Empirical mass-loss rates across the bi-stability jump from B-supergiants

Olivier Verhamme

3: archol

Collaborators: Jon Sundqvist, Alex de Koter, Hugues Sana, Frank Backs, Sarah Brands, Dwaipayan Debnath, Nicolas Moens, Cassandra Van der Sijpt, Lara Delbroek, Pieter Schillemans,...

 $\bullet \bullet \bullet$

Importance of Mass Loss rates for Stellar Evolution

 Stellar evolution is highly influenced by mass loss

 How to form single WR-stars?

Need to understand the mechanisms of mass loss in the upper HRD

Bi-stability Jump

- Increase in mass-loss rate around 25kK
 - Recombination FeIV ->FeIII
- My goal: use spectroscopy to find/disprove the jump
- Earlier efforts cannot take into account clumping Markova & Puls (2008), de Burgos et al. (2024)
- Need both optical and UV spectroscopy for clumping

Bi-stability Jump Empirically

$$f_{cl} = 40$$

dM/dt = 8*10⁻⁸ M_☉/yr

 Optical (H-α) mass loss rate degenerate with clumping

Clumping factor = $<\rho^2 > / <\rho >^2$

Bi-stability Jump Empirically

$$f_{cl} = 1$$

dM/dt = 5.1*10⁻⁷ M_o/yr

- Optical (H-α) mass loss rate degenerate with clumping
- UV-Resonance lines allow for breaking of degeneracy

Clumping factor = $<\rho^2 > / <\rho^2$

Kiwi-GA

- FASTWIND synthetic spectra (Sundqvist & Puls 2018)
- Kiwi-GA fitting allows for systematic error analyses (Brand et al. 2022)

Genetic algorithm in numbers

• For a Kiwi-GA fit for one star

- 50-70 generations
- 107 models a generation ~6000 models
- \circ Not possible with 3D models
- FASTWIND ~45 min =>190 days
- Highly parallelized 107 cores =>~ 2 days
- Global fits with Global errors!

Kiwi-GA output

0

Results from LMC B-supergiants

LMC Sample

- Mostly in the HR-gap
- Masses from $15-55M\odot$

Verhamme et al. (submitted)

Interclump density

- Large scatter, but high values are the norm rather than exception
- 38 +- 23 % wind mass in interclump medium
- Contrary to other 1D codes

Mass loss rate

- Mass loss decreases with temperature
- Strong effect of Γ_{e}
- Difficult to say anything for certain due to influence of Mass and Luminosity

Comparison to prescription

- Vink prescriptions agrees well down to ~23kK
- Below ~23kK overestimation of up to a factor of 100
- Bjorklund prescription relatively consistently underestimates by a factor of 2
- Krticka prescription agrees well over- and under-estimating
 - Bump too cool and localised to check existence

(submitted)

Effects of mass-loss on evolution: Revisited

- New mass loss rates for O-stars
- Both LMC and Galactic
- Differences:
 - $\circ \quad \text{ in end products} \quad$
 - \circ Chemical yields
 - Convection zones over evolution

Conclusion

- Mass loss rate prescription clearly not inline with observations
 - \circ \quad LBV winds are a big uncertainty still
- 40% of the wind is in the interclump region
 - improving description should be a focus

Bi-stability Jump

- Increase in mass-loss rate around 25kK
 - Recombination FeIV ->FeIII
- Recent modelling does not find a jump
- Vink rate is standard for your favourite evolutionary code

From 3D phenomena to 1D wind

- Clumping is inherently 3D
- 3D models take a long time ~days for one RHD model (+spectra-synthesis ~ 1 day)
 - Improving 3D is ongoing work
- Parameterise the behaviour into 1D FASTWIND
 - Clumping parameter f_{cl}
 - Interclump density f_{ir}
 - Velocity Filling factor f_{vel}

Terminal wind speed

- Terminal wind speed linear with effective temperature
- No large influence from $\Gamma_{\rm E}$
- $\Gamma_{\rm E} = g_{\rm r}/g_{\rm g} \alpha L_{\odot}/M_{\odot}$
- Very similar to Hawcroft et al. 2023

Effects of Rotation

- Mass loss transports angular momentum away and thus reduces rotation
- Influences the creation of Be-stars

Adapted from: Nick Van Wouwe

Clumping degeneracy

- Correlation between mass-loss and clumping is clearly visible
- Well defined peak in mass-loss is still found

Effects of mass-loss on evolution: Revisited

- SMC study reducing mass loss by factor 2-6 depending on Mass
- Clear differences in end products
- Changes in surface abundance

Gormaz-Matamala et al. 2024

Effects of interclump density		Traditionally: D = f _{cl} f _{vol} = 1/f _{cl}		Does not hold for 2 component mediun (Sundqvist & Puls 2018)	
	SK-68 8	FASTWIND	Equal clumping factor	Equal volume filling	
	Clumping factor	8	8	22	
	Interclump Density	0.82	N/A	N/A	
	Volume filling factor	0.046	0.125	0.046	
	Clump Overdensity (D)	40	8	22	

Clumping factor

- No real behaviour over temperature
- Large scatter
- From LDI simulations (Driessen et al. 2019)
 - O-stars ~20
 - B-stars ~5

X-ray effects on Terminal wind speed

- Some cool B-stars have strong CIV features in the wind
- X-rays allow for these lines to be fitted without changing the other lines
- Big effect on measured Velocity

Stellar Parameters

Radiation driven winds

- Strong 10^{-4} - 10^{-7} M_{\odot}/yr
- Clumped
 - Line Deshadowing Instability
 - Subsurface turbulence
- High velocity (~1000km/s)
- Strongly influenced by metallicity
- One of the important parameters is Γ

Debnath et al. 2024

Clumping parameters of the sample

- Density estimates from gaussian distributions
- New gaussian fits allow for error estimate

Clumping parameters of the sample

2-step approach?

- Most of the stellar parameters should be possible to determine from optical only:
 - Teff from SiII/SiIII/SiIV and HeI/HeII strength
 - Logg from balmer lines
- Use best fit of the optical only as initial guess in the full fit

Make some sort of graphic!

Vinf/Vesc

Effects of interclump density

Bi-stability jump

- Observed as sudden drop of vinf/vesc around 20kK
- Caused by recombination of FeIV -> FeIII
- Might coincide with mass loss increase

mstar= 40.0

