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What are massive stars?

Massive stars are stars with a mass

typically higher than 8 − 10 𝑀⊙. Because
of this, the physical characteristics of

these stars present some of the most

extreme conditions in the universe.

Due to the properties of these stars, we

can observe:

○ Rapid and extreme stellar

evolution.

○ Strong winds and mass-loss rates.

(∼ 10−6 𝑀⊙ yr−1).

○ Terminal velocities between.

500 − 3000 𝑘𝑚 𝑠−1.
https://www.eso.org/public/images/eso0728c/
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How can we describe the wind?

For a line-driven stellar wind, the m-CAK theory (Castor et al. 1975, Pauldrach et al.

1986, Friend & Abbot 1986) provides us of two main equations:

Equation of Momentum

𝑣𝑑𝑣𝑑𝑟 = − 1
𝜌
𝑑𝑃
𝑑𝑟 − 𝐺𝑀∗(1 − Γ𝑒)

𝑟2 + 𝑔line (1)

Equation of Continuity

𝑀̇ = 4𝜋𝜌(𝑟)𝑟2𝑣(𝑟) (2)
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How can we describe the wind?

From Eq. (1), we can compute the line acceleration in terms of the electron

scattering acceleration:

𝑔line
𝑔es

= ℳ (𝑡) = 
lines

Δ𝜈𝐷
𝐹𝜈
𝐹

1 − 𝑒−𝜂line𝑡

𝑡 (3)

where 𝑡 is the optical depth for a moving medium: 𝑡 = 𝜎𝑒𝜌(𝑟)𝑣𝑡ℎ(𝑑𝑣/𝑑𝑟)−1. The
force multiplier ℳ(𝑡) can be modeled as a power-law approximation:

ℳ(𝑡) = 𝑘𝑡−𝛼􏿵𝑁𝑒×1011
𝑊(𝑟)

􏿸
𝛿

(4)

Therefore

(𝑇eff, log 𝑔, 𝑅∗) & (𝑘, 𝛼, 𝛿) ⟶ (𝑀̇, 𝑣∞) (5)
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The m-CAK Procedure

First used in Gormaz-Matamala et al. (2019). Combines two codes to converge

hydrodynamical solutions.

1. HydWind (Curé 2004): Code that solves the m-CAK equations providing a

hydrodynamical profile from the stellar and line-force parameters, instead of

approximating with 𝛽−law.

2. LOCUS (Gormaz-Matamala et al. 2019): Code that computes the

force-multiplier from a hydrodynamical profile, providing the line-force

parameters from a linear fitting of ℳ(𝑡).
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The m-CAK Procedure
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Our motivation: How to obtain a description of 𝑀̇ & 𝑣∞?

○ Our main goal is to quantify the

change of mass-loss rate and

terminal velocity throughout the

number of elements in ℳ(𝑡).
○ As the number of lines increases,

the total flux of the stellar

atmosphere will be diminished.

○ We converged several hundred

models for three different grids: H,

H-He, & H-He-C-N-O.
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Number of Models

The converged models can be seen in the table below. Each one of them, fulfilled

the following conditions:

○ 𝑇eff = 30000 − 50000 K, each 1000 K

○ log 𝑔 = 2.9 − 4.3 dex, each 0.1 dex

○ 𝑅∗ = 7 − 70 𝑅⊙, each 1.5 𝑅⊙

○ No rotation

○ Solar abundance

Grid Chemical Composition Number of Models

H H 911

HHe H-He 913

CNO H-He-C-N-O 617
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Distribution of 𝑀̇

○ Along the number of

elements increases, the

mass-loss rate shifts to

lower values.

○ Higher-value mass-loss

rates will be less common,

where CNO have almost

no models with 𝑀̇ ∼ 10−4.
○ An excess on lower values

will appear, becoming an

explanation for weak

winds.
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How different is our sample from other works?
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Recipe for 𝑀̇

For each different grid, a linear bayesian fitting was made using a modified form of

Gormaz-Matamala et al. (2019). The general formula for our recipes can be

written as:

log 𝑀̇ = 𝐴 ⋅ log 􏿶
𝑇eff

1000 K􏿹 + 𝐵 ⋅ log 𝑔 + 𝐶 ⋅ log 􏿶
𝑅∗
𝑅⊙

􏿹 + 𝐷 (6)

