{bu}}}}\right) \frac{1}{1 + [C_{\text{d}}(t - t_2)]^{\eta_{\text{d}}}}. & t \geq t_2 \end{array} \right.
$$

Rímulo et al. (2018)

Flicker analysis

- * **Sample of 54 flickers for 11 stars**
- * Dissipation is **typically 2 times longer** than formation
- * Similar to models and observations of large scale disk formation ➜ **mass reservoir effect**
- * **Flickers are also controlled by viscosity** (?)

SPH models of localized ejecta

- Define **ejection region** with given size and rotational frequency
	- **○ NOT the orbital frequency**
	- **○ NOT the stellar rotational frequency**
- **Create particles** in this region at a given rate
- Sample random (Gaussian) speeds with random (outward) directions
- Define **duration** of outburst
- Let **ejecta evolve under action of gravity and viscosity**

Kroll's gravity filter

SPH models of localized mass ejection

- Duration of mass injection: **30h**
- Average speed (local frame): **20 km/s**
- \bullet alpha = 1
- Mdot = **1.E-7 Msol/year**
- Rotation frequency of **hot spot** = Orbital frequency

Effects of ejection speed

SPH models of localized mass ejection

Observations of f Car

● For the first time we have the **ability to model mass loss in a physically realistic way**

AND

- We **have the data to compare** with…
- Rubio, Carciofi, Baade et al. (in preparation)

Mass loss in Be stars

- 1) Be stars:
	- What are they?
	- Where they come from?
	- Why are they important?
- 2) News from the **mass loss front…**
- 3) News from the **disk front…**

The Be star Achernar in true color (D. M. Faes)

Mass loss in Be stars

- 1) Be stars:
	- What are they?
	- Where they come from?
	- Why are they important?
- 2) News from the **mass loss front…**
- 3) News from the **disk front…**

Most Be disks are quite different from this!

The Be star Achernar in true color (D. M. Faes)

SPH studies of Be disks in binary systems revealed that the secondary perturbs the disk in many ways:

- **1) Density waves** in the disk, that **leads to V/R variations of emission lines** (Okazaki+2002, Panoglou+2016,2018)
- 2) **Disk truncation** as the resonant torque exerted by the companion removes momentum from the disk (Okazaki, Panoglou+2016, Cyr+2017)

3) Disk tilting/warping/tearing

Happens when there is a misalignment between the disk and the orbital plane of the secondary (Suffak+2021)

Disk tearing, for instance, was shown to **occur in the disk of Pleione** (Marr+2022)

- "Messed up" profiles
- Triple or even multiple peaks
- Shell vs non-shell phases
- **● What is going on here?**

Data: binary Be star **V658 Car** over an orbital period (*P* = 32 d)

Observer

Model: SPH simulation reveals the formation of complex structures

Data: binary Be star **V658 Car** over an orbital period (*P* = 32 d)

New simulations with **two important updates**

1) Particle splitting

When certain criteria are met, one particle is **split in 13 daughter particles**, maintaining the velocity, AM and total mass of the original particle

2) Correct outer boundary conditions

Radius of the 2nd sink particle is the radius of the secondary star (before: radius of Roche lobe)

These allowed us resolve the outer disk structure and track material as it leaves the system

The new positions of the particles are in **each of the 12 vertices plus the center of a icosahedron**

Simulations starts with **no circumstellar matter**

At each timestep, particles (mass) are ejected from the star, forming the disk

IMPORTANT: injection is smooth and homogeneous

Simulation after several tens of orbital periods, **disk reaches a quasi steady-state**

Mass is lost to the ISM **mostly** through the Roche lobe of the secondary

Simplified sketch with **5 regions with distinct properties**

Surface density map predicted for a binary Be star with $P = 30$ days

SPH + HDUST simulations of a 30d period binary Be star

If the disk is asymmetric, this will cause line asymmetries (e.g., different ratios between the V and R peaks ➜ **V/R variations**

Material flows through the bridge is **dumped into the Roche lobe of the secondary at large speeds**

Part of this material is accreted onto the secondary, and part flows out through L2

 $[km/s]$

velocity

Radial

Is it a disk?

Depending on the model parameters, the structure around the secondary is either

- 1) A **rotationally supported, accretion disk** (when vphi >> vr)
- 2) An **outflowing structure** (vr >~ vphi)

These will likely have different spectroscopic signatures

Inner Be dis

Spiral dominated disk

Circumsecondary regio

Ongoing: what is the role of each part of the disk in shaping the spectroscopic appearance of the star?

V658 Car: the first eclipsing binary Be star

Ongoing modeling effort

de Amorim, Carciofi et al. (in preparation)

Two Disks!

Takeaways from part 2

●

- New particle-splitting SPH simulations provide a **complete view of Be star disks for the first time**
- They reveal the fate of the material as it escapes from the Be disk: most **material escapes through L2** (in some models part also leaves through L3)
- Simulations predict the **formation of a circumsecondary disk** under certain conditions
- Those are now being detected (5 known cases so far, Carciofi+ in preparation)

