

Physics of Extreme Massive Stars

Marie-Curie-RISE project funded by the European Union

Evolution of massive stars post the main sequence ambiguities & assessments

Michalis Kourniotis

Astronomical Institute of the Czech Academy of Sciences

International conference on Physics of Extreme Massive Stars Rio de Janeiro - June 25, 2024

The post-main sequence evolution

- Post main-sequence evolution is short but impacting for the stellar fate
- Uncertainties at early stages propagate to the late stages
- Certain stellar types may emerge by various channels

Nevertheless !!

- Evolved stars are well accessible, thus ideal for high-resolution studies
- Study of their variability give access to interior, atmosphere and environmental properties

The BSG problem

... or what is the origin of BSGs ?

Spectroscopic HR diagram of 600 Galactic massive stars

500 Galactic O9–B9 (LC I-II)

Castro et al. 2014

Internal mixing - binarity

assessing f_{ov} from vsini

2.5

Brott et al. 2011

Core mass fraction regulated by

- Convective overshooting
- Rotationally induced mixing
 (depending e.g. on Z and binarity)

O-type multiplicity and interactions

Sana et al. 2012

 $\frac{4.4}{\log(T_{eff})}$

 $\frac{4.4}{\log(T_{\text{eff}})}$

Martinet et al. 2021

fast rotators = interacting binaries ?

25/06/24

Physics of Extreme Massive Stars

 $\log(T_{eff})$

4

BSGs as SN progenitors

Binary mergers are needed for providing

- rapid rotating supergiants
- H supply to the envelope

Morris & Podsiadlowski 2007

Evolutionary track of a 30+20 Mo Case B merger

Vanbeveren et al. 2013

Physics of Extreme Massive Stars

SN 1987A (NASA/ESA HST)

The RSG problem

...or how do stars with M > 20 M_o die ?

25/06/24

Smartt 2009

Physics of Extreme Massive Stars

mass-loss during RSG phase

Post-RSG evolution & instability

 Post-RSG evolution is linked to states where atmospheres become highly unstable

 Fraction of transition-phase massive stars are thought to be in a post-RSG phase

Physics of Extreme Massive Stars

Observational assessments

Hutsemekers et al. 2013

Dusty surroundings of post-RSGs

Hen 3-1379: The Fried Egg nebula

8500K input BE Hot inner shell Cool inner she

Orter chall - Total spec

Interferometry of IRC+10420

Castro-Carrizo et al. 2007

HST imaging IRC+10420

Physics of Extreme Massive Stars

1

Complex ejecta

events

features

Shells tracing mass-loss

Distinct embedded

25/06/24

Ejected molecules from post-RSGs

CO disk around LMC YHGs ?

Oksala et al. 2013

25/06/24

Liermann et al. 2010

Disks/rings around post-RSGs

Forbidden optical lines tracing rings in S 35

Torres et al. 2018

Pulsations on CO gas of ρ Cas

Observed pulsations in post-RSGs

Maravellias & Kraus 2021

- Most, if not all, YHGs exhibit pulsations with poorly-understood nature
- Pulsating properties change based on the location/direction of the YHG on the HRD
- How does the pulsating activity change in YHGs compared to YSGs ?

Are post-RSGs fast pulsators ?

25/06/24

Strange modes in post-RSGs

- For L/M ratios above 10⁴, the strange mode instabilities persist over the entire range of Teff (Glatzel & Kraus 2024)
- Radial (strange-mode) pulsations are excited in models that had been RSGs previously (Saio et al. 2013)

Excitation of radial mode

Periods of pulsations excited

$M = 25 M_{o_1}$, $log(L/L_o) = 5.3$, LMC metal/ty

Flux-weighted gravity–luminosity relation

25/06/24

Physics of Extreme Massive Stars

Internal gravity waves

- Internal gravity waves, which are excited by core convection, are suggested as source of the low-frequency signal in massive stars.
 - The red noise level scales with the stellar luminosity.
- Metallicity and evolutionary state of BSGs are currently explored.

Modeling core convection

2D int. fluid evolution (3-13 Mo)

sics of Extreme Massive Stars

D

Interior 3D simulations of 15 Mo star

15

The asteroseismic potential

Bowman et al. 2019

Bellinger et al. 2023

Stars with H cores, ΔΠ~200m.

- Stars with He cores, ΔΠ~20 min.
- Stars with H shell, frequency chances of the order 10⁻² μHz/yr.

- \checkmark f_{ov}=0.02, X = 0.72
- MESA + GYRE
- Adiabatic dipole zonal frequencies
- p-mode (dashed), g-mode (dotted)

Physics of Extreme Massive Stars

25/06/24

Conclusions

- Understanding the post-main sequence distribution of massive stars on the evolutionary diagram still poses a major challenge.
- Large theoretical uncertainties already at the earliest phases of stellar evolution propagate to the predictions of the later stages.
- With several free parameters and strong degeneracies describing the evolutionary modeling, tight constraints are needed from the observations.
- Asteroseismology is the key tool in mapping the stellar interior and distinguishing between the different evolutionary scenaria.
- Simulations that integrate large spectrum of massive star physics are needed.