Episodic mass loss in two evolved Red Supergiants in the LMC

Gonzalo Muñoz Sánchez

IAASARS

ASSESS project, PI: A. Bonanos - National Observatory of Athens

1.- Introduction

Zoo of massive stars

- Wolf-Rayet (WR)
- Luminous Blue Variable (LBV)
- Blue Supergiant (BSG)
- Yellow Supergiant (YSG)
- Red Supergiant (RSG)

Zoo of massive stars

- Wolf-Rayet (WR)

- Luminous Blue Variable (LBV)
- Blue Supergiant (BSG)
- Yellow Supergiant (YSG)
- Red Supergiant (RSG)

 $8 M_{sun} < M < 25 M_{sun}$ $3300 K < T_{eff} < 4500 K$ $4.0 < log(L/L_{sun}) < 5.5$

Zoo of massive stars

- Wolf-Rayet (WR)

- Luminous Blue Variable (LBV)
- Blue Supergiant (BSG)
- Yellow Supergiant (YSG)
- Red Supergiant (RSG)

 $8 M_{sun} < M < 25 M_{sun}$ $3300 K < T_{eff} < 4500 K$ $4.0 < log(L/L_{sun}) < 5.5$

• Upper log(L/L_{sun}) limit?

• Upper log(L/L_{sun}) limit?

Upper log(L/L_{sun}) limit?

- Upper log(L/L_{sun}) limit?
- "RSG problem" for $M_{in} > 18 M_{sun}$

- Upper log(L/L_{sun}) limit?
- "RSG problem" for $M_{in} > 18 M_{sun}$
 - Hotter post-RSG phase
 - Implosion to black hole
 - Problem not real

- Upper log(L/L_{sun}) limit?
- "RSG problem" for *M*_{in} > 18 M_{sun}

- Evidence of episodic mass-loss: role?
 - NML Cyg
 - VY CMa
 - Betelgeuse

1.- Introduction (a) Motivation

2.- [W60] B90

- LMC (d ≈ 50 kpc)
- Dusty: IR-excess
- Not predicted by MIST
- Properties:
 - log(L/L_{sun})= 5.32 ± 0.01 (Antoniadis et al. 2024)
 - $R \approx 1200 \ R_{sun}$
 - *A_V* > 3 mag
 - $\dot{M} = 4.4 \cdot 10^{-6} \,M_{sun}/yr$ (Antoniadis et al. 2024)

[W60] B90

[W60] B90

Betelgeuse Mackey et al. 2012

[W60] B90

HST F675W

Betelgeuse Mackey et al. 2012

[W60] B90

far-IR

HST F675W

[W60] B90

Betelgeuse Mackey et al. 2012

µ Cep Cox et al. 2012

Optical

IRC - 10414 Gvaramadze et al. 2012

far-IR

HST F675W

[W60] B90

Betelgeuse Mackey et al. 2012

µ Cep *Cox et al. 2012*

Optical

IRC - 10414 Gvaramadze et al. 2012 1.- Introduction

```
2.- [W60] B90
```

a) Motivation

b) Bow shock

- Supersonic movement respect to the ISM
- Wind interacting with ISM

$$R_0 = \sqrt{rac{\dot{m}_w V_w}{4\pi
ho_a V_*^2}}$$

$$\dot{m}_w$$
: mass-loss rate V_w : wind speed
 ρ_a : density of the medium V_* : star's velocity

HST F675W

• Check [W60] B90 local proper motion

Check [W60] B90 local proper motion

- Check [W60] B90 local proper motion
- Spectroscopy MagE, 6.5-m Baade (Las Campanas, Chile)

< 0.4 : photoionization

- [S II]/Hα
- \geq 0.4 : shocked

• [S II]: 6716Å & 6731Å

Dec (J2000)

- Check [W60] B90 local proper motio
- Spectroscopy MagE, 6.5-m Baade (Las Campanas, Chile)
- [S II]/H $\alpha \ge 0.4$
 - Consistent with the proper motion
 - Where the bow shock is expected

Jec (J2000)

- Check [W60] B90 local proper motio
- Spectroscopy MagE, 6.5-m Baade (Las Campanas, Chile)
- [S II]/H $\alpha \ge 0.4$
- No bow-shape structure
 - Block stellar flux: coronagraph
 - Limited by spatial resolution
 - near-IR & mid-IR

1.- Introduction

2.- [W60] B90

a) Motivation

b) Bow shock

c) Variability

Photometric variability

Photometric variability

- Common properties
 - Recurrence ~11.8 years
 - Rising time ~400 days
 - $-\Delta V \sim 1 \text{ mag}$

Common properties

- Spectroscopy in the last event: similar properties as The Great Dimming of Betelgeuse
 - Correlation Teff V
 - Complex spectral features close to the minimum
 - Extra extinction after the minimum!!!

