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Magnetohydrodynamics
Describes the dynamics of a conducting fluid in the presence of
electromagnetic fields.

∂ρ

∂t +∇ · (ρv) = 0

ρ
∂v
∂t + ρv · ∇v = −∇p + (∇× B)× B

∂B
∂t = ∇× (v × B)−∇× (η∇× B)

∇ · B = 0

It is useful to express the equations in terms of dimensionless quantitites.
Independent variables and differential operators:

l̄ = l/l0, t̄ = t/t0 ⇒ ∇̄ = l0∇, ∂/∂ t̄ = t0∂/∂t

Dimensionless dependent variables:
ρ̄ = ρ/ρ0 v̄ = v/v0 p̄ = p/(ρ0v2) B̄ = B/B0
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Linear Flows
Fields close to the null points can be Taylor expanded.
Assumption: The velocity null and the magnetic null coincides.

Taylor Series for a scalar:

f(x) = f(a)+ f′(a)
1! (x−a)+ f′′(a)

2! (x−a)2+· · ·

Taylor Expanding fields:
v = V · r
B = B · r
p = rT · P · r + p0

where
r =

(
x y z

)T

Vij =
∂vi
∂xj

=

V11 V12 V13
V21 V22 V23
V31 V32 V33


Bij =

 1 (q−j∥)
2 0

(q+j∥)
2 b 0
0 j⊥ −(b + 1)


Pij =

∂2p
∂xi∂xj
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3D Linear Dynamical System
Equations of the form v = V · r, where V has three eigenvalues λ1, λ2 and λ3.
Saddle Points

Not all eigenvalues have real parts with the same sign.
Topological skeleton has two components: Fan plane and the Spine line.
Fields moving towards the null point: Stable subspace, and fields moving away
from the null: Unstable subspace.
The null is radial if all eigenvalues are real, and is a spiral if two of the
eigenvalues are complex conjugates.
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3D Magnetic Field Structure

The magnetic field is given by B = B · r, where the matrix B is prescribed as:

B =

 1 (q−j∥)
2 0

(q+j∥)
2 b 0
0 j⊥ −(b + 1)

 j =

j⊥
0
j∥


To determine the topological structure, we need to compute the eigenvalues.

λB1,2 =
1
2 (b + 1)± 1

2
√

j2c − j2∥ λB3 = −(b + 1)
b ≥ −1
(b + 1)2 ≥ j2c − j2∥
j2c = (b − 1)2 + q2‘

Note that as B is traceless, the magnetic field is always a saddle point.
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Titov and Hornig (2000)

Solved the stationary MHD equations locally for constant resistivity.
Flow is considered to be incompressible (∇ · v = 0)

Stationary MHD equations:

V2 − VT2 = B2 − BT2 (1)
tr(V) = 0 (2)
VB − BV = 0 (3)
tr(B) = 0 (4)

The pressure is given by:

P = B2 − BTB − V2 (5)

(2) and (3) ⇒
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Titov and Hornig (2000)
The momentum equation (1) is a skew-symmetric matrix, i.e. three
equations for 2 parameters.

Field-Aligned (FA) flows:

V11 = ±1 V22 = ±b ⇒ V = ±B

Spiral field-crossing (SFC) flows:

V11 = ±(1 − b2 + S2)/(2S) S2 = (j2∥ − j2c )/3

V22 = ±(b2 − 1 + S2)/(2S)

The fan and spine for both fields always coincide.
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MHD Equations Revisited

Full MHD equations:

∂v
∂t + (v · ∇)v = −∇p + (∇× B)× B

∇ · v = 0
∇× B = j
∇ · B = 0

∇× E = −∂B
∂t

E + v × B = ηj

Stationary case for the Linearized fields:

V2 − VT2 = B2 − BT2 (6)
tr (V) = 0 (7)
∇× E = 0 (8)
E + v × B = ηj (9)
tr (B) = 0 (10)

The pressure can be calculated as:

P = B2 − BTB − V2 (11)
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Methods

The Electric field can be written as a gradient of a scalar function.

∇× E = 0 =⇒ E = −∇ϕ (12)

The Ohm’s law is a set of three equations, one for each component.

−∂ϕ(x, y, z)
∂x + vyBz − vzBy = η(x, y, z)j⊥ (13a)

−∂ϕ(x, y, z)
∂y + vzBx − vxBz = 0 (13b)

−∂ϕ(x, y, z)
∂z + vxBy − vyBx = η(x, y, z)j∥ (13c)

The uniqueness of η(x, y, z), the condition of incompressibility, and the
momentum equation provides us with 7 constraints for 9 velocity matrix
elements.
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Solutions

We choose the independent parameters to be V11 and V13.
The velocity matrix can now be expressed in terms of the magnetic field
parameters and two free paranemets, namely V11 and V13.

