The Origins of Be Stars: Investigating the Intra-cluster Environments of NGC 663 and NGC 7419

Anahí Granada^{1,2}, Sergio A. Parón^{2,3} y Matías Nuñez^{2,4,5}

- 1. Universidad Nacional de Rio Negro: Sede Andina, CITECCA, LICA, Argentina,
- 2.Consejo Nacional de Investigaciones Cientí Ificas y Técnicas (CONICET), Argentina
 - 3.Universidad de Buenos Aires. Instituto de Astronomía y Física del Espacio.
- 4.Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Universidad Nacional del Comahue, Argentina.
 - 5. Universidad de Ingenieria y Tecnologia- UTEC, Lima, Peru.

Río de Janeiro, June 25th. Massive Stars 2024

SAN CARLOS DE BARILOCHE

RIO NEGRO

ARGENTINA

Laboratorio de Investigación Cientifíca en Astronomía

The Origins of Be Stars: Investigating the Intra-cluster Environments of NGC 663 and NGC 7419

Anahí Granada^{1,2}, Sergio A. Parón^{2,3} y Matías Nuñez^{2,4,5}

- 1. Universidad Nacional de Rio Negro, Sede Andina, CITECCA, LICA, Argentina,
- 2.Consejo Nacional de Investigaciones Cient´ıficas y Técnicas (CONICET), Argentina
 - 3.Universidad de Buenos Aires. Instituto de Astronomía y Física del Espacio.
- 4.Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Universidad Nacional del Comahue, Argentina.
 - 5. Universidad de Ingenieria y Tecnologia- UTEC, Lima, Peru.

Río de Janeiro, June 25th. Massive Stars 2024

Main Sequence B-type stars.

Usually, broad photospheric lines.

H-emission lines, mild near-IR excesses.

Variable in all timescales.

(e.g. Review by Rivinius et al 2013)

3 a 15 M₀ Rapid rotation Loss of spherical symmetry

The stars forms and dissipates decretion disks Timescales months/years.

Be stars are excellent laboratories to study :

- Physics of extreme stellar rotation.
- Accretion/decretion disk processes.

Are these rare objects?

Be stars are excellent laboratories to study :

- Physics of extreme stellar rotation.
- Accretion/decretion disk processes.

Are these rare objects?

In some Open Clusters, 40% of early B stars are Be.

Some Open questions

How Be stars acquire their rapid rotation.

Binarity? Large initial angular momentum content? Formation Ambient?

Mechanisms involved in the formation and evolution of the disk Stellar Winds? *Pulsations? Stellar activity? Binarity? Others?* Goal: Improve our knowledge of Be Stars Understand the characteristics of Ambients where Be stars Form and evolve.

Compare the intra cluster medium of clusters rich in Be stars and those of similar age and composition where Be stars are not abundant.

Start with the OCs with largest amount of Be stars: NGC 663

GAIA PHOTOMETRY + ISM TRACERS

Distance: ~2900pc [Cantat-Gaudin 2018]

log(age[yr]): 7.0-7.7 [Pigulski, 2001, Pandey 2005, Cantat-Gaudin 2018, Paron 2021. etc.]

Mean value of E(B-V) = 0.8 [Pigulski, 2001, Pandey 2005]

Multiple Stellar Populations? (ages) [(Valcarce & Catelan 2011; Li et al. 2016, Paron et al. 2021.]

RED: WISE 24µm

What kind of material is it?

Are all stars of the cluster embedded there?

Are all clusters rich in Be stars like this one?

RED: MISE 24µm

What kind of material is it? -----> S. Parón

Are all stars of the cluster embedded there?

Are all clusters rich in Be stars like this one?

RED: MISE 24µm

NGC 663: un cúmulo rico en estrellas Be

The ISM in the region around NGC 663 did not seem to have anything special...

Figure 6. HI emission integrated between -28 and -36 km s⁻¹. The contour levels are 320 and 380 K km s⁻¹. The positions of the clusters are indicated. The blue dashed ellipse remarks the HI shell.

Studying the interstellar medium to look for relics of triggered star formation among stellar clusters

S. Paron,^{1*} A. Granada,² and M. B. Areal¹

 ¹CONICET-Universidad de Buenos Aires. Instituto de Astronomía y Física del Espacio CC 67, Suc. 28, 1428 Buenos Aires, Argentina
² Centro Interdisciplinario de Telecomunicaciones, Electrónica, Computación y Ciencia Aplicada (CITECCA), Sede Andina, Universidad Nacional de Río Negro, Anasagasti 1463, San Carlos de Bariloche, R8400AHN Río Negro, Argentina

Dust reddening in the direction of sight

https://irsa.ipac.caltech.edu/applications/DUST/

WIDELY USED IN LITERATURE.

Stars P>0.5 of NGC 663 (Cantat Gaudin 2018).

Galactic dust extinction from Schlafly and Finkbeiner (2011)

Dust reddening in the direction of sight

https://irsa.ipac.caltech.edu/applications/DUST/

WIDELY USED IN LITERATURE.

These E(B-V)_{IRSA} values can not be used as tabulated, derived from integration of dust column

Galactic dust extinction from Schlafly and Finkbeiner (2011)

in angular distance having similar tabulated E(B-V)_{IRSA}, are equally affected by interstellar matter

We use this quantity as a feature to cluster the data and then deredden each group.

Galactic dust extinction from Schlafly and Finkbeiner (2011)

We use ML dimensionality reduction (t-SNE) methods to group stars according to their characteristics.

Features used: RA, dec, E(B-V).

Reduction with t-SNE to 2D.

Other reduction methods such as UMAP produce similar groupings.

Matías Núñez "explores nature With ML"

Reddening Isochrones

Isochrones Ekström (2012) \rightarrow G-V=f(V-I), G_B-G_R=g(V-I).

https://gea.esac.esa.int/archive/documentation/GEDR3/Data_processing/chap_cu5pho/cu5pho_sec_photSystem/cu5pho_ssec_photRelations.html See also Riello et al. 2021.

Test in Pleiades

Pleiades. Gaia DR3. E(V-I)=0.1. Age = 10^{8.2} yr 2 г п 4 -GENEC Isochrone 6 -G[mag] 8 -10 -12 -14 ∟ ┛ -0.5 0.5 1.5 2 2.5 0 1 (G_B-G_R)[mag]

The reddened isochrones provide an adequate fit of Gaia DR3 data.

Dereddening NGC 663

Isochrones Ekström (2012) \rightarrow G-V=f(V-I), G_B-G_R=g(V-I).

https://gea.esac.esa.int/archive/documentation/GEDR3/Data_processing/chap_cu5pho/cu5pho_sec_photSystem/cu5pho_ssec_photRelations.html See also Riello et al. 2021.

Dereddening NGC 663

Reddened Gaia Isochrones

RESULTS

For the 24 Groups, we found E(V-I) and R=Av/E(V-I)

RESULTS

RESULTS

Stars with G > 16. E(V-I) = 0.94, R = 2.15

Mean value E(V-I)=0.94 compatible with literatura (Pigulski, 2001, Pandey 2005).

Mean value of R=Av/E(V-I)=2.15, smaller than Normal ISM value (R = 2.48)

Considering $E(B-V)=O.8 \rightarrow Av = 2.53 E(B-V)$

 \rightarrow R value due to small size dust particles ?

THE PROCEDURE PROVIDES RELIABLE DATA!

Ongoing work

Follow the described procedure with other Ocs.

NGC 7419 NGC 3766 Double Cluster etc.

.