Uncovering the challenges to assess the evolution of B supergiants.

Julieta P. Sanchez Arias

B supergiant stars

Up to 1987 they thought to be H-shell burning objects on their red-ward evolution

Two groups:

 Evolving red-wards after the end of the main sequence
 Evolving back from the Red Supergiant Stage (RSG)

B supergiant stars

To retrieve information about the evolutionary stage of 3 BSG combining:

Frequency analysis
 Spectroscopy
 Evolutionary models.

Variations in B Supergiants

Spectroscopic variations

Variations in B Supergiants

Photometric Variations

Self-excited stellar pulsations.

Spectroscopic variations

Stellar pulsations in B Supergiants

Introduce perturbations in the equations that govern the stellar structure

$$\begin{split} \frac{\delta\rho}{\rho} &= -\vec{\nabla}.\delta\vec{r}\,,\\ \frac{\partial^2\delta\vec{r}}{\partial t^2} &= -\vec{\nabla}\psi' - \frac{\vec{\nabla}P'}{\rho} + \frac{\rho'}{\rho}\vec{\nabla}\psi\,,\\ \nabla^2\psi' &= 4\pi G\rho'\,,\\ \frac{\delta P}{P} &= \Gamma_1\frac{\delta\rho}{\rho} + \frac{\rho}{P}\left(\Gamma_3 - 1\right)T\delta s\\ T\frac{\partial\delta s}{\partial t} &= \delta\left(\epsilon - \frac{\mathrm{d}L}{\mathrm{d}m}\right)\,, \end{split}$$

Mass conservation

Momentum equation

Poisson equation

Equation of state

Energy equation

Stellar pulsations in B Supergiants

Excitation mechanisms

Adiabatic
Non-
adiabatic
Non-
adiabatic

$$\begin{cases}
x \frac{dy_1}{dx} = \left(\frac{V}{\Gamma_1} - 1 - \ell\right) y_1 + \left(\frac{\ell(\ell+1)}{c_1\omega^2} - \frac{V}{\Gamma_1}\right) y_2 + \frac{\ell(\ell+1)}{c_1\omega^2} y_3 + v_T y_5, \\
x \frac{dy_2}{dx} = (c_1\omega^2 - A^*) y_1 + (A^* + 3 - U - \ell) y_2 - y_4 + v_T y_5, \\
x \frac{dy_3}{dx} = (3 - U - \ell) y_3 + y_4, \\
x \frac{dy_4}{dx} = UA^* y_1 + U \frac{V}{\Gamma_1} y_2 + \ell(\ell+1) y_3 + (2 - U - \ell) y_4 - v_T U y_5, \\
x \frac{dy_5}{dx} = V \left[\nabla_{ad}(U - c_1\omega^2) - 4(\nabla_{ad} - \nabla) + c_{dif} \right] y_1 + V \left[\frac{\ell(\ell+1)}{c_1\omega^2} (\nabla_{ad} - \nabla) - c_{dif} \right] y_2 \\
+ V \left[\frac{\ell(\ell+1)}{c_1\omega^2} (\nabla_{ad} - \nabla) \right] y_3 + V \nabla_{ad} y_4 + \left[V \nabla (4 - \kappa_S) + 2 - \ell \right] y_5 - \frac{V \nabla}{c_{rad}} y_6, \\
x \frac{dy_6}{dx} = \left[\ell(\ell+1) c_{rad} \left(\frac{\nabla_{ad}}{\nabla} - 1 \right) - V c_{\epsilon, ad} \right] y_1 + \left[V c_{\epsilon, ad} - \ell(\ell+1) c_{rad} \left(\frac{\nabla_{ad}}{\nabla} - \frac{3 + \partial c_{rad}}{c_1\omega^2} \right) \right] y_2 \\
+ \left[\ell(\ell+1) c_{rad} \frac{3 + \partial c_{rad}}{c_1\omega^2} \right] y_3 + \left[c_{\epsilon, S} - \frac{\ell(\ell+1) c_{rad}}{\nabla V} + i\omega c_{thm} \right] y_5 - (\ell+1) y_6.
\end{cases}$$

Variations in B Supergiants

Photometric Variations

Mean life time between years a Myrs.

Self-excited stellar pulsations.

Among them strange modes → known to facilitate mass loss

Spectroscopic variations

• They are excited by the kappa mechanism.

- They are excited by the kappa mechanism.
- They are known to facilitate the mass loss

Non linear stability analysis are required to determine if the mode can facilitate mass loss by comparing the mode velocities in the outer layers with the escape velocity.

