# Photometric variability of binaries

Research workshop on evolved stars

# Veronika Schaffenroth

30.08.2022

Institute for Physics and Astronomy Email: schaffenroth@astro.physik.uni-potsdam.de Room: 2.118



Introduction

Stars, whose brightness vary periodically, semi-periodically or irregularly as seen from earth

- extrinsic variables: variability is due to the eclipse of one star by another or the effect of stellar rotation
- intrinsic variables: variation is due to physical changes in the star or stellar system

### Transiting planets/Eclipsing binaries







#### Rotating variables



Types of variable stars

# Intrinsic variables

### Pulsating variables

### Eruptive variables







### Cataclysmic variables







Types of variable stars

# **Binary Stars: Overview**

50% – 80% of all stars in the solar neighbourhood belong to multiple systems.



Duchene & Kraus 2013

ightarrow stellar evolution cannot be understood without understanding binary evolution

Rough classification:

- **apparent binaries:** stars are *not* physically associated, just happen to lie along same line of sight ("optical doubles").
- visual binaries: bound system that can be resolved into multiple stars (e.g., Mizar); can image orbital motion, periods typically 1 year to several 1000 years.
- **spectroscopic binaries:** bound systems, cannot resolve image into multiple stars, but see Doppler effect in stellar spectrum; often short periods (hours...months).

To determine stellar masses, use Kepler's 3rd law:

$$\frac{a^3}{P^2} = \frac{G}{4\pi^2}(m_1 + m_2)$$

where

- *M*<sub>1,2</sub>: masses
- P: period
- *a* semimajor axis

**Observational quantities:** 

- *P* directly measurable
- a measurable from image *if and only if* distance to binary and the inclination are known

## Mass determination in binaries



## **Spectroscopic Binaries**



Spectroscopic binaries: Components close together: orbital motion via periodic Doppler shift of spectral lines.

- SB2 = both spectra are visible
- SB1 = only one spectrum visible

in **eclipsing** SB2 systems the inclination (close to  $i=90^{\circ}$ ) and masses for both components can be determined.

### **Spectroscopic Binaries**



CD-30°11223 (Geier, ..., Schaffenroth et al. 2013, A&A 554, 10)

Motion of star visible through Doppler shift in stellar spectrum:

$$\frac{\Delta\lambda}{\lambda} = \frac{v_{\rm r}}{c} = \frac{v\sin i}{c}\sin\frac{2\pi}{P}t$$

### **Double-lined spectra, case SB2**

Assume circular orbit (e = 0)

- $K_1, K_2$  velocity half amplitudes of components 1 & 2
- *P* orbital period

 $2\pi a_{1/2}$  orbital radii of components 1 & 2

$$K_{1/2} = \frac{2\pi a_{1/2}}{P} \sin i$$

$$\Rightarrow a_{1/2} \sin i = \frac{P}{2\pi}K_{1/2}$$

again sin *i* remains indetermined

centre of mass law:

$$\frac{M_1}{M_2} = \frac{a_2}{a_1} = \frac{K_2}{K_1}$$

Kepler's third law:

$$M_1 + M_2 = \frac{4\pi^2}{GP^2}a^3,$$
  
$$a = a_1 + a_2 = \frac{P}{2\pi}(K_1 + \frac{P}{2\pi}K_2) / \sin i$$

$$\implies M_1 + M_2 = \frac{4\pi^2}{GP^2} \frac{P^3}{(2\pi)^3} \frac{(K_1 + K_2)^3}{(\sin i)^3} (\star)$$

$$\implies M_1 + M_2 = \frac{P}{2\pi G} \frac{(K_1 + K_2)^3}{(\sin i)^3}$$

$$(M_1 + M_2)(\sin i)^3 = \frac{P}{2\pi G}(K_1 + K_2)^3$$

 $\implies$  two equations for three unknowns ( $M_1 + M_2$ , sin *i*), sin *i* can only be determined for eclipsing binaries

### Spectroscopic binaries

#### Single-lined spectra, case SB1

(only one spectrum visible):

 $K_2$  unknown:  $K_2 = K_1 \frac{M_1}{M_2}$ Insert in equation (\*):

$$(M_1 + M_2)(\sin i)^3 = \frac{P}{2\pi G}(K_1 + K_1\frac{M_1}{M_2})^3$$
  
 $\frac{M_2(1 + \frac{M_1}{M_2})(\sin i)^3}{(1 + \frac{M_1}{M_2})^3} = \frac{PK_1^3}{2\pi G}$ 

Mass function f(M):

$$f(M) = \frac{M_2(\sin i)^3}{(1 + \frac{M_1}{M_2})^2} = \frac{P K_1^3}{2\pi G}$$

