International Conference - Physics of Extreme Massive Stars- Rio de Janeiro, Brazil

Exploring variability in B supergiant stars

Pulsation modes and detection of binary systems

Alberici Adam A.^{1,2} - Cidale L.^{1,2} - Christen A.³ - Avila Marín G.F.³ - Kourniotis M.⁴ - Glatzel W.⁵

¹ Instituto de Astrofísica de La Plata, Argentina - ² Facultad de Ciencias Astronómicas and Geofísicas, Argentina - ³ Universidad de Valparaíso, Chile ⁴ Astronomical Institute of Czech Academy of Sciences, Czech Republic - ⁵ Institut für Astrophysik, Georg-August-Universität Göttingen, Germany.

Physics of Extreme Massive Stars

Marie-Curie-RISE project funded by the European Union

de Valparaíso C HILE

Why study pulsations in B supergiant stars?

6

A βCep stars;

Modify their evolutionary trajectory

Kraus et al. (2015), Haucke

et al. (2018) and Cidale et al. (2023)

5.5 50 40 30 5 25 log L/L_o 20 4.5 17 14 12 10 3.5 No rotation 4.5 3.5 log T_{eff} (Saio et al. 2013)

αCygni vars.(■ MW, ● NGC300)

Why is it important to search for pulsating stars in binary systems?

Binary systems found for B-SG stars are very rare.

- Natural phenomena (e.g. merger of the binary system (Menon et al. 2024))
- **Observational bias** (pulsations?, observational instruments available?, analysis techniques?)

Mass discrepancy problem:

(Herrero et a. 1992) (Tkachenko et al. 2014a, 2014b) Spectroscopic mass ≠ Evolutionary mass Dynamical mass ≠ Evolutionary mass

These binary systems are ideal for comparing the **dynamical masses** with those obtained from an **asteroseismological analysis** (model dependent).

bservations

Table 1. Stellar parameters taken from Haucke et al. (2018).

HD Number	HD 74371	HD 79186	
S p. type	B6 Iab/b	B5 Ia	
T [K]	13700 ± 500	15800 ± 500	
$R_{\star} [R_{\odot}]$	73	61	
$\log(L/L_{\odot})$	5.23 ± 0.19	5.33 ± 0.38	
$\log(L/M)$	4.17	4.21	
$V \sin i [\mathrm{km} \mathrm{s}^{-1}]$	40	40	

'eriodicity analysis

Lomb-Scargle (pre-whitening)

Weighted Wavelet Z-Transform (WWZ)

'eriodicity analysis

Lomb-Scargle (pre-whitening)

Weighted Wavelet Z-Transform (WWZ)

- → We consider all frequencies showing a peak in the average power plot
- → Scalogram to understand the results and find quasi-periodic events

Stability analysis

Construct the hydrostatic stellar models: integrated the stellar structure equations :

- Mass conservation
- Momentum conservation
- Energy conservation
- Energy transport

from the photosphere into the interior of the star up to some conveniently chosen cut- off - temperature

We need input parameters: L, Teff, chemical composition, estimation of the mass (spec. mass) (Haucke et al.(2018))

Log(L/M)> 4 : perform a **linear non-adiabatic stability** with respect to radial perturbations (Gautschy & Glatzel, 1990).

With Pr. W.Glatzel and M. Ruiz Diaz in the Institut für Astrophysik, Göttingen (POEMS proyect)

Stability analysis

Loading...

 10.9 ± 0.1

Mass discrepancy problem

 7.18 ± 0.001

Loading...

P[day]	P[day]	P_{rot} [days]			
Lit.	This work	$i = 30^{\circ}$	$i = 45^{\circ}$	$i = 52^{\circ}$	$i = 90^{\circ}$
78.9	8.90 ± 0.01 [*]	38.61	54.60	60.85	77.22
-	6.08 ± 0.03				
0 0	5.30 ± 0.16				
-	4.8 ± 0.45	1 secto	r		
-	2.53 ± 0.1	×			
-	1.50 ± 0.03 [*]				

This range could explain 4 of 6 periods

Loading...

Conclusions and future work ...

- We identify multiple oscillation frequencies probably related to a unstable radial modes.
- → We estimate their masses with an asteroseismological model (first approximation!)
- → We find a discrepancy between asteroseismological models with CNO abundances.
- → We find some periods no related to radial unstable modes. Origin of these ones should be study.
- → We find evidence of the mass discrepancy problem.
- > No evidence of binarity was found (has to be confirmed by spectroscopic analysis).

Conclusions and future work ...

- → We will follow unstable modes until the non-linear regime and recalculate the masses.
- → We will perform a stability analysis for non radial pulsations.
- → We will calculate new evolutionary tracks (changing the rotational speed, initial mass, ...) and test different evolutionary models.
- → We need to measure new abundances for these stars.

Thanks:)