Spectroscopic Survey of Blue Horizontal Branch Stars

Stephan Geier

 $1.3 M_{\odot}$ Radiative core (Low mass)

Thomas 1967, ZA, 67, 420

Degenerate helium core grows in mass due to central H-burning

In low-mass stars the core is radiative

- → No efficient mixing in the core
- → Hydrogen is consumed starting in the center

→ Smooth transition to shell burning

Due to the high density in the core, the electron gas becomes **degenerate**

→ Isothermal, degenerate core is stable

→ Core can grow in mass

No heating during core contraction due to equation of state

$$P_{\rm e} = 1.0036 \times 10^{13} \left(\frac{\rho}{\mu_{\rm e}}\right)^{5/3}$$

 $1.3 M_{\odot}$ Radiative core (Low mass)

Thomas 1967, ZA, 67, 420

H-shell burning starts → Core contracts, envelope expands

Temperature of the core increases

- → Increase of temperature in the H-burning shell
- → Core contraction heats transition layer between core and shell

Critical temperature for helium burning ($\sim 10^8$ K) is reached for a core mass of about $0.48~M_{\odot}$

Due to **energy losses via neutrinos** in the center, helium is ignited in a shell

Due to the **high temperature dependency** of the 3α reaction rate $\langle \sigma v \rangle \sim \rho T^{40}$, nuclear energy is released fast and increases the core temperature

Degenerate gas cannot expand with increasing temperature

Runaway burning of helium

Helium flash

Runaway burning of helium under degenerate conditions

- → Degeneracy is lifted
- → Core expands, density drops
- → Stable He-core burning

Luminosity of the core during the flash higher than the luminosity of the Galaxy $(10^{11}\,L_{\odot})$

→ Trapped in the envelope

Phase of **stable He-core** and H-shell burning

→ Stars occupy a region of (about) constant luminosity

Horizontal Branch

Horizontal Branch stars

- → Different mass loss η on the RGB leads to different thickness of the hydrogen envelopes
- → Mass of the He-core is constant ($\sim 0.48 M_{\odot}$)
- → Diverse types of HB stars

Horizontal Branch stars

- → The thinner the hydrogen envelope, the bluer the HB star
- → Morphology of HB depends on metallicity and age

Gaia collaboration 2018, A&A, 616, 10

Red Clump stars

- → Red giants
- → Intermediate mass stars
- → Young population

Red Horizontal Branch (RHB) stars

- → Redward of the MS
- → (Sub-)giants
- → Spectral types K, G
- → metal-poor, old population

RR Lyr stars

- → (Sub-)giants
- → Spectral types F
- → metal-poor, old population
- → Pulsators

Blue Horizontal Branch (BHB) stars

- → Blueward of the MS
- → (Sub-)dwarfs
- → Spectral types A, B (HBA, HBB)
- → chemically peculiar

Extreme Horizontal Branch (EHB) stars

- → Subdwarfs
- → Spectral types O, B (sdO, sdB)
- → Extremely thin hydrogen envelopes, no H-shell burning

Moehler et al. 2004, A&A, 415, 313

Hydrogen-rich sdBs

- → very low to solar helium content
- → Light elements depleted, heavy elements enriched
- → High binary fraction

Heber 2016, PASP, 128, 966

Binary fraction on the main sequence depends on stellar mass

 $\sim 10 \%$ triple

~1 % quadruple or higher multiple systems

Raghavan et al. 2010, ApJS, 190, 1

Moe & di Stefano 2017, ApJS, 230, 2

Moe & di Stefano 2017, ApJS, 230, 2

Stable mass transfer

Common envelope phase

Unstable RLOF

Common envelope

Short-period sdB binary

 $P_{\text{orb}} = 0.1 - 10 \text{ days}$ $M_{\text{ads}} = 0.40 - 0.49 \text{ M}_{\odot}$ Stable RLOF channel (mass ratio < 1.2 – 1.5)

sdB with MS/SG companion

Close binary evolution

- → Helium-burning core of a red giant stripped by binary interaction
- → Stable and unstable masstransfer possible
- → sdO/Bs predicted to be in close and wide binaries

~30% of the sdO/Bs are in composite double-lined binaries

Companions are K/G/F-type main sequence stars

The orbital periods of the ~ 30 solved systems (P = 300 - 1200 d) are in the appropriate range for prior RLOF mass-transfer

Vos et al. 2017, A&A, 605, 109

Kupfer et al. 2015, A&A, 576, 44

 \sim 30% of the sdO/Bs are in single-lined close binaries

Companions are M-type main sequence stars, brown dwarfs and white dwarfs

The orbital periods of the ~ 300 solved systems (P = 0.03 - 30 d) are typical for post-CE systems

ESA/ATG medialab

- $\sim 30\%$ of the sdO/Bs don't show any signs of binarity
- → Close substellar companions such as brown dwarfs or planets
- → Evaporation or merger during CE evolution?

Helium-rich sdO/Bs

- → very high helium abundance
- → Enrichment in carbon and/or nitrogen
- → Single stars

Alternative formation

- → Close binary evolution
- → Merger of two white dwarfs of pure helium composition
- → Single He-sdO/B stars

How important are binary interactions

Extreme Horizontal Branch (EHB) stars are the outcome of binary interactions

What about the Blue Horizontal Branch Stars?

Nobody studied them yet

→ Many of the known ones too faint

Survey of bright BHB stars

Moehler et al. 2004, A&A, 415, 313

Spectral lines are shifted w.r.t. their rest wavelengths

→ Doppler effect

$$\frac{\lambda - \lambda_0}{\lambda_0} = \frac{\Delta \lambda}{\lambda_0} = \frac{v}{c} \quad \text{for } v \ll c$$

 λ observed wavelength

 λ_0 rest wavelength

v radial velocity

Youtube, Pogge, Ohio State University

Measuring line-shift

→ Radial velocity

S. Geier

Naslim et al. 2012, MNRAS, 423, 3031

Model fitting

- → Simple models matching the line shapes (Gaussian, Voigt profiles)
- → Model spectra

Requirements

- → Good models
- → Small number of lines

Accuracy limit $\sim 0.1 \text{ km s}^{-1}$

Cross correlation method

$$c(s) = \sum_{i=1}^{n} A_i B_{i-s}$$

Cross correlation

- → Template spectrum or spectrum itself (autocorrelation)
- → All features contribute
- → Applicable to double-lined systems

Limitations: Telluric lines, artifacts

Smette et al. 2015, A&A, 576, 77

RVs and times must be corrected for Earths motion around the barycenter of the solar system (up to $\pm 30 \text{ kms}^{-1}$ in RV and $\pm 8 \text{ min}$ in time)

- → Location of the telescope must be known (GPS)
- → Most accurate determination of observation time: High-speed photometers measure photon weighted midpoint of exposures

RVs and times must be corrected for Earths motion around the barycenter of the solar system (up to $\pm 30~\rm km s^{-1}$ in RV and $\pm 8~\rm min$ in time)

- → For close binaries with high RV shifts often slightly less accurate heliocentric corrections are used
- → Times are approximated by adding half of the exposure time to the starting time

BHB survey

Preparatory study at the workshop in 2021

→ RV accuracy of a few km/s

Raghavan et al. 2010, ApJS, 190, 1

BHB survey

Preparatory study at the workshop in 2021

- → RV accuracy of a few km/s
- → Sensitive to orbital periods of several tens of days

Raghavan et al. 2010, ApJS, 190, 1