Rel. time (days)

• Common properties

- Spectroscopy in the last event: similar properties as The Great Dimming of Betelgeuse
- Let's compare them!!

Dimming events

Betelgeuse: 700-1000 R_{sun}

(Joyce et al. 2020, Kravchenko et al. 2021)

Dimming events

Dimming events

- Luminous
- Dimming events
- Episodic mass-loss
- Bar
- Interacting with ISM

- Luminous
- Dimming events
- Episodic mass-loss
- Bar
- Interacting with ISM

[W60] B90 M_{in} = 25 M_{sun} Betelgeuse M_{in} < 20 M_{sun} (*Joyce et al. 2020*)

- Luminous
- Dimming events
- Episodic mass-loss
- Bar
- Interacting with ISM

[W60] B90 M_{in} = 25 M_{sun} Betelgeuse M_{in} < 20 M_{sun} (*Joyce et al. 2020*)

Massive analog in the LMC

Munoz-Sanchez et al. submitted

Episodic mass loss in the very luminous red supergiant [W60] B90 in the Large Magellanic Cloud

G. Munoz-Sanchez^{1,2}, S. de Wit^{1,2}, A.Z. Bonanos¹, K. Antoniadis^{1,2}, K. Boutsia^{4,5}, P. Boumis¹, E. Christodoulou^{1,2}, M. Kalitsounaki^{1,2}, and A. Udalski⁶

1.- Introduction

2.- [W60] B90

a) Motivation

b) Bow shock

c) Variability

d) Future work

Future work

- Resolve the CSM around [W60] B90 (e.g. JWST, ALMA, VLTI)
 - Bow shock: mass-loss rate
 - Past ejections
 - Relation with dimming's recurrence

Marle et al. 2013

Future work

- Resolve the CSM around [W60] B90 (e.g. JWST, ALMA, VLTI)
 - Bow shock: mass-loss rate
 - Past ejections
 - Relation with dimming's recurrence
- Extend analysis to other luminous RSGs
 - Variability
 - Interaction with the ISM
 - Dimming events

Marle et al. 2013

1.- Introduction

2.- [W60] B90

3.- WOH G64

a) Motivation

Historic background

- M7.5e log(L/L_{sun})= 5.75 (Elias et al. 1986)
- M5-7.5e, log(L/L_{sun})= 5.70 (van Loon et al. 1995)

• M5, log(L/L_{sun})= 5.65, one of the largest RSGs ever known. (Levesque et al 2009)

Historic background

- M7.5e log(L/L_{sun})= 5.75 (*Elias et al. 1986*)
- M5-7.5e, log(L/L_{sun})= 5.70 (van Loon et al. 1995)
- M5 log(L/L_{sun})= 5.65, one of the largest RSGs ever known. (Levesque et al 2009)
- $log(L/L_{sun})$ = 5.45, dusty thick torus close to pole on $i = 20^{\circ}$ (Onhaka et al. 2008)

Historic background

- M7.5e log(*L*/L_{sun})= 5.75 (*Elias et al. 1986*)
- M5-7.5e, log(L/L_{sun})= 5.70 (van Loon et al. 1995)

- M5 log(L/L_{sun})= 5.65, one of the largest RSGs ever known. (*Levesque et al 2009*)
- $log(L/L_{sun}) = 5.45$, dusty thick torus close to pole on i = 20° (Onhaka et al. 2008)
- Only dust enshrouded (Av > 8 mag) RSG in the LMC (Beasor et al. 2022)
- RSG with highest mass-loss rate in the LMC, \dot{M} = 1.25 \cdot 10⁻⁴ M_{sun}/yr (Antoniadis et al. 2024)

1.- Introduction

2.- [W60] B90

3.- WOH G64

a) Motivation

b) Variability

RSG...

R=40000, UVES, VLT (Cerro Paranal, Chile)

RSG... not anymore!!!

sgB[e] !!!

sgB[e] !!!