We obtained three sets of adjusted parameters using the converged models of our

grids. The table below shows the results:

Grid A B C D 𝑅2

H 8.86 (±0.09) -1.66 (±0.05) 1.82 (±0.05) -16.2 (±0.09) 0.9486

HHe 12.6 (±0.17) -2.23 (±0.05) 1.75 (±0.04) -20.3 (±0.18) 0.9734

CNO 13.2 (±0.25) -2.25 (±0.07) 1.78 (±0.05) -21.3 (±0.24) 0.8893
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Distribution of 𝑣∞
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○ In contrast with the

mass-loss rate, the

distribution of terminal

velocity doesn’t have a

significant shifting.

○ Our results show an

unusual and asymmetrical

distribution compared

with the mass-loss rate.
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Distribution of 𝑣∞
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Recipe for 𝑣∞

The process of the mass-loss rate fitting was repeated for the terminal velocity.

We want to describe the wind in terms of stellar parameters.

log 𝑣∞ = 𝐴 ⋅ log 􏿶
𝑇eff

1000 K􏿹 + 𝐵 ⋅ log 𝑔 + 𝐶 ⋅ log 􏿶
𝑅∗
𝑅⊙

􏿹 + 𝐷 (7)

Here we also obtained three sets of adjusted parameters, one for each grid. The

table below shows the results:

Grid A B C D 𝑅2

H -0.81 (±0.06) 0.58 (±0.02) 0.58 (±0.02) 1.81 (±0.08) 0.8838

HHe -1.93 (±0.09) 0.76 (±0.02) 0.57 (±0.02) 2.96 (±0.10) 0.8405

CNO -1.23 (±0.13) 0.62 (±0.03) 0.56 (±0.03) 2.33 (±0.14) 0.7457
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Mapping of the Line-Force Parameters
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Conclusion

○ Mass-loss rate is greatly affected by the number of elements. Along the

number of lines increases, the estimation of the mass-loss rate will decrease,

going to more realistic results.

○ Our mass-loss distributions can show an excess on lower values, where the

weak winds locate. This could explain the formation of this phenomenon.

○ The terminal velocity, compared with the mass-loss rate, shows an

asymmetric distribution. Nevertheless, the adjusted parameters show very

good correlation.

○ Because of the number of converged models, we could map the distribution

of line-force parameters in the 𝑇eff − log 𝑔 diagram, where there is a specific

zone with negative 𝛿 values.
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Future Work

○ The number of lines’ effect is shown to be significant, yet we only used CNO

elements. We are currently working on the use of the OSTAR2002 Grid by

Lanz & Hubeny (2003). This will change the values of the mass-loss rate and

show the effect of metallicity.

○ Because of the range of temperature, we can’t use the descriptions for B or

A-type stars. We have planned to expand this study for lower temperatures

between 20 − 30 kK (B-type stars).
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1. We developed three self-consistent grids for this work, changing the

number of elements used in the stellar atmosphere models (H, H-He, &

H-He-C-N-O).

2. The grids converged several hundred models, with self-consistent

parameters of the wind (𝑘, 𝛼, 𝛿, 𝑀̇, 𝑣(𝑟) & 𝜌(𝑟)).
3. We accomplished the description of both the mass-loss rate and the

terminal velocity of the wind using only the stellar parameters. These results

were obtained with a high 𝑅2 value and were consistent with the literature.

4. Additionally, we recovered the approximation from Puls et al. (2008) for the

terminal velocity and the escape velocity, providing a good validation for our

models.

5. Finally, we were able to map the line-force parameters in the 𝑇eff − log 𝑔
diagram, showing different zones of interest where the values of 𝑘, 𝛼 and 𝛿
take extreme conditions.
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Because of the lower values of mass-loss rates, the WLR is affected by shifting to

lower values in log𝐷0, but mantaining the slope.

Grid log𝐷0 𝑥 𝛼eff 𝑅2

H 19.4 (±0.12) 1.63 (±0.02) 0.614 (±0.008) 0.8761

HHe 19.2 (±0.12) 1.64 (±0.02) 0.611 (±0.007) 0.8790

CNO 19.1 (±0.14) 1.62 (±0.03) 0.618 (±0.008) 0.8761

Kudritzki et al. (1999) 20.4 (±0.85) 1.55 (±0.15) 0.65 (±0.06) –
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