Massive stars at low Z Grids of CMFGEN models

Wagner L. F. Marcolino (OV/UFRJ) Jean-Claude Bouret (LAM/Marseille) Fabrice Martins (Université de Montpellier)

UFRJ

Wagner L. F. Marcolino (OV/UFRJ) Jean-Claude Bouret (LAM/France) Fabrice Martins (Université de Montpellier/France)

Undergraduate and graduate students: Julia Camões Alves (MSc OV/UFRJ) Vitor Cardoso Maria (MSc OV & PhD Candidate/UFRJ) Roberta Milczwski Cosmala (undergrad. OV/UFRJ)

Massive stars

- Mass M > 9 M_{\odot}
- Extremely rare (IMF)
- High luminosities ($10^4 10^6 L_{\odot}$) and high temperatures ($T_{eff} \sim 20\ 000 50\ 000\ K$)
- Intense stellar winds
- Big impact on the their host galaxies

Massive stars and their winds

Massive Stars

- Mass-loss rates $10^{-9} 10^{-5} M_{\odot}/yr$; wind speeds ~ $1000 3000 \text{ km s}^{-1}$
- Evolution severely impacted (see e.g., Ekström+12)
- Nature of the outflow:

Line driven winds – metals (CNO+Fe+Si, etc.)

$$\rho \frac{d\vec{v}}{dt} = -\nabla p - \frac{GM\rho}{r^2}\hat{r} + \sum_i \vec{F_i} = -\nabla p - \frac{GM\rho}{r^2}\hat{r} + \vec{f_{rad}}$$

Several thousands of transitions absorbing UV radiation

Momentum transfer of the radiation field to the gas

$$\rho \frac{d\vec{v}}{dt} = -\nabla p - \frac{GM\rho}{r^2}\hat{r} + \sum_i \vec{F}_i = -\nabla p - \frac{GM\rho}{r^2}\hat{r} + \vec{f}_{rad}$$

wind intensity (D) correlates with luminosity, depends on Z (metal line-driven)

We need to understand f(Z)! Some Z dependence works:

V_∞ ∝ Z^{0.13} theory (Leitherer+92)

 $\dot{M} \propto Z^{0.69}$ theory (Vink et al. 2001)

 $\dot{M} \propto Z^{0.83}$ observations - Mokiem et al. (2007)

 $\dot{M} \propto Z^{0.95}$ theory - Bjorklund et al. (2020)

M ∝ Z^{0.5-0.8} observations (bright objects only) Marcolino et al. (2022)

There are many other references (Vink & Sander 2021; Krtička & Kubat 2017; 2018; Brands et al. 2022; etc.) Understand details about the Z dependence is a big deal!

It is crucial to understand stellar evolution, populations and feedback in the local and far Universe.

Efforts on f(Z)

• ULLYSES program with Hubble (STIS/COS)

500 orbits dedicated to massive stars

~250 OB stars at low Z (LMC, SMC, Sextans A, NGC 3109). (Roman-Duval+20)

• XShootU Collaboration - "X-Shooting ULLYSES" Optical spectra of HST targets with Xshooter - VLT/ESO

near UV – near IR UVB arm: 300 – 500 nm VIS arm: 500 – 1000 nm NIR arm: 1000 – 2500 nm (R ~ 5000-10000)

(see Vink+23)

Vink+23

Observations of massive stars in the Local Group

 Hundreds of high-resolution spectra available being /waiting to be analyzed by different tools/atmosphere models (e.g., PoWR, FASTWIND, CMFGEN)

 Analysis is complex, models are computationally expensive (NLTE+winds).

• Tailored and automatic analyses (e.g., Brands+22)

GRIDS at low Z are WELCOME!

Grids of CMFGEN models at low Z

Marcolino, Bouret, Martins & Hillier (to be submitted)

Grids of CMFGEN models at low Z

Marcolino, Bouret, Martins & Hillier (to be submitted)

Aims:

- Expedite multiwavelength analysis of massives stars in low Z environments
- Provide models to the massive star community (spectra and structure)

Methods:

- CMFGEN (Hillier & Miller 1998) + LMC and SMC metallicities (1/2 and 1/5) NLTE, line-blanket, expanding atmosphere models
- Compute detailed spectra from EUV to mid-IR (continuum and lines)
- Use the spectra to compute important subproducts (log Q's, M_{λ} 's, BC_{λ}'s)

Grid Setup (tracks from Georgy+13 and Eggenberger+21)

He/H = 0.085 (solar by number) other elements: solar scaled 1/2 and 1/5 solar (Asplund+09) Teff = 23 – 55 kK (steps: 1000K for 27 – 45kK and 2000K 23 – 27kK) various log g's for each Teff (0.1 dex steps) – use of clusters in Marseille/Montpellier

Grid setup (other assumptions)

microturbulence: fixed at 10 km s⁻¹

 β -law: fixed at 1.0

Mass-loss rates: computed according to the Vink formula (Vink+01) adopting $V_{\omega}/V_{esc} = 3.0$ (Martins & Palacios 2021)

