STELLAR ATMOSPHERE AND HYDRODYNAMIC MODELING: ISOSCELES V2.0

Ignacio Araya ignacio.araya@umayor.cl Universidad Mayor, Chile

In collaboration with Michel Curé (Universidad de Valparaíso) Natalia Machuca (Universidad de Valparaíso) Catalina Arcos (Universidad de Valparaíso)

and many others...

Physics of Extreme Massive Stars

Marie-Curie-RISE project funded by the European Union

Physics of Extreme Massive Stars 25 June, 2024 Rio de Janeiro, Brazil

A quick introduction

Michel Curé's talk...

Momentum Equation

Line-Force Parameters

$$g_{\rm rad}^{\rm line} = \frac{\Gamma_{\rm E} \, G \, M \, k}{r^2} \left(\frac{1}{\sigma_{\rm E} \, v_{\rm th}} \right)^{\alpha} \left(\frac{1}{\rho} \frac{\partial v}{\partial r} \right)^{\alpha} \left(\frac{n_{\rm E11}}{W(r)} \right)^{\delta} f_{\rm CF} \left(r, v, \frac{\partial v}{\partial r} \right)$$

 δ : changes in the ionization throughout the wind

k : related to the number of lines effectively contributing to the driving of the wind

 α : ratio between the line-force from optically thick lines and the total line force

Fast Solution (Standard m-CAK)

$$egin{array}{l} egin{array}{ll} egin{array} egin{array}{ll} egin{array}{ll} egin{array}{ll} egin{arr$$

Slow Solutions (Curé et al. 2011)

$$g_{\text{rad}}^{\text{line}} = \frac{\Gamma_{\text{E}} G M k}{r^2} \left(\frac{1}{\sigma_{\text{E}} v_{\text{th}}}\right)^{\alpha} \left(\frac{1}{\rho} \frac{\partial v}{\partial r}\right)^{\alpha} \left(\frac{n_{\text{E11}}}{W(r)}\right)^{\delta} f_{\text{CF}}\left(r, v, \frac{\partial v}{\partial r}\right)$$

Fast Solution

δ-Slow Solution

β-law
$$v(r) = v_{\infty}(1 - R_*/r)^{\beta}$$

Typical Values:

O and B stars $\rightarrow \beta = 0.7$ to 1.5

Puls et al. 1996, Kudritzki & Puls 2000

Late B and A supergiants → β> 1.5 (Stahl et al. 1991, Lefever et al. 2007,

Markova & Puls 2008)

See also Venero et al. 2024

ISOSCELES Grld of Stellar atmOSphere and hydrodynamiC modELs of massivE Stars

See proceeding Araya et al. 2023

Synthetic data grid for massive stars, integrating m -CAK hydrodynamics and NLTE radiative transport.

Hydwind grid - without rotation

Hydwind (stationary hydrodynamic code, Curé 2004)

Fastwind grid (without rotation)

FASTWIND (Fast Analysis of STellar Atmospheres with WINDs, Puls et al. 2005)

ISOSCELES Grid v1.0

Temperature:

9 kK - 30 kK (steps of 500 k) 31 kK - 45 kK (steps of 1000 k) log g:

4.2 - 0.75 (steps of 0.15)

Line force parameters

α	0.45	0.47	0.51	0.53	0.55	0.57	0.61	0.65				
k	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.5	0.55	0.6
δ	0.	0.04	0.1	0.14	0.2	0.24	0.3	0.31	0.32	0.33	0.34	0.35

Si abundance log ϵ_{Si} :

7.21, 7.36, 7.51 (solar), 7.66, and 7.81 dex.

Micro-turbulent velocity

1 ,5 , 10, 15, 20, 25 km/s

Lines H He Si: IR - Optical

Total = 573 423 converged models

ISOSCELES Explorer

https://ifa.uv.cl/grid

Parameter selection

Click here to select the parameter(s) of interest. None selected means all selected.

ISOSCELES Explorer https://ifa.uv.cl/grid

Models list

Select a Log g/Temp pair by clicking on any point in the graph, or by selecting in the selection box

Temperature		2	3500 °K								
Log g		3	.00								
Total of models			9	949							
ſhe t	able below s	hows a sa	ample o	of these r	nodels						
	Temp (°K)	Log g	k	alpha	delta	si	mdot	vinf			
0	23500	3.00	0.25	0.61	0.10	7.81	1.3710222e-6	1.1007462e+3			
۲	23500	3.00	0.15	0.55	0.10	7.66	2.0969853e-7	8.8840028e+2			
0	23500	3.00	0.25	0.45	0.32	7.66	2.6928484e-8	3.0495954e+2			
0	23500	3.00	0.25	0.55	0.24	7.66	9.5403302e-7	5.9674206e+2			
0	23500	3.00	0.25	0.61	0.14	7.51	1.5671467e-6	9.7650579e+2			
0	23500	3.00	0.25	0.61	0.14	7.66	1.5671467e-6	9.7650579e+2			
0	23500	3.00	0.25	0.61	0.20	7.81	1.9966341e-6	8.2119768e+2			
0	23500	3.00	0.30	0.45	0.10	7.36	1.9203121e-7	6.4988458e+2			
0	23500	3.00	0.30	0.65	0.24	7.36	6.1899429e-6	8.4175889e+2			
\sim	23500	3.00	0.60	0.65	0.14	7.81	1.3285612e-5	1.1509216e+3			

Log g/Temp Graph

Click here to select the parameter(s) of interest. None selected means all selected.

