

Physics of Extreme Massive Stars

Marie-Curie-RISE project funded by the European Union

Evolution of massive stars post the main sequence ambiguities & assessments

Michalis Kourniotis

Astronomical Institute of the Czech Academy of Sciences

International conference on Physics of Extreme Massive Stars Rio de Janeiro - June 25, 2024

The post-main sequence evolution

- ✔ **Post main-sequence evolution is short but impacting for the stellar fate**
- ✔ **Uncertainties at early stages propagate to the late stages**
- ✔ **Certain stellar types may emerge by various channels**

Nevertheless !!

- ✔ **Evolved stars are well accessible, thus ideal for high-resolution studies**
	- ✔ **Study of their variability give access to interior, atmosphere and environmental properties**

The BSG problem

… or what is the origin of BSGs ?

Spectroscopic HR diagram of 600 Galactic massive stars

500 Galactic O9–B9 (LC I-II)

Castro et al. 2014

Internal mixing - binarity

assessing f ov from vsini

Brott et al. 2011

Core mass fraction regulated by

- ✔ **Convective overshooting**
- ✔ **Rotationally induced mixing (depending e.g. on** *Z* **and binarity)**

O-type multiplicity and interactions

Sana et al. 2012

fast rotators = interacting binaries ?

Martinet et al. 2021

BSGs as SN progenitors

Binary mergers are needed for providing

- ✔ **rapid rotating supergiants**
- ✔ **H supply to the envelope**

Morris & Podsiadlowski 2007

Evolutionary track of a 30+20 Mo Case B merger

Vanbeveren et al. 2013

SN 1987A (NASA/ESA HST)

The RSG problem

..or how do stars with M > 20 M o die ?

pre/post-SN imaging

10 ∤9 ∤8 \vert 7 $\frac{1}{6}$ $\begin{array}{c} 5 \\ 4 \end{array}$ $\begin{array}{c} 3 \\ 2 \end{array}$ 15 20 25 10 30 Initial mass / M_{\odot} **Smartt 2009**

20

19

18

17

16

15

14

13

 12

11

mass-loss during RSG phase

Post-RSG evolution & instability

Nieuwenhuijzen et al. 1995

✔ **Post-RSG evolution is linked to states where atmospheres become highly unstable**

✔ **Fraction of transition-phase massive stars are thought to be in a post-RSG phase**

Observational assessments

Dusty surroundings of post-RSGs

Hutsemekers et al. 2013

Hen 3-1379: The Fried Egg nebula

8500K inout BE Het inner shell Cool inner she Owner chall $-$ Total sec 2MASS (2003) A K ART ETS Bright course catalogue (2016

✔ **Complex ejecta**

- ✔ **Shells tracing mass-loss events**
- ✔ **Distinct embedded**

Interferometry of IRC+10420

Castro-Carrizo et al. 2007

HST imaging IRC+10420

Ejected molecules from post-RSGs

 2.25

 2.26

Oksala et al. 2013

Pulsations on CO gas of ρ Cas CO disk around LMC YHGs ? Water vapor around HD269953 Observed K-band spectrum Ω kalah ke itu di kacamatan ke Madalah kalendar

Kraus et al. 2022

 2.27

Disks/rings around post-RSGs

 2.29

 2.28

 $\frac{1}{2.3}$

 $\frac{1}{2.32}$

 2.34

 λ Tum

Forbidden optical lines tracing rings in S 35

Observed pulsations in post-RSGs

Maravellias & Kraus 2021

- ✔ **Most, if not all, YHGs exhibit pulsations with poorly-understood nature**
- ✔ **Pulsating properties change based on the location/direction of the YHG on the HRD**
- ✔ **How does the pulsating activity change in YHGs compared to YSGs ?**

Strange modes in post-RSGs

- ✔ **For L/M ratios above 10⁴ , the strange mode instabilities persist over the entire range of Teff (Glatzel & Kraus 2024)**
- ✔ **Radial (strange-mode) pulsations are excited in models that had been RSGs previously (Saio et al. 2013)**

Excitation of radial mode ////////// Periods of pulsations excited

M = 25 MO, , log(L/L^O) = 5.3, LMC metal/ty

Flux-weighted gravity–luminosity relation

25/06/24 Physics of Extreme Massive Stars 13

Internal gravity waves

- ✔ **Internal gravity waves, which are excited by core convection, are suggested as source of the low-frequency signal in massive stars.**
	- ✔ **The red noise level scales with the stellar luminosity.**
- **Metallicity and evolutionary state of BSGs are currently explored.**

Modeling core convection

2D int. fluid evolution (3-13 Mo)

25/06/24 Physics of Extreme Massive Stars 15

Interior 3D simulations of 15 Mo star

The asteroseismic potential

Bowman et al. 2019

✔ **f ov =0.02, X = 0.72**

- ✔ **MESA + GYRE**
- ✔ **Adiabatic dipole zonal frequencies**
- ✔ **p-mode (dashed), g-mode (dotted)**

Effective temperature Teff/k

Bellinger et al. 2023

25/06/24 Physics of Extreme Massive Stars 16

Effective temperature T.a/K

✔ **Stars with H cores,**

Stars ////with //////He **cores, ΔΠ~20 min.**

✔ **Stars with H shell, frequency chances of** // the // order // 10⁻²

Spectral class

10000

F G K M

Extended

MS Stars

 500

Conclusions

- ✔ **Understanding the post-main sequence distribution of massive stars on the evolutionary diagram still poses a major challenge.**
- ✔ **Large theoretical uncertainties already at the earliest phases of stellar evolution propagate to the predictions of the later stages.**
- ✔ **With several free parameters and strong degeneracies describing the evolutionary modeling, tight constraints are needed from the observations.**
- ✔ **Asteroseismology is the key tool in mapping the stellar interior and distinguishing between the different evolutionary scenaria.**
- ✔ **Simulations that integrate large spectrum of massive star physics are needed.**