

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Hydrodynamically consistent modeling of BHGs and LBVs

POEMS 2024 - Rio de Janeiro, Brasil

Matheus Bernini Peron PhD. student matheus.bernini@uni-heidelberg.de

Emmy Noether Research Group on Stellar Atmospheres and Mass Loss Andreas Sander | Varsha Ramachandran | Gemma González-i-Torà Roel Lefever | Matheus Bernini Peron | Elisa Schösser | Joris Josiek | Cormac Larkin Shrriya Kapoor | Leon Tschesche

- Variety of stars and origins
- Connection between MS and cold stages §
- Edge of radiative-driven winds
- Interesting phenomena

- Variety of stars and origins
- Connection between MS and cold stages
- Edge of radiative-driven winds
- Interesting phenomena

- Variety of stars and origins
- Connection between MS and cold stages
- Edge of radiative-driven winds
- Interesting phenomena
 - Bi-stability jump (to jump or not to jump? Vink+2001, Bjorklund+2023)
 - Drop in rotational velocity (Lamers+1995, Markova & Puls 2008)
 - Drop of X-ray detection (Berghoefer+1997)
 - Change in wind clumping? (Driessen+2019)
 - Pulsational variability (a Cyg, Kraus+2015, Georgy+2014)
 - LBVs, B[e], ...

B-hypergiants ² (BHGs)

B-hypergiants (BHGs)

B-hypergiants (BHGs)

• ~30 known BHGs in the local group

- Clark+2012, Vink+2023 (XSU), Evans+2015 (VFTS), vanGenderen+1982
- Low binarity fraction
 - Oskinova+2017
- Seldom earlier than B1
 - **two exceptions in LMC** (Vink+2023, Evans+2015)
- Approaching to the Humphreys-Davidson limit
- Quiescent LBVs?
 - e.g. HD168625, Mahy+2022

Aim:

Understanding the winds of BHGs (and some LBVs) using hydrodynamically consistent stellar atmosphere code PoWR_{HD}

Modeling their atmosphere

Gräfener+2002

/HD

Modeling their atmosphere

Hydrodynamically Inconsistent

Modeling their atmosphere

Hydrodynamically <u>In</u>consistent

Computed from the transitions and radiative field (a_{rad} + a_{press})

Inertia term and gravity (g + a_{mech})

Modeling their atmosphere (but consistently)

Hydrodynamically <u>In</u>consistent

Hydrodynamically Consistent

Coupling hydrodynamics with comoving frame radiative transfer

I. A unified approach for OB and WR stars

A. A. C. Sander, W.-R. Hamann, H. Todt, R. Hainich, and T. Shenar

Coupling hydrodynamics with comoving frame radiative transfer

II. Stellar wind stratification in the high-mass X-ray binary Vela X-1

A. A. C. Sander¹, F. Fürst², P. Kretschmar², L. M. Oskinova¹, H. Todt¹, R. Hainich¹, T. Shenar¹, and W.-R. Hamann¹

Sander+2017: Z Pup (O4laf+)

Sander+2018: Vela X-1 (B0.5la / HMXB)

This is a scorpion glowing under UV radiation

Consistent modelling of Z₁ Scorpii (B1.5Ia+)

20

Timothy Parker/USFWS

Exemplary case: Z_1 Sco (B1.5 la+),

- "bona fide" (early) BHG
- Wide high-quality spectral coverage
 - FUV (FUSE)
 - FIR (ISO)

21

Exemplary case: Z_1 Sco (B1.5 $a+)_{19}$

- "bona fide" (early) BHG
- Wide high-quality spectral coverage
 - FUV (FUSE)
 - FIR (ISO)

Perfect for a pilot study on consistent models of BHGs

(By the way... X-rays!)

A&A, 677, A50 (2023) https://doi.org/10.1051/0004-6361/202346469 © The Authors 2023

Bernini-Peron+2023

Clumping and X-rays in cooler B supergiant stars

M. Bernini-Peron^{1,2}, W. L. F. Marcolino², A. A. C. Sander¹, J.-C. Bouret³, V. Ramachandran¹, J. Saling⁴, F. R. N. Schneider^{4,1}, L. M. Oskinova⁵, and F. Najarro⁶

- No X-ray detection...
 - Upper limit = log (L_{χ}/L) = 7.3 (Berghoefer+1997)
- ... but shows superionization!

- No X-ray detection...
 - Upper limit = log (L_{χ}/L) = 7.3 (Berghoefer+1997)
- ... but shows superionization!

- No X-ray detection...
 - Upper limit = log (L_{χ}/L) = 7.3 (Berghoefer+1997)
- ... but shows superionization!