BR10	HEI4471	HEII712	Sill14552
BR11	HEI4713	HEII713	Silli4567
BR12	HEI4922	HEPS	Silli4574
BRALPHA	HEI6678	HGAMMA	Silli4716
BRBETA	HEII218	D PALPHA	Silli4813
BRGAMMA	HEII4200	D PBETA	Silli4819
✓ HALPHA	HEII4541	DF10	Silli4829
П НВЕТА	HEII4686	PF9	Silli5739
HDELTA	HEII57	PFGAMMA	SilV4089
HEI170	HEII611	D PGAMMA	SilV4116
HEI205	HEII6406	Sill4128	SilV4212
HEI211	HEII6527	Sill4130	SilV4950
HEI4026	HEII6683	Sill5041	SilV6667
HEI4387	HEII67	Sill5056	SilV6701

ISOSCELES Explorer https://ifa.uv.cl/grid

Optimization problem of spectral line fitting

Some Results

HD 99953

Observations from Haucke et al. 2018

	et al. 2018	This work
T _{eff} [K]	19000	18500
log g	2.30	2.40
α	_	0.53
k		0.15
δ	—	0.34
β	2.0	—
[10 ⁻⁶ M⊙ /yr]	0.13	0.24
v∞ [km/s]	500	254

Haudes

Some Results

HD 41117

	Haucke et al. 2018	This work
T _{eff} [K]	19000	19000
log g	2.30	2.25
α	_	0.53
k		0.1
δ	—	0.33
β	2.0	—
[10⁻ ⁶ M⊙ /yr]	0.17	0.55
v∞[km/s]	510	223

Observations from Haucke et al. 2018

Some Results

HD 75149

	Haucke et al. 2018	This work
T _{eff} [K]	16000	16500
log g	2.10	2.25
α		0.51
k		0.2
δ	—	0.33
β	2.5	—
[10 ⁻⁶ М⊙ /yr]	0.16	0.19
v∞[km/s]	400	228

Observations from Haucke et al. 2018

Natalia Machuca's Poster

Spectral modelling of OB-type stars and the Wind momentum Luminosity Relationship

Natalia Machuca¹, Michel Curé¹ and Ignacio Araya²

¹Universidad de Valparaíso, ²Universidad Mayor

Results

Wind momentum depends on the mass-loss rates, terminal velocity and radius of the star as shown in the *y*-axis. With this, we defined the WLR as $\log(D_{\text{mom}}) = x \log(L/L_{\odot}) + D_0$.

Figure 2. WLR for O and B-type stars. Dashed lines are linear fits for both hydrodynamical solutions. Filling styles represent different luminosity classes. Values of the WLR found for B-type stars are $x = 1.92^{\pm 0.14}$ and $D_0 = 17.37^{\pm 0.65}$ for δ -slow solutions and $x = 1.22^{\pm 0.17}$ and $D_0 = 22.23^{\pm 0.58}$ for fast solutions. For O-type stars, these values are $x = 6.27^{\pm 1.85}$ and $D_0 = -4.31^{\pm 8.57}$ for δ -slow solutions and $x = 2.07^{\pm 0.20}$ and $D_0 = 17.23^{\pm 1.07}$ for fast solutions.

ISOSCELES Grid v2.0

Temperature:

10 kK - 30 kK (steps of 500 k) 31 kK - 45 kK (steps of 1000 k)

log g:

4.2 - 0.75 (steps of 0.15)

Micro-turbulent velocity

1,5,10,15,20,25 km/s

Line force parameters

Teff [kK]

α	0.4	0.43	0.46	0.49	0.52	0.55	0.58	0.61	0.64	0.67	0.7		
k	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.5	0.55	0.6	0.65
δ	0.	0.04	0.1	0.14	0.2	0.24	0.29	0.3	0.31	0.32	0.33	0.34	0.35

ISOSCELES Grid - Differences

	ISOSCELES v1.0	ISOSCELES v2.0
Wavelength Range	IR, Optical	IR, Optical, UV
Explicit Elements	H, He, Si	H, He, Si, C, N, O
# Line profiles	57	167
# Models	~ 0.5 M	~ 2.5 M
CAK parameters	k: 12 values α: 8 values δ: 12 values	k: 13 values α: 11 values δ: 13 values
Size (binary format)	~300 Gb	~1.4 Tb

Final Remarks and Future Work

- ISOSCELES is the first grid of synthetic data for massive stars that involves both, the m-CAK hydrodynamics and the NLTE radiative transport.
- The results obtained from ISOSCELES should have a better justification than the currently and widely calculated models with a β-law in quantitative spectroscopic analyses, especially for high values of β
- ISOSCELES v2.0 will cover the UV region
- We are implementing Machine-learning methods for the spectral line fitting.
- The next steps are new grids with other metallicities.

If anyone wants to use ISOSCELES, please feel free to contact me (ignacio.araya@umayor.cl)!

Thanks!

STELLAR ATMOSPHERE AND HYDRODYNAMIC MODELING: ISOSCELES V2.0

Ignacio Araya ignacio.araya@umayor.cl Universidad Mayor, Chile

In collaboration with Michel Curé (Universidad de Valparaíso) Natalia Machuca (Universidad de Valparaíso) Catalina Arcos (Universidad de Valparaíso)

and many others...

Physics of Extreme Massive Stars

Marie-Curie-RISE project funded by the European Union

HYDROOADH

Physics of Extreme Massive Stars 25 June, 2024 Rio de Janeiro, Brazil

ISOSCELES

DATABASE

NETRANSFER