Atomic data: complete as possible

- 9178 levels (2046 SLs): hundreds of thousands of transitions
- appropriate amount of metal-line blanketing
- computationally feasible (hours-days/each model if converge)
- able to reproduce the rich UV spectra of OB stars

Total number of models: 606 (300 LMC + 306 SMC) (may be extended in the near future)

Ion	# super-levels	#levels
HI	30	30
He 1	69	69
Неп	30	30
С п*	92	322
Сш	99	243
CIV	64	64
N π*	59	105
Νш	57	287
N IV	44	70
Nv	41	49
О п*	155	274
Ош	36	104
O IV	30	64
O v	32	56
O vi*	9	15
Ne II	14	48
Ne III	23	71
Ne IV	17	52
Ne v	37	166
Mgп	36	44
Si II*	27	53
Sim	50	50
Sitv	66	66
Sm	39	78
SIV	40	108
Sv	37	144
S VI*	28	58
Ar III	24	138
Ar iv	30	102
Ar v	14	29
Ar vi*	21	81
Саш	29	88
Calv Carv*	19	612
Cav*	10	205
Fe II*	24 65	295
Fem	100	1000
Fey	130	1000
Fevi	59	1000
Fe vu*	41	252
Ni u*	27	158
Nim	24	150
Nitv	36	200
Niv	46	183
Ni vi	40	182
Ni vu*	37	308

Example of spectra: 500-30000Å

T_{eff}'s: 25000, 35000, 45000, and 55000 K ; log g = 4.0 (roughly an early B, late O, mid-O and early O typer star)

Optical spectra and line sensitivity

UV spectra and line sensitivity

Spectra appropriate to analyze, e.g., JWST NIRcam data

Synthetic Photometry

- The vast wavelength interval allows the computation of absolute magnitudes, BC's and other subproducts.
- We chose the bands:
 - UBVRIJHK classical Johnson, Cousins, Bessel
 - GAIA G
 - JWST wide filters F070W, F090W, F115W, F150W, and F200W
 - LSST ugrizy
- PYPHOT package + incursions on the SVO to obtain the filters transmissions (Morgan Fouesneau – github) (e.g., svo.get_pyphot_astropy_filter("LSST/LSST.r"))

Synthetic Photometry

- The vast wavelength interval allows the computation of absolute magnitudes, BC's and other subproducts.
- We chose the bands:
 - UBVRIJHK
 - GAIA G
 - JWST wide filters
 - LSST ugrizy
- Pyphot package (Morgan Fouesneau - github)

$$M_{\lambda} = -2.5 \times \log \int F_{\lambda} B_{\lambda} d\lambda + const.$$

$$BC_{\lambda} = M_{\odot}^{bol} - M_{\lambda} - 2.5 \times log \frac{L}{L_{\odot}}$$

Synthetic Photometry

LMC grid

Bolometric Corrections - UBVJHK

mild Z effect on the BC's

Ionizing fluxes – log Q's

• Spectra computed from ~30 Å to 5 μ m:

$$Q = \int_{\nu_o}^{+\infty} \frac{L_{\nu}}{h\nu} d\nu,$$

• Q(He II) behavior is complex - depends largely on He II opacity/ground state population

GRID availability

- The spectra can be found at https://pollux.oreme.org/ (Palacios+10)
- Individual models can be made available by request
- A catalog at Vizier with all subproducts is also planned (absolute magnitudes, bolometric corrections, log Q's, etc.)

POLLUX is a stellar spectra database proposing access to theoretical data. It mainly provides high resolution stellar synthetic spectra in the optical, the infrared and the ultraviolet spectral domains based on state-of-the-art 1-D (ATLAS, CMFGEN, MARCS, PHOENIX) and 3-D (STAGGER) radiative transfer codes, and performant spectral synthesis codes (SYNSPEC48, CMF_FLUX, TURBOSPECTRUM, PHOENIX, OPTIM3D). Spectral types from O to M are represented fo a large set of parameters: Teff, logg, [Fe/H], [alpha/Fe], specific abundances. Spectral energy distributions are also made available for early spectral types (O and B type stars).

Conclusions

- → We provide two grids of NLTE expanding atmosphere models appropriate to investigate OB stars at low metallicities (LMC and SMC).
- We computed spectra from the EUV to the mid-IR (606 models).
 Z-effect on several spectral bands is conspicuous
- → Absolute magnitudes and BC_{λ} 's were computed in several bands. LSST, GAIA and JWST for the first time; BC's x T_{eff} show mild Z effect
- Ionizing fluxes of H I, He I and He II were calculated. Q(HI) and Q(HeI) do not reveal a metallicity dependence; Q(HeII) behavior is complex
- \rightarrow The models can be made available upon request (soon).
- The spectra can be dowloaded at the Pollux database. https://pollux.oreme.org/
- \rightarrow We hope to improve the both grids in the near future.
- \rightarrow Our models will expedite the analysis of massive stars in low Z environments.

Thanks