 ζ_1 Sco (B1.5la+)

How our results compare to literature?

Study	T _{eff} (² ⁄3) ^[kK]	logg (⅔)	log L/Lsun {distance source}	dM/dt [Msun/Myr]	clump	Vinf
This work	17.7	2.04	5.85 {GaiaDR3, BJ21}	4.5	0.66	305 +120 v _{turb}
Crowther+2006	18.0	2.20	6.10 {Sco OB1, B99}	6.0	_	390 +39 {v _{turb} }
Clark+2012	17.2	1.97	5.93 {Sana+06}	1.6	0.06	390 +39 {v _{turb} } ?
Mahy+2022	_	_	6.10 {GaiaEDR3}	_	_	_
Rubio-Diez+2022	_	_	_	<6.2	0.4 – 1	_

Dissecting the model

Higher betas (slightly) favored

Higher betas (slightly) favored

Though beta law is not really adequate...

Najarro+2011 \rightarrow traditional CMFGEN: subsonic onset of clumping in LBVs

Debnath+2024 \rightarrow 3D models: subsonic clumping onset in O stars as well/

V1768 Cyg (B1.5la+)

BP Cru (B1la+)

AzV 78 (B1la+)

P-Cyg (B1la+ / LBV)

V1768 Cyg (B1.5la+)

BP Cru (B1la+)

AzV 78 (B1la+)

P-Cyg (B1Ia+ / LBV)

V1768 Cyg (B1.5la+)

BP Cru (B1la+)

AzV 78 (B1la+) {SMC star!!}

P-Cyg (B1la+ / LBV)

V1768 Cyg (B1.5la+)

BP Cru (B1la+)

AzV 78 (B1Ia+) {SMC star!!}

P-Cyg (B1la+ / LBV)

{MWG} 1.00

0.8

0.8

0.8

49

1.0

1.0

1.0

0.6

0.6

0.6

0.8

0.8

0.8

1.0

1.0

1.0

Loading...

4880

4870

metalicity (Z/Zsun)

52

Loading...

Conclusions

Main Results

- 1st Hydrodynamically consistent model of a prototypical BHG (Z, Sco)
- Fe III is the main wind driver
- Beta law not adequate → High beta if you insist, though tares
- Low X-ray luminosity and far onset + different behaviors to BSGs
- (mildly) Clumped photosphere

On going

- Models of more BHGs/LBVs \rightarrow What their different spectra tell about their physics?
- Investigation of the effects of **metallicity** on the **wind driving** in BHGs/LBVs

Conclusions

Main Results

1st Hydrodynamically consistent model of a prototypical BHG (Z, Sco)

55

- Fe III is the main wind driver
- Beta law not adequate \rightarrow High beta if you insist, though the target of target
- Low X-ray luminosity and far onset + different behaviors to BSGs
- (mildly) Clumped photosphere

On going

- Investigation of the effects of metallicity on the wind driving in BHGs/LBVs
- Models of more BHGs/LBVs \rightarrow What their different spectra tell about their physics?
- Understanding of complex mass-loss behavior with temperature across the "Bi-stability Jump region" for LBVs

Back up & Extra

talk

Hydrodynamically Consistent Models of B-Hypergiants & LBVs

Matheus Bernini Peron ZAH/ARI, Universität Heidelberg

- Variety of stars and origins
- Connection between MS and cold stages
- Edge of radiative-driven winds
- Interesting phenomena
 - Bi-stability jump
 - Drop in rotational velocity
 - Drop of X-ray detection
 - Change in wind clumping?
 - Pulsational variability (a Cyg)
 - LBVs
 - 0 ...

- Variety of stars and origins
- Connection between MS and cold stages
- Edge of radiative-driven winds
- Interesting phenomena
 - Bi-stability jump
 - Drop in rotational velocity
 - Drop of X-ray detection
 - Change in wind clumping?
 - Pulsational variability (a Cyg)
 - LBVs
 - 0 ...

Bi-Stability Jump

- Theoretical motivation:
 - Pauldrach&Puls (1990)
- "Two solutions" with different wind properties found for P Cygni (B1la+, LBV)

- Observational motivation:
 - Lamers+1995, Markova+2008
- Sharp drop of the terminal velocity of cool BSGs after T_{eff} ~ 21kK

- Today's concept:
- (Possible) Increase in Mass-loss rates due to ionization changes
 - (Fe IV to III)
 - Vink+1999,2000
 - Krticka+2021
 - Bjoerklund+2022

BP Cru

$M(T_{eff})$ in LBV-like stars?

Loading...