V = V(V11,V13, b, q, j∥, j⊥) (14)

The solutions can be categorized into four classes.
V11 V13

class I 0 0
class II 1 0
class III 0 1
class IV 1 1
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Class II: V13 = 0

V1(V11, b, q, j∥, j⊥) =


V11

(q−j∥)
2 0

(q+j∥)
2

3j∥(1+b−V11)+q(−1+b+V11)
(q+3j∥) 0

0 j⊥ −3(1+b)j∥−q(−1+b+2V11)
(q+3j∥)

 (15)

V2(V11, b, q, j∥, j⊥) =


V11 − (q−j∥)

2 0
− (q+j∥)

2
−3j∥(1+b+V11)+q(1−b+V11)

(q+3j∥) 0
0 −j⊥ 3(1+b)j∥+q(−1+b−2V11)

(q+3j∥)

 (16)

They have a similar form as the magnetic field.

B =

 1 (q−j∥)
2 0

(q+j∥)
2 b 0
0 j⊥ −(b + 1)

 (17)
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Field-Aligned Flows

We consider the special case where V11 = 1 or V11 = −1.

V1(1, 0) = −V2(−1, 0) = B (18)

V1(−1, 0) = −V2(1, 0) =


−1 (q−j∥)

2 0
(q+j∥)

2 −2 + b +
12j∥

q+3j∥ 0
0 j⊥ 3 − b − 12j∥

q+3j∥

 (19)

If we fix c1 = c2 = 0 for our ansatz, we get constant resistivity.

η(x, y, z) = c3
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Example: Radial Null
We investigate the dependence of solutions V1 on the free parameter V11 for
specific magnetic field configurations.
For the first example, we fix the magnetic field parameters to be b = 5,q = 3,
j⊥ = 1 and j∥ = 1. This configuration corresponds to a radial magnetic null.

B =

1 1 0
2 5 0
0 1 −6


λB1 = 5.44949
λB2 = 0.55051
λB3 = −6.0
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Example: Radial Null
the Velocity field takes the simplified form

V1(V11) =

V11 1 0
2 5 0
0 1 −5 − V11


The eigenvalues and eigenvectors are given as:

λV1 = 0.5(5 + V11 −
√

33 − 10V11 + V2
11) λV2 = 0.5(5 + V11 +

√
33 − 10V11 + V2

11) λV3 = −5 − V11

Figure: The parametic dependence of each eigenvalue on V11

The velocity field is always a radial null.
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Example: Radial Null

Case 1: V11 < −5.
λV1 < 0, λV2 > 0, λV3 > 0.
Spine lies along ξ1 : Stable subspace.

Case 2: V11 = −5. Degenerate case.
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Example: Radial Null

Case 3: −5 < V11 < 0.4.
λV1 < 0, λV2 > 0, λV3 < 0.
Spine lies along ξ2 : Unstable subspace.

Case 4: V11 = 0.4. Degenerate case.
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Example: Radial Null

Case 5: V11 > 0.4. Spine lies along ξ3 : Stable subspace.
λV1 > 0, λV2 > 0, λV3 < 0
Spine lies along ξ3 : Stable subspace.

K. Saddal 19 / 22



Spiral structure for v?

The characteristic polynomial of V1(V11, b, q, j∥, j⊥) can be written in the
following form: (

x2 − (λ1 + λ2)x + λ1λ2
)
(x − λ3) = 0

For the roots to be complex, the discriminant must be negative.

3j∥(1 + b) + q(−1 + b)− S
6j∥

< V11 <
3j∥(1 + b) + q(−1 + b) + S

6j∥

where S = (3j∥ + q)
√

j∥2 − q2

The condition for existance of spiral nulls

j∥ > |q| or j∥ < −|q|
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Future Work

The estimate of pressure, along with the characteristic values of density, can
give us the emission measure in say Hα (e.g. Rybicki and Lightman, 1979).

EM ∝ coeff. of transition(Te)× n2
e ≈ Ten2

e

3D MHD simulations to compute synthetheic skymaps and estimate the
emission.
Comparison with observations. (Our Hα survey on BSG bow shock
structures)
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Conclusions

The linearized equations of resistive MHD were solved analytically in a local
region close to the null point where both velocity field and magnetic field are
zero.
The solutions can be described in terms of the magnetic field parameters,
and two free parameters.
As the next step, we would like to find a better method of categorize the
solutions.
Emission measure can be calculated by estimating the pressure, density, and
hence temperature. This can be then compared to the results from
simulations and observations.
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