14

Light curve

- Amplitude $\Delta V \sim 2 \text{ mag}$
- Periodicity 800-900 d (Groenewegen et al. 2009, 2018)

Light curve

• Periodicity 800-900 d (Groenewegen et al. 2009, 2018)

No periodicity

Work in progress

Color change

1.- Introduction

2.- [W60] B90

3.- WOH G64

a) Motivation
b) Extreme change
c) Future work

Future work

- Analyze ALMA data (Evgenia Koumpia)
- Analyze deeply the radial velocity structures

Future work

- Analyze ALMA data (Evgenia Koumpia)
- Analyze deeply the radial velocity structures
- Propose physical scenarios
 - Loss of stellar atmosphere due to episodic mass loss
 - Loss of atmosphere due to LBV-like mass loss near the Humphreys-Davidson limit
 - Common envelope evolution due to unstable mass transfer onto a companion, which is obscured due to dust
 - Thorne–Żytkow object (TŻO)
- More ideas are welcome

1.- Introduction

2.- [W60] B90

3.- WOH G64

4.- Summary

Episodic mass loss:

• [W60] B90 (G. Munoz-Sanchez et al. submitted A&A)

- 1st extragalactic RSGc w/ bow shock
- Surrounded by shocked material
- Dimming events ejecting material
- Recurrence of ~12 yr
- Their duration related with R_{star}?
- Undergoing episodic mass-loss
- Massive analog of Betelgeuse

Episodic mass loss:

- [W60] B90 (G. Munoz-Sanchez et al. submitted A&A)
 - 1^{st} extragalactic RSGc w/ bow shock
 - Surrounded by shocked material
 - Dimming events ejecting material
 - Recurrence of ~12 yr
 - Their duration related with R_{star}?
 - Undergoing episodic mass-loss
 - Massive analog of Betelgeuse
- **WOH G64** (G. Munoz-Sanchez et al. in prep)
 - Not RSG anymore
 - Probably part of the envelope is lost
 - Evolution towards the blue
 - sgB[e]
 - Pre-SN phase?

Obrigado!!

VII. Red Supergiants

11:00-11:20 Evaggelia Christodoulou *J-band spectroscopy of dusty, mass losing red supergiants in low metallicity galaxies*

11:20-11:40 Gonzalo Munoz-Sanchez Episodic mass loss discovered in two extreme RSG in the LMC

VIII. Yellow Hypergiants and Luminous Blue Variables

11:40-12:25 Alex Lobel (**invited**) Yellow Hypergiants and Luminous Blue Variables