Parida et al. (2023)

- They are excited by the kappa mechanism.
- They are known to facilitate the mass loss
- They appear at highly non-adiabatic environments

Linearized form of the energy conservation for stellar envelope

$$T\frac{\partial \delta S}{\partial t} = -\frac{L}{M}\frac{\partial}{\partial q}\left(\frac{\delta L}{L}\right)$$

post-RSG are excellent targets for strange modes occur

Variations in B Supergiants

Photometric Variations

Mean life time between years a Myrs.

Self-excited stellar pulsations.

Among them strange modes → known to facilitate mass loss

No studies about their mean life time

Spectroscopic variations

Stellar pulsations in B Supergiants

Post-RSGs excite significantly more pulsation modes (including strange modes) than their counterpart at the pre-RSG.

Saio et al. (2013)

Target selection

HD 58350

HD 52089

HD 42087

Observations: Spectra

We used the REOSC spectrograph attached to the Jorge Sahade 2.15 m telescope at the Complejo Astronómico El Leoncito (CASLEO), San Juan, Argentina. Covering a range: [4275, 6800] A and R=12600 and R=13900 at 4500 and 6500 A, respectively.

HD 52089

HD 58350

HD 42087

Observations: Photometry

We used the 2 min TESS cadence light curves (~27d) **Selection criteria**:

-We searched for period between [0,50] c/d and worked on the residuals after deriving each frequency.

-We dismissed those frequencies below 0.1 c/d for single sectors.

-We discard those frequencies with a separation less than 2/T.

-We used the recommend values from Baran & Koen (2021) for the S/N

$S/N = 5.2902(48) + 0.1351(26) \cdot \ln N_s$	for	$\Delta t = 20 \text{ s}$
$S/N = 5.0355(38) + 0.1417(20) \cdot \ln N_s$	for	$\Delta t = 120 \text{ s}$
$S/N = 4.6200(29) + 0.1559(15) \cdot \ln N_s$	for	$\Delta t = 1800 \text{ s}$

Pre-RSG

$$v_{nlm} = v_{nl} + m(1-C_{nl})\frac{\Omega}{2\pi}, \label{eq:vnlm}$$

Pre-RSG

Pre-RSG?

Spectral Analysis We employed XTgrid with CMFGEN code to model the atmospheres

XTGRID Live: Online Spectral Analyses with TLUSTY Models

Péter Németh^{1,2}

¹Astronomical Institute of the Czech Republic, 25165 Ondřejov, Czech Republic

²Astroserver.org, 8533 Malomsok, Hungary peter.nemeth@astroserver.org

Model limitations:

We kept fixed the radii, turbulent velocity, microturbulence, beta, terminal velocity, as in Haucke et al. (2018).

All elements, except CNO were kept fixed to solar abundances & He/H=0.2 as in Searle et al. (2008) . And we changed mass loss rates.

Parameter	HD	42087	
$T_{\rm eff}$ (K)	1840	0^{+1000}_{-200}	
$\log g (\mathrm{cm}\mathrm{s}^{-2})$	2.34	+0.01 -0.17	
$v \sin i (\mathrm{km s^{-1}})$	73.4	± 8.0	
$v_{\rm turb} (\rm km s^{-1})$	x	10	
\dot{M} (M_{\odot} yr ⁻¹)	$(2.3 \pm 1.)$	$(0) \times 10^{-7}$	
$v_{\infty} (\mathrm{km}\mathrm{s}^{-1})$	x	700	
β	2	x2	
L_{\star} (L_{\odot})	31270	0 ⁺⁷⁴⁰⁰⁰ -13000	
M_{\star} (M_{\odot})	2	4.3	
$R_{\star}(R_{\odot})$	x	55	
$\log L_{\star}/M_{\star}$	4.1		
Mean atomic	1.4	1.4490	
mass (a.m.u.)			
Distance (pc)	2470^{+420}_{-290}		
E(B-V) (mag)	0.4		
Element	e	mass fr.	
Hydrogen	12	5.89×10^{-1}	
Helium	x11.23±0.1	$0.4.01 \times 10^{-1}$	
Carbon	$8.31 {\pm} 0.08$	1.37×10^{-3}	
Nitrogen	8.12 ± 0.06	1.09×10^{-3}	
Oxygen	8.60 ± 0.08	3.75×10^{-3}	
	[N/C]	[N/O]	
Abundance ratios	0.41	0.38	

