





# Self-consistent formulae for theoretical mass-loss rate and terminal velocity of O stars

Felipe I. Figueroa-Tapia – felipe.figueroat@postgrado.uv.cl

In collaboration with: M. Curé, J. A. Panei, I. Araya, L. Cydale, R. Venero, C. Arcos & A. C. Gormaz-Matamala

24<sup>th</sup> June, 2024













Physics of Extreme Massive Stars 2024 - https://felipefigueroat.github.io/

## Introduction



Results

#### What are massive stars?

Massive stars are stars with a mass typically higher than  $8-10\,M_\odot$ . Because of this, the physical characteristics of these stars present some of the most extreme conditions in the universe.

Due to the properties of these stars, we can observe:

- Rapid and extreme stellar evolution.
- $\bigcirc~$  Strong winds and mass-loss rates. (~  $10^{-6}~M_{\odot}~{\rm yr}^{-1}$ ).
- $\bigcirc$  Terminal velocities between. 500 - 3000 km s<sup>-1</sup>.



https://www.eso.org/public/images/eso0728c/



How can we describe the wind?

For a line-driven stellar wind, the m-CAK theory (Castor et al. 1975, Pauldrach et al. 1986, Friend & Abbot 1986) provides us of two main equations:

#### Equation of Momentum

$$v\frac{dv}{dr} = -\frac{1}{\rho}\frac{dP}{dr} - \frac{GM_*(1-\Gamma_e)}{r^2} + g_{\rm line} \tag{1}$$

#### Equation of Continuity

$$\dot{M} = 4\pi\rho(r)r^2v(r) \tag{2}$$



#### How can we describe the wind?

From Eq. (1), we can compute the line acceleration in terms of the electron scattering acceleration:

$$\frac{g_{\text{line}}}{g_{\text{es}}} = \mathscr{M}(t) = \sum_{\text{lines}} \Delta \nu_D \frac{F_{\nu}}{F} \frac{1 - e^{-\eta_{\text{line}}t}}{t}$$
(3)

where *t* is the optical depth for a moving medium:  $t = \sigma_e \rho(r) v_{th} (dv/dr)^{-1}$ . The force multiplier  $\mathcal{M}(t)$  can be modeled as a power-law approximation:

$$\mathscr{M}(t) = \frac{kt^{-\alpha} \left(\frac{N_e \times 10^{11}}{W(r)}\right)^{\delta} \tag{4}$$

Therefore

$$(T_{\text{eff}}, \log g, R_*) \& (k, \alpha, \delta) \longrightarrow (\dot{M}, v_{\infty})$$
(5)

Method & Procedure





## The m-CAK Procedure

First used in Gormaz-Matamala et al. (2019). Combines two codes to converge hydrodynamical solutions.

- 1. HydWind (Curé 2004): Code that solves the m-CAK equations providing a hydrodynamical profile from the stellar and line-force parameters, instead of approximating with  $\beta$ -law.
- 2. LOCUS (Gormaz-Matamala et al. 2019): Code that computes the force-multiplier from a hydrodynamical profile, providing the line-force parameters from a linear fitting of  $\mathcal{M}(t)$ .



Results

## The m-CAK Procedure





Conclusions & Future Work

## Our motivation: How to obtain a description of $\dot{M}$ & $v_{\infty}$ ?

- Our main goal is to quantify the change of mass-loss rate and terminal velocity throughout the number of elements in *M*(*t*).
- As the number of lines increases, the total flux of the stellar atmosphere will be diminished.
- We converged several hundred models for three different grids: H, H-He, & H-He-C-N-O.



## Results



## Number of Models

The converged models can be seen in the table below. Each one of them, fulfilled the following conditions:

- $\bigcirc T_{
  m eff}$  = 30000 50000 K, each 1000 K
- $\bigcirc \log g = 2.9 4.3 \, \text{dex}$ , each 0.1 dex
- $\bigcirc~R_{*}=7-70~R_{\odot}$ , each  $1.5~R_{\odot}$
- No rotation
- Solar abundance

| Grid | Chemical Composition | Number of Models |
|------|----------------------|------------------|
| Н    | Н                    | 911              |
| HHe  | H-He                 | 913              |
| CNO  | H-He-C-N-O           | 617              |



## Distribution of $\dot{M}$

- Along the number of elements increases, the mass-loss rate shifts to lower values.
- $\bigcirc$  Higher-value mass-loss rates will be less common, where CNO have almost no models with  $\dot{M} \sim 10^{-4}.$
- An excess on lower values will appear, becoming an explanation for weak winds.





#### How different is our sample from other works?





## Recipe for $\dot{M}$

For each different grid, a linear bayesian fitting was made using a modified form of Gormaz-Matamala et al. (2019). The general formula for our recipes can be written as:

$$\log \dot{M} = A \cdot \log\left(\frac{T_{\text{eff}}}{1000 \text{ K}}\right) + B \cdot \log g + C \cdot \log\left(\frac{R_*}{R_{\odot}}\right) + D \tag{6}$$

We obtained three sets of adjusted parameters using the converged models of our grids. The table below shows the results:

| Grid | А                     | В             | С                     | D                      | <i>R</i> <sup>2</sup> |
|------|-----------------------|---------------|-----------------------|------------------------|-----------------------|
| Н    | 8.86 (±0.09)          | -1.66 (±0.05) | 1.82 (±0.05)          | -16.2 (±0.09)          | 0.9486                |
| HHe  | 12.6 (±0.17)          | -2.23 (±0.05) | 1.75 ( <u>+</u> 0.04) | -20.3 ( <u>+</u> 0.18) | 0.9734                |
| CNO  | 13.2 ( <u>+</u> 0.25) | -2.25 (±0.07) | 1.78 (±0.05)          | -21.3 ( <u>+</u> 0.24) | 0.8893                |



## Conclusions & Future Work

## Distribution of $v_{\infty}$



- In contrast with the mass-loss rate, the distribution of terminal velocity doesn't have a significant shifting.
- Our results show an unusual and asymmetrical distribution compared with the mass-loss rate.