12:25-14:00 Lunch

		-							
	LMC	HD 269687	82.85637648	-69.09404172	1	?	?	?	LBVc
1	NGC55	222	3.79305	-39.20741	1	3777493	NGC55-222_mod	OB0001	YSG
otic	cal s	pectros	сору с	of BSG	YSG	& LB∖	/s in the L	_MC ar	nd SMC
1	NGC55	797	3.63505	-39.18644	1	<u>3776755</u>	NGC55-797	OB0003	YSG
N	IGC300	2285	13.77428	-37.68503	1	3776702	NGC300-2285	OB0004	YSG
	LMC	HD 269006	75.53083472	-71.33697743	1	3776838	HD 269006	OB0005	LBV
	LMC	RMC 81	77.59497922	-68.77328156	1	3776994	HD 269101	OB0006	LBVc
	LMC	HD 269101	77.43829	-68.76942	1	3776994	HD 269101	OB0006	B3lab
	LMC	HD 269171	78.31667	-67.29647	1	3777006	HD 269171	OB0007	A2I
	LMC	HD 269154	78.18447544	-67.26603893	1	3777006	HD 269171	OB0007	F6la
	LMC	HD 269582	81.96944673	-68.98568844	1	3777431	HD 269582	OB0008	LBV
	LMC	CD-69 310	81.96335	-69.01538	1	3777431	HD 269582	OB0008	F2I
	LMC	HD 269723	83.10403669	-67.69822382	1	3776928	HD 269723	OB0009	G4 0
	LMC	HD 269953	85.0507184	-69.66801158	1	3776935	HD 269953	OB0010	G0 0
	LMC	HD 269216	78.37827849	-69.53990136	1	3776853	HD 269216	OB0011	LBV
	LMC	HD 269604	82.13071761	-68.89881688	1	3776833	HD 269604	OB0012	LBVc/YSG
	LMC	HD 269781	83.59363317	-67.02321188	1	3776881	HD 269781	OB0013	B9 la
	LMC	HD 269787	83.64317	-66.97317	1	3776881	HD 269781	OB0013	A0Ia0
N	GC3109	188	150.75881	-26.14946	1	3776262	NGC3109-1	OB0014	LBVc
	SMC	HD 7583	18.37710169	-73.33620557	2	3777034	HD 7583	OB0015	A0 la+
	SMC	Dachs SMC 3-4	18.28501409	-73.33994333	2	3777034	HD 7583	OB0015	F8 I
	SMC	LHA 115-S 18	13.53976546	-72.69536402	2	3777058	LHA 115-S 18	OB0016	LBVc
	SMC	LHA 115-S 40	15.9933871	-71.90552373	2	3777039	LHA 115-S 40	OB0017	F0:I
	SMC	<u>Sk 113</u>	16.0511771	-71.86756579	2	3777039	LHA 115-S 40	OB0017	B3 lb
	SMC	[MA93] 1810	18.83843721	-73.50420114	2	3777031	MA93 1810	OB0018	F8 I
	SMC	Flo 675	18.85221233	-73.51233789	2	3777031	MA93 1810	OB0018	F2 I
1	NGC55	2924	3.90690	-39.23019	2	3778643	NGC55-2-and-3_2night	OB0019	LBVc
1	NGC55	736*	3.82725	-39.22009	2	3778643	NGC55-2-and-3_2night	OB0019	LBVc
	SMC	LHA 115-S 2	10.7985	-73.38633	2	3777026	LHA 115-S 2	OB0020	B8la+
	SMC	LHA 115-S 23	13.97422743	-72.14986983	2	3777063	LHA 115-S 23	OB0021	B[e]
	SMC	HD 7099	17,26649371	-72,53823614	2	3777070	HD 7099	OB0022	B2 5/2 la

Obrigado!!

gonzalom@noa.gr

evachris@noa.gr
Episodic mass loss:

- [W60] B90 (G. Munoz-Sanchez et al. submitted A&A)
 - 1^{st} extragalactic RSGc w/ bow shock
 - Surrounded by shocked material
 - Dimming events ejecting material
 - Recurrence of ~12 yr
 - Their duration related with R_{star}?
 - Undergoing episodic mass-loss
 - Massive analog of Betelgeuse
- **WOH G64** (G. Munoz-Sanchez et al. in prep)
 - Not RSG anymore
 - Probably part of the envelope is lost
 - Evolution towards the blue
 - sgB[e]
 - Pre-SN phase?

ASSESS group

(http://assess.astro.noa.gr/)

• Episodic MAss LoSS in Evolved MaSsive Stars

National Observatory of Athens

• ERC-funded project (ID: 772086, 2018-2024)

• PI: Alceste Bonanos

- Catalog of 185 dusty evolved massive stars in 10 southern galaxies (Bonanos et al. 2024)
- Discovery of 7 sgB[e] + 4 cLBVs at low Z (Maravelias et al. 2023)
- Analysis of 127 RSGs found in the survey (de Wit et al. 2024)
- Mass-loss rate relation based on ~2000 RSGs in the LMC (Antoniadis et al. 2024)
- Catalog of X dusty evolved massive stars in 5 northern galaxies (*de Wit et al. in prep*)
- Dependance of metallicity on RSGs mass loss (Antoniadis et al. in prep)
- Consequences of RSG winds at SMC metallicity (Zapartas et al. in prep)

Supplementary material

Investigating episodic mass loss in evolved massive stars:

I. Spectroscopy of dusty massive stars in ten southern galaxies*

A.Z. Bonanos¹, F. Tramper^{2, 1}, S. de Wit^{1, 3}, E. Christodoulou^{1, 3}, G. Muñoz Sanchez^{1, 3}, K. Antoniadis^{1, 3}, S. Athanasiou^{1, 3}, G. Maravelias^{1, 4}, M. Yang^{5, 1}, and E. Zapartas^{4, 1}

185 evolved massive stars: RSGs, BSGs, YSGs, LBVc, sgB[e]