Spectral Analysis: HD 52089

Parameter	HD	52089
$T_{\rm eff}$ (K)	23800	0^{+3900}_{-1400}
$\log g (\text{cm s}^{-2})$	3.40	+0.01 -0.60
$v \sin i (\mathrm{km s^{-1}})$	38.4	± 5.0
$v_{\rm turb} ({\rm km s^{-1}})$	x	10
\dot{M} (M_{\odot} yr ⁻¹)	(1.9 ± 0.1)	$2) \times 10^{-8}$
$v_{\infty} (\mathrm{km s^{-1}})$	xS	900
β	>	c1
L_{\star} (L_{\odot})	35000	+29200 - 7500
M_{\star} (M_{\odot})	1	1.1
$R_{\star}(R_{\odot})$	x	11
$\log L_{\star}/M_{\star}$	3	.5
Mean atomic	1.5	097
mass (a.m.u.)		
Distance (pc)	124	1 ± 2
E(B-V) (mag)	0.005	
Element	e	mass fr.
Hydrogen	12	5.52×10^{-1}
Helium	$x11.30\pm0.12$	74.41×10^{-1}
Carbon	8.19 ± 0.15	1.04×10^{-3}
Nitrogen	7.97 ± 0.06	7.25×10^{-4}
Oxygen	$8.30 {\pm} 0.13$	1.78×10^{-3}
	[N/C]	[N/O]
Abundance ratio	0.38	0.53

Spectral Analysis: HD 58350

Parameter	HD 58350		
T _{eff} (K)	15800^{+100}_{-400}		
$\log g (\mathrm{cm s}^{-2})$	$1.95^{+0.02}_{-0.03}$		
$v \sin i (\mathrm{km s^{-1}})$	51.5 ± 5.0		
$v_{\rm turb} (\rm km s^{-1})$	x12		
\dot{M} (M_{\odot} yr ⁻¹)	$(6.2 \pm 2.0) \times 10^{-8}$		
$v_{\infty} (\mathrm{km}\mathrm{s}^{-1})$	x230		
β	x3		
L_{\star} (L_{\odot})	163800^{+}_{-15900}		
<i>M</i> _★ (<i>M</i> _☉)	9.5		
R_{\star} (R_{\odot})	x54		
$\log L_{\star}/M_{\star}$	4.2		
Mean atomic	1.5095		
mass (a.m.u.)			
Distance (pc)	608^{+148}_{-148}		
E(B-V) (mag)	0.03		
Element	e	mass fr.	
Hydrogen	12	5.52×10^{-1}	
Helium	$x11.31{\pm}0.12~4.41{\times}10^{-1}$		
Carbon	$8.07 {\pm} 0.08$	7.75×10^{-4}	
Nitrogen	8.21 ± 0.12	1.25×10^{-3}	
Oxygen	$8.19{\pm}0.09$	1.38×10^{-3}	
	[N/C]	[N/O]	
Abundance ratio	0.74	0.88	

Comparison with evolutionary models

With the new values for the Teff, log L and the M, the evolutionary tracks from Ekstrom et al. (2012) indicate

HD 42087 \rightarrow Pre-RSG HD 52089 \rightarrow Pre-RSG HD 58350 \rightarrow Post-RSG

> Z=0.014 Vink mass loss recipe

What about surface abundances?

Our stars have C overestimation and and O underestimation compared with he evolutionary models and other samples.

Tracks: Ekstrom et al. 2012. Z=0.014 , Vink mass loss recipe , M=22, 26, 28, 10 Msun

What about surface abundances?

Can our stars be at the post-RSG?

Why these samples do not match the predictive CNO abundances?

Tracks: MESA, Z=0.014, Vink mass loss recipe for different mass loss efficiencies with O=0.5Ocrit

- We need to combine asteroseismology, spectroscopic analysis and evolutionary models to overcome the difficulties in B supergiant models.
- We need to study homogeneously a large sample of BSG to analyze the systematic offsets of CNO abundances.
- We need multi-epoch observations to set constraints and study R and Teff variations due to oscillations.
- To consider stellar oscillations as a mechanism which might facilitate the mass loss and affect the surface abundances.
- We need long term photometric observations to retrieve the usually short frequencies of strange modes.
- To study the effect of different mass loss recipes at advanced evolutionary stages.
- To improve numerical solutions for highly non adiabatic computations.

Pusation models: HD 58350

Stelar pulsations?

Peculiarities

- They can be in the pre- or post-RSG stage
- The physical properties of massive stars change considerably within each stage of their life.
- Their evolutionary tracks depends on many physical parameters (mass loss rates, rotation, chemical mixing..)
- Parameters are far from being firmly established.
- Small changes in their input parameters result in significant different evolution

Renzo et al. (2017)