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1D PoWR model, β-law

● Assume an analytic velocity law for the wind:

• With boundary conditions: v(rmax)=v∞, v(rcon)=vcon and initially 
β=0.8 (Pauldrach+86).).

• Using the mass continuity equation with a fixed mass-loss 
rate, Ṁ:
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● So we obtain a turbulent pressure term:
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1D PoWR model, microturbulence 
term

● In the subsonic regime, the density and velocity are obtained integrating 
the hydrostatic equation:

● To connect density and pressure we use the ideal gas equation of state:

● Including a turbulence term in the speed:

● So we obtain a turbulent pressure term:

This turbulence term in the hydrostatic 
equation is NOT the same as the 
microturbulent broadening in the line 
profiles!
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Mean wind density 

Wind inhomogeneities:
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Calculate opacities using 
OPAL tables + Doppler shift for 
the optically thin region 

Sub-surface motion, parametrized 
as turbulent velocity.



Multi-D O-star modelling
• Debnath+24.
• Multi-dimensional, time-

dependent, RHD simulations.
• For O8, O4 and O2 

(super-)giants.
• Depth-dependent turbulent 

velocity:
• O8 →  vturb(rphot)~30 km/s
• O4 → vturb(rphot)~6).0-80 km/s
• O2 → vturb(rphot)~100 km/s 

Debnath+24
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Profile comparison, density
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Profile comparison, velocity 
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Profile comparison, temperature
• Final 1D parameters 

with vmic=0 and with 
vmic≠0.

• Influence on the vmic:
• Bumps present in the 

1D.
• Cooling effect?

González-Torà et al., in prep



Profile 
comparison 

for all 3 
models

González-Torà et al., in prep.

• O8 →  vmic=50 km/
s (vturb=35.4 
km/s).

• O4 →  vmic=125 
km/s (vturb=88.4 
km/s).

• O2 →  vmic=150 
km/s (vturb=106)..1 
km/s).
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Spectral synthesis
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• This turbulence term in 

the hydrostatic equation 
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Surface gravity

• Using a vmic term in the solution of the hydrostatic 
equation will lead to larger logg values:

• Using the expression: Δ(logg)~0.4, 0.9, 1.0 for O8, O4 
and O2.



Spectral synthesis
• Fit the spectral lines 

with vmic=0 and lower 
logg.

• From the spectra:
Δlogg~0.2, 0.4 for O8 
and O4. 

• Obtain a higher mass 
with vmic≠0 than with 
vmic=0 and lower logg.   

González-Torà et al., in prep.
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Mass discrepancy (Herrero+92)
 Markova+18 analysed a 
galactic O4 V star 
~comparable to our O4 
model 

For vmic≠0: evolutionary 
mass is comparable, 
spectroscopic mass is ~20 
M☉ lower.

Sander et al., (XshootU IV, sub.)



WR stars… 
Stay tuned

• Compared with averaged 3D 
models for WR stars in 
Moens+22b.

• PoWR branch solving the full 
hydrodynamic equations 
(Sander+17).

González-Torà et al., in prep.



Conclusions

• Compared 1D PoWR models with averaged 2D RHD profiles for 
three O stars and three WR stars.

• Density profiles can be well reproduced with a fixed vmic in the 
hydrostatic equation.
• Future work: Include a depth dependence on vmic.

• Increasing β parameter from 0.8 to 1.01 helps reproduce the 
velocity profile. 

• Including a vmic affects the spectral lines and line diagnostics.
• This turbulence term could reconcile the ‘Mass discrepancy’ 

between evolutionary and spectroscopic mass 
determinations.



Spectral synthesis, ξ

• The microturbulence 
broadening in the 
spectral computation, ξ.

• It cannot fit the depth of 
the lines. 



Table 1 Gonzalez-Tora et al., in prep.

Debnath+24
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