$Z = 0.06-1.6 Z_{sun}$

Galaxy	RA	Dec	d	Z^a	R
	(J2000)	(J2000)	(Mpc)	(Z_{\odot})	(')
WLM	00:01:58.16	-15:27:39.3	0.96 ± 0.05	0.14^{1}	9
NGC 55	00:14:53.60	-39:11:47.9	1.99 ± 0.06	0.27^{2}	21
NGC 247	00:47:08.55	-20:45:37.4	3.52 ± 0.06	0.40^{3}	14
NGC 253	00:47:33.12	-25:17:17.6	3.56 ± 0.08	0.72^{4}	21
NGC 300	00:54:53.48	-37:41:03.8	1.98 ± 0.06	0.41^{5}	15
NGC 1313	03:18:16.05	-66:29:53.7	4.25 ± 0.08	0.35^{6}	8
NGC 3109	10:03:06.88	-26:09:34.5	1.37 ± 0.06	0.21^{7}	13
Sextans A	10:11:00.80	-04:41:34.0	1.37 ± 0.06	0.06^{8}	4
M83	13:37:00.95	-29:51:55.5	4.66 ± 0.07	1.58^{9}	10
NGC 7793	23:57:49.83	-32:35:27.7	3.58 ± 0.07	0.42^{10}	8

Maravelias et al. 2023

Discovering new B[e] supergiants and candidate Luminous Blue Variables in nearby galaxies

Grigoris Maravelias^{1,2†}^(b), Stephan de Wit^{1,3}^(b), Alceste Z. Bonanos¹^(b), Frank Tramper⁴^(b), Gonzalo Munoz-Sanchez^{1,3}^(b), Evangelia Christodoulou^{1,3}^(b)

7 sgB[e] + 4 cLBVs

Investigating episodic mass loss in evolved massive stars:

II. Physical properties of red supergiants at subsolar metallicity*

S. de Wit^{1,2}, A.Z. Bonanos¹, K. Antoniadis^{1,2}, E. Zapartas^{3,1}, A. Ruiz¹, N. Britavskiy^{4,5}, E. Christodoulou^{1,2}, K. De⁶, G. Maravelias^{1,3}, G. Munoz-Sanchez^{1,2}, and A. Tsopela⁷

Spectral fitting of 127 RSGs

de Wit et al. 2024, in press

Yang et al. 2023

~2100 RSGs in SMC

Antoniadis et al. 2024, in press

~2000 RSGs in LMC

Antoniadis et al. in prep

Studying the effects of Z

SMC

Zapartas et al. in prep.

Consequence of mass-loss

Different evolution and SNe progenitor

Atomic lines in J-band

Spectroscopy R=5000, FIRE, 6.5-m Baade (Las Campanas, Chile)

1D LTE MARCS models (Gustafsson et al. 2008)
 1D NLTE MARCS models (Bergemann et al. 2012, 2013, 2015)

 $T_{eff,J-band} = 3900^{+150}_{-100} \text{ K} \quad (\text{MARCS NLTE}) \qquad T_{eff,TiO} \sim 3550 \pm 150 \text{ K} \quad (\text{MARCS LTE})$

$T_{\text{eff,TiO}} \; vs \; T_{\text{eff,J-band}}$

Munoz-Sanchez et al. 2024

 $T_{\rm eff,TiO} vs T_{\rm eff,J-band}$

Effect of \dot{M}

Deeper TiO bands: $\downarrow T_{\text{eff}} \uparrow \dot{M}$

Davies & Plez 2021

$T_{ m eff,TiO}\,{ m too}\,\,{ m cool}$

Levesque et al. 2007

de Wit et al. 2024

$T_{ m eff,TiO}\,{ m too}\,\,{ m cool}$

- [W60] B90 example of extreme RSG with inconsistent $T_{\rm eff}$
- *de Wit et al. 2024* \rightarrow scaling relation to translate $T_{eff,TiO}$ into more secure T_{eff}

• Gonzalez-Tora et al. 2024 \rightarrow 1st state-of-art models with \dot{M} in the near-IR

Shocked material

Proper motion

a) Gaia query:

Proper motion

Jimenez-Arranz et al. 2023

Kinematic analysis of the Large Magellanic Cloud using Gaia DR3*

Ó. Jiménez-Arranz^{1, 2, 3}, M. Romero-Gómez^{1, 2, 3}, X. Luri^{1, 2, 3}, P. J. McMillan⁴, T. Antoja^{1, 2, 3}, L. Chemin⁵, S. Roca-Fàbrega^{6, 7}, E. Masana^{1, 2, 3}, and A. Muros^{1, 2}

