

Variability in B supergiant star HD91316 (p Leo)

Vitalii Checha

In collaboration with: Anna Aret, Indrek Kolka, Lydia Cidale, Alejandra Christen, Gunther Avila, Ignacio Araya

Funded by the European Union

Blue supergiant - <u>p Leo</u>

1.5-meter mirror telescope AZT-12

- → Long-slit spectrograph ASP-32 320-1100 nm wavelength range Cassegrain focus
- \rightarrow I used 1800 lines/mm diffraction grating:
 - wavelength range 6300 6730 Å
 - resolution R ≈ 10 000
 - signal-to-noise ratio (S/N)~400

ρ Leo monitoring

- 2017-01-04 2023-05-11 3014 spectra 132 nights
- The longest time-series ~4h 40m

Pulsations modes

John Telting. NRP animation creator http://staff.not.iac.es/~jht/science/nrpform/

I = 0m = 0 l = 1 m = 0

l = 1 m = 1 l = 2 m = 1 I – number of node linesm – azimuthal numbern – radial order

Spectrum variability and analysis

Vitalii Checha – Tartu Observatory

Xo: Vrad(system)

Xi: velocity corresponding to λi

Fi: flux value measured at wavelength λ i for pixel i

Moment analysis

Spectral data

Season 2022

Season 2022 – one night

Weighted Wavelet Z-transform

https://twitter.com/j_bertolotti/status/1224296204173021184

- The WWZ method is a time-frequency analysis method, exploring both the frequency domain and the time domain.
- Method produces output for a range of frequencies and time, plots the response as a function of two variables → 3D plot
- The WWZ performs a wavelet transform using a wavelet function, which includes both a periodic, sinusoidal test function and a Gaussian window function.

Weighted Wavelet Z-transform, spectra of season 2022

WWZ analysis of TESS photometry, sector 45, 2021 year

WWZ analysis of TESS photometry, sector 46, 2021 year

Lomb-Scargle periodograms, spectra of season 2022

Whitened Lomb-Scargle (Period04)

Generalized Lomb-Scargle (Python)

25

K2 photometry+season 2017 spectroscopy, period 17 days

Vitalii Checha – Tartu Observatory

Vitalii Checha – Tartu Observatory

Results of frequency analysis

F r q	Period, days	2017	K2	2019	2020	2021	TESS Sect 45	TESS Sect 46	2022	2023	$\frac{\text{Combinations:}}{\text{f1 + f2 = f4}}$
f 1	~17	17.5	16		17				16.2		$f_2 - f_1 = 50$ days (from W/W/Z)
f 2	~12	11.2	24.7		12.6			12	11.2	21	Shibahashi & Kurtz 2012
f 3	~9						8.9		9		
f 4	~7	6.6, 7	7.1								
f 5	~5.5		5.5				5.6		6		
f 6	~4					4.5		4.3	4.7		
f 7	~3	2.8		3.3	3.4		3				
f 8	~1.5			2		1.4					
f 9	~0.9	0.9		0.8	0.9	0.9	http://ccnmtl.gith Vitalii Checha -	ub.io/astro-simu - Tartu Observa	lations/eclipsin tory	ng-binary-sin	hulator 28

Saio et al. 2013, MNRAS, 433, 1246

Pulsation period predictions for B supergiants

BSG monitoring list 2014 - 2024

POEMS

Object	m	spectral type
V1768 Cyg	5.66	B1
P Cyg	4.82	B1-2_la-0_ep
V2118 Cyg	7.12	B1.5la
Deneb	1.25	A2lae
55 Cyg	4.86	B3lae
HD 199478	5.73	B8lae
HD 202850	4.26	B9Iab
HD 208501	5.81	B8lb
V639 Cas	6.22	B2.9lab
HD 2905	4.19	B1lae
HD 12301	5.62	A0lb
HD 13267	6.35	B5la
HD 13854	6.50	B1labe
HD 14134	6.54	B3la
HD 14143	6.65	B2la
HD 14818	6.27	B2lae
HD 14956	7.24	B2la
HD 21389	4.54	A0la
Rigel	0.13	B8lab
HD 37128	1.70	B0lab
HD 38771	2.05	B0lab
62Ori	4.65	B2I
PU Gem	5.75	B2.5lb
HD 87737	3.51	A0lb
<u>pLeo</u>	3.84	<u>B1lab</u>
HD 164353	3.97	B5lb

Vitalii Checha – Tartu Observatory

Conclusions

- **1.** Combination of different frequency analysis methods is necessary for investigation of quasi-periodic variability of BSGs.
- **<u>2.</u>** Certain periods almost always exist, while others appear and disappear.
- **<u>3.</u>** We suggest that the detected period of **12** days is the binary orbital period, while period the **17** days is due to radial pulsations.
- 4. Set of periods (quasi-periods) and their harmonics obtained from analysis of rho Leo spectral time series indicates that the star is on the blue loop of evolution, after the Red Supergiant stage.
- **5.** Developed methodology will be applied to other BSGs monitored at TO combining our spectroscopic time series and high-cadence space photometry.
- **<u>6.</u>** It would be interesting to explore the circumstellar environments for the presence of remnants of the slow and dusty winds on RSG stage.

References

Aerts et al. 2018 MNRAS, 476, 1234 Berlanas et al. 2018, A&A, 612, A50 Crowther et al., 2006, A&A 446, 279 Morel et al., 2004, MNRAS 351, 552 Saio et al. 2013, MNRAS, 433, 1246 Shibahashi & Kurtz 2012, MNRAS 422, 738

Wilson R.H., 1941, Publications of the University of Pennsylvania, Astronomical series vol.V, part IV