TESTING THE SUPERMASSIVE STAR SCENARIO FOR EARLY MASSIVE CLUSTER EVOLUTION

Kasia Nowak Supervisor: Dr Martin Krause

- Oldest up to 13.5 Gyr
- Dense
- Simple
- Single populations

WHAT IS SO PUZZLING ABOUT GLOBULAR CLUSTERS?

- Display anticorrelated O-Na, C-N and Mg-Al abundances
- Host multiple stellar populations located all over the colour-magnitude diagram
- Low level of helium

(Carretta et al., 2010)

Self-enrichment and possible polluters

AGB stars

Build O-Na correlation

Release He-burning products: not observed in GCs

Fast rotating massive stars

Reach Mg-burning temperature

Produce strong He enrichment

Reach the required Mg burning temperature already at the beginning of their evolution

Supermassive stars

The H-burning products at the early stage show agreement with observed anomalies

Have not been observed

SUPERMASSIVE STAR

Forms via runaway collision, simultaneously with the globular cluster

Has a mass of at least 10³ M_☉

Assumed to be fully convective

Releases its material at the very beginning of the main sequence phase in a radiatively driven wind

NGC 253

WHAT ARE MASERS?

- radiation amplified by stimulated emission
- population inversion required
- 'pumping mechanism' external energy source
 - The most common masers in astrophysical environment:
 - 1. Hydroxyl
 - 2.Water
 - 3.Methanol

22 GHz H₂O MASERS

Classified as:

- Stellar masers: $L < 0.1 L_{\odot}$
- 2. Kilomasers: 0.1 L $_{\odot}$ < L < 1 L $_{\odot}$
- 3. Megamasers: $L > 20 L_{\odot}$

Maser emission requires:

- dense gas: > 10⁷ cm⁻³
- temperature:
 - ♦ ~ 300 K 1500 K (collisionally pumped)
 - ✦ ~ 1000 K (radiatively pumped)

W49N: Galactic kilomaser

W1: Extragalactic kilomaser

NGC 4258: Megamaser

DISC MASER!

"Clean" disc maser in AGN

W1: H₂O kilomaser

10,000 ${\rm M}_{\odot}$

M_{disc} 1% of M_{SMS}

10% of M_{SMS}

 \bigstar

l per year

Flyby rate of perturbers 1 per 10 years 1 per 100 years

 \bigstar

DERIVATION OF H₂O MASER SPECTRUM

- High-velocity features produced from collisional pumping
- Model spectrum plotted with flux against velocity along the line of sight
- Flux calculated using equation from Kartje et al. (1999):

$$F = 4.7 \times 10^{17} \left(\frac{\mathrm{n}dy}{2D}\right)^2 Jy$$

- Density: at least 10⁷ cm⁻³
- Temperatures: in the range of 300 K 1500 K

RESULTS FOR M_{SMS} = 1000 M_{\odot}

RESULTS FOR M_{SMS} = 1000 M_{\odot}

RESULTS FOR M_{SMS} = 1000 M_{\odot}

RESULTS FOR M_{SMS} = 10,000 M_{\odot}

(Nowak et al., 2022)

RESULTS FOR M_{SMS} = 10,000 M_{\odot}

(Nowak et al., 2022)

RESULTS FOR M_{SMS} = 10,000 M_{\odot}

(Nowak et al., 2022)

MODEL MASER SPECTRUM

(Nowak et al., 2022)

MODEL MASER SPECTRUM

RESULTS FOR M_{SMS} = 4000 M_{\odot}

(Nowak et al., 2024)

RESULTS FOR M_{SMS} = 4000 M_{\odot}

(Nowak et al., 2024)

RESULTS FOR M_{SMS} = 4000 M_{\odot}

(Nowak et al., 2024)

3D SETUP FOR M_{SMS} = 1000 M_{\odot}

3D SETUP FOR M_{SMS} = WHAT DO WE EXPECT

- Stellar flybys on inclined orbits
- Warped disc (Clarke & Pringle, 1993; Cuello et al., 2018)
- Warped AGN disc can produce megamasers (Kartje et al., 1999)
- Kilomaser produced from a disc at inclined angles

SUMMARY

Maser model for M_{SMS} = 1000 M_{\odot} shows similarities to W1 kilomaser

Model spectrum for M_{SMS} = 10,000 M_{\odot} resembles an AGN megamaser

Outward and inward movement of the peaks due to the spiral arm

 $M_{SMS} \sim 4000 \ M_{\odot}$ could produce spectrum with high-velocity peaks matching W1 kilomaser

Next thing: 3D simulations with warped disc Can the disc produce a kilomaser?!