Fig. 4: Probability distribution of the *Gaia* base sample for the Neural Network classifier. A Probability value close to 1 (0) means a high probability of being a LMC (MW) star.

a) Gaia query

b) Remove foreground contamination

Proper motion

a) Gaia query

b) Remove foreground contamination

c) Obtain "local LMC" proper motion

d) Subtract from [W60] B90

e) Check [W60] B90 local proper motion

mid-IR variability

Dimming events

Betelgeuse: 700-1000 R_{sun}

(Joyce et al. 2020, Kravchenko et al. 2021)

Dimming events

Detergeuse. 700-1000 Rsu

⁽Joyce et al. 2020, Kravchenko et al. 2021)

Atomic lines in the <i>J</i> -band ^a										
Name	Model		Z		log(g)	χ^2				
		(d	ex)	(K)	(dex)					
EnochI	MARCS LTE	-0.2	5+0.25 -0.12	3970^{+130}_{-280}	$-0.20^{+0.20}_{-0.30}$	63.1				
Epociti	MARCS NLTE +0		$0^{+0.20}_{-0.10}$	3900^{+150}_{-100}	$+0.50\substack{+0.00\\-0.75}$	36.4				
TiO bands from the optical										
	Spectral type	ATLAS o	$T_{\rm eff,TiO}$	E(B-V)	$A_V{}^b$	χ^2				
		(mag)	(K)	(mag)	(mag)					
Epoch1 ^c	M3 I	-	3550±40	1.00±0.15	3.41±0.51	13.0				
Epoch2	M4 I	12.6 ± 0.1	3460^{+20}_{-30}	1.10 ± 0.10	3.75 ± 0.34	193.7				
Epoch3	M3 I	12.3±0.1	3550^{+40}_{-30}	$1.35^{+0.10}_{-0.05}$	$4.60^{+0.34}_{-0.17}$	47.9				
Epoch4	M3 I	11.8 ± 0.1	3610^{+60}_{-50}	$1.25^{+0.10}_{-0.05}$	$4.26^{+0.34}_{-0.17}$	26.9				

Notes. ^(a) Assuming Z = -0.25 dex and log g = -0.2 dex from the *J*-band fit.^(b) Converted from E(B - V) assuming $R_V = 3.41$. ^(c) $T_{\text{eff}} = 3570^{+60}_{-50}$ K and $E(B - V) = 1.00 \pm 0.14$ mag from de Wit et al. (2023).

Spectral variability

Spectral variability

Spectroscopy R=4000, MagE, 6.5-m Baade (Las Campanas, Chile)

Spectral variability

Spectroscopy R=4000, MagE, 6.5-m Baade (Las Campanas, Chile)

1D LTE MARCS models (Gustafsson et al. 2008)

Not reproduced by MARCS models

1D LTE MARCS models (Gustafsson et al. 2008)

1D LTE MARCS models (Gustafsson et al. 2008)

Dimming event

Dimming event

Dimming event

c) Composite MARCS model

Spectral variability

a) Correlation $T_{\rm eff} - V$

b) Extra extinction after the minimum

c) Complex atmospheric properties close to the minimum: cool+hot components

Spectral variability

- a) Correlation $T_{\rm eff} V$
- b) Extra extinction after the minimum
- c) Complex atmospheric properties close to the minimum: cool+hot components

The Great Dimming of Betelgeuse

Montarges et al. 2021

Figure 7: Century long record of the visual and V band brightness of Betelgeuse complied by the American Association of Variable Star Observers supplemented by data from the Solar Magnetic Ejection Imager (SMEI). The final large dip is the Great Dimming of 2020 (§4). From Joyce et al. (2020) by permission of Meridith Joyce, László Molnár, and the Astrophysical Journal.

Craig Wheeler J. & Chatzopoulos 2023

"An anomalously hot convective plume can rise and break free from the surface, powering an upwelling that becomes the surface mass ejection"

MacLeod et al. 2023

3-120% of the annual mass loss of Betelgeuse !!!

5

Betelgeuse dimming (Montargues et al. 2021)

SPHERE observations (Cont. Ha)

Composite PHOENIX model

RADMC3D simulations (dusty clump)

Betelgeuse dimming (Montargues et al. 2021)

Mass-loss rate