## Distribution of $v_\infty$





## Recipe for $v_\infty$

The process of the mass-loss rate fitting was repeated for the terminal velocity. We want to describe the wind in terms of stellar parameters.

$$\log v_{\infty} = A \cdot \log \left( \frac{T_{\text{eff}}}{1000 \text{ K}} \right) + B \cdot \log g + C \cdot \log \left( \frac{R_*}{R_{\odot}} \right) + D \tag{7}$$

Here we also obtained three sets of adjusted parameters, one for each grid. The table below shows the results:

| Grid | А                      | В                     | С                     | D                     | $R^2$  |
|------|------------------------|-----------------------|-----------------------|-----------------------|--------|
| Н    | -0.81 (±0.06)          | 0.58 ( <u>+</u> 0.02) | 0.58 (±0.02)          | 1.81 ( <u>+</u> 0.08) | 0.8838 |
| HHe  | -1.93 ( <u>+</u> 0.09) | 0.76 (±0.02)          | 0.57 (±0.02)          | 2.96 (±0.10)          | 0.8405 |
| CNO  | -1.23 (±0.13)          | 0.62 ( <u>+</u> 0.03) | 0.56 ( <u>+</u> 0.03) | 2.33 ( <u>+</u> 0.14) | 0.7457 |



Mapping of the Line-Force Parameters



## Conclusions & Future Work



## Conclusion

- Mass-loss rate is greatly affected by the number of elements. Along the number of lines increases, the estimation of the mass-loss rate will decrease, going to more realistic results.
- Our mass-loss distributions can show an excess on lower values, where the weak winds locate. This could explain the formation of this phenomenon.
- The terminal velocity, compared with the mass-loss rate, shows an asymmetric distribution. Nevertheless, the adjusted parameters show very good correlation.
- $\bigcirc$  Because of the number of converged models, we could map the distribution of line-force parameters in the  $T_{\rm eff}$   $\log g$  diagram, where there is a specific zone with negative  $\delta$  values.



## Future Work

- The number of lines' effect is shown to be significant, yet we only used CNO elements. We are currently working on the use of the OSTAR2002 Grid by Lanz & Hubeny (2003). This will change the values of the mass-loss rate and show the effect of metallicity.
- Because of the range of temperature, we can't use the descriptions for B or A-type stars. We have planned to expand this study for lower temperatures between 20 – 30 kK (B-type stars).

¡Muchas gracias por la atención!

## Self-consistent formulae for theoretical mass-loss rate and terminal velocity of O stars

#### Felipe I. Figueroa-Tapia – felipe.figueroat@postgrado.uv.cl

in collaboration with: M. Curé, J. A. Panei, I. Araya, L. Cydale, R. Venero, C. Arcos & A. C. Gormaz-Matamala

- We developed three self-consistent grids for this work, changing the number of elements used in the stellar atmosphere models (H, H-He, & H-He-C-N-O).
- 2. The grids converged several hundred models, with self-consistent parameters of the wind (k,  $\alpha$ ,  $\delta$ ,  $\dot{M}$ ,  $v(r) \Leftrightarrow \rho(r)$ ).
- 3. We accomplished the description of both the mass-loss rate and the terminal velocity of the wind using only the stellar parameters. These results were obtained with a high  $R^2$  value and were consistent with the literature.
- 4. Additionally, we recovered the approximation from Puls et al. (2008) for the terminal velocity and the escape velocity, providing a good validation for our models.
- 5. Finally, we were able to map the line-force parameters in the  $T_{\rm eff} \log g$  diagram, showing different zones of interest where the values of k,  $\alpha$  and  $\delta$  take extreme conditions.

#### Calibration of the Wind Momentum - Luminosity Relationship



Physics of Extreme Massive Stars 2024 - https://felipefigueroat.github.io/

## Calibration of the Wind Momentum - Luminosity Relationship

Because of the lower values of mass-loss rates, the WLR is affected by shifting to lower values in  $\log D_0$ , but mantaining the slope.

| Grid                    | $\log D_0$            | x            | $\alpha_{ m eff}$       | $R^2$  |
|-------------------------|-----------------------|--------------|-------------------------|--------|
| Н                       | 19.4 (±0.12)          | 1.63 (±0.02) | 0.614 ( <u>+</u> 0.008) | 0.8761 |
| HHe                     | 19.2 (±0.12)          | 1.64 (±0.02) | 0.611 (±0.007)          | 0.8790 |
| CNO                     | 19.1 ( <u>+</u> 0.14) | 1.62 (±0.03) | 0.618 (±0.008)          | 0.8761 |
| Kudritzki et al. (1999) | 20.4 (±0.85)          | 1.55 (±0.15) | 0.65 (±0.06)            | _      |