### Spectroscopic binaries: Radial velocity curve



# Light Curves of Eclipsing Binary Stars

3

# **Eclipsing Binaries**



Determination of diameters  $d_A$  and  $d_B$ from eclipse timing: Duration of eclipse:

$$d_A + d_B = v(t_5 - t_2)$$
 (3.1)

Duration of eclipse egress:

$$d_A - d_B = v(t_4 - t_3)$$
 (3.2)

therefore:

$$d_A = \frac{1}{2}v(t_5 - t_2 + t_4 - t_3) \qquad (3.3)$$

$$d_B = \frac{1}{2}v(t_5 - t_2 - t_4 + t_3) \qquad (3.4)$$

*Note:* requires extremely accurate photometry

Resulting radii are independent of distance

#### Eclipsing binaries

# **Eclipsing Binaries**



Stephan-Boltzmann-Law

$$L_{1/2} = 4\pi R_{1/2}^2 T_{1/2}^4 \tag{3.5}$$

$$\frac{T_1}{T_2} = \left(\frac{F_1 - F_2}{F_1 - F_3}\right)^{1/4} \quad (3.6) \qquad \frac{R_1}{R_2} = \left(\frac{F_1 - F_3}{F_2}\right)^{1/2} \quad (3.8)$$
$$\frac{R_1}{a} = \frac{1}{2}(\sin 2\pi\Phi_a - \sin 2\pi\Phi_b) \quad (3.7) \qquad \frac{R_2}{a} = \frac{1}{2}(\sin 2\pi\Phi_a + \sin 2\pi\Phi_b) \quad (3.9)$$

Eclipsing binaries



Shivers et al. 2014

Eclipsing binaries



R. Hynes

In a close binary system: Gravitational potential described by the Roche potential:

$$\Phi_{\mathsf{R}}(\mathbf{r}) = -\frac{GM_1}{|\mathbf{r} - \mathbf{r}_1|} - \frac{GM_2}{|\mathbf{r} - \mathbf{r}_2|} - \frac{1}{2} \left( \vec{\omega} \times \mathbf{r} \right)^2$$

and where

$$\vec{\omega} = \left(\frac{GM}{a^3}\right)^{1/2}\hat{e}$$

Stellar surfaces are isosurfaces of this potential

 $\implies$  stars are non-spherical

 $\Rightarrow$  Stellar magnitude changes with orbit. Roche radius:

$$\frac{R_L}{a} = \frac{0.49q^{2/3}}{0.6q^{2/3} + \ln(1+q^{1/3})}$$
(3.11)

#### The Roche Model





Approximations:

- stellar potentials are point-like (most of the stellar mass in concentrated in its core)
- Orbits are circularised (quickly established by tidal forces)
- rotation axes are perpendicular to the orbital plane
- stellar rotation is synchronous (tidally locked to the orbit)



**Detached Binaries** 



**Contact Binaries** 

#### The Roche Model



**Overcontact Binaries** 



light curves of eclipsing binaries: detached, contact, overcontact (top to bottom)

#### The Roche Model

# Limb darkening



FIGURE 3.17. Center-to-limb variation. This figure shows the aspect angle  $\gamma$  (angle between normal vector **n** and radiation emission direction **e**) appearing in the mathematical formulation of the limb-darkening. The right part of the figure illustrates that the depth of the atmosphere region (and thus temperature accessible to an observer varies with the aspect angle  $\gamma$ .

Kallrath & Milone (1999)

- intensity of the stellar disk decreases from the centre to the limb temperature is increaing with increasing photospheric depth
- can be measured for the sun
- can be measured by microlensing
- can be calculated from model atmospheres
- linear law:  $I = I_0(1 \epsilon + \epsilon \cos \theta)$ 
  - $\epsilon$  = limb darkening factor, wavelength dependent sun in the UV (< 1600Å): limb brightening due to chromospheric temperature rise

# Limb darkening



 limb darkening coefficient is temperature dependent

• other laws in use

Claret & Bloemen (2011, A&A 529, A75)

$$I/I_0 = 1 - a_1(1 - \mu^{1/2}) - a_2(1 - \mu) - a_3(1 - \mu^{3/2}) - a_3(1 - \mu^2)$$
 (3.12)

 $\mu = \cos \gamma$ 

3 - 13

HD 209458b: the first transiting exoplanet discovered, HST light curve:



- Transit is not central
- transit depth is not constant
- $ullet \longrightarrow$  caused by limb darkening

Brown et al. (2001, ApJ 552:699)



# Gravity darkening



- non-spherical stars, surface gravity varies across the surface
- von Zeipel's Theorem: radiative atmospheres: black body: diffusion equation
- due to temperature gradient in star Flux  $F_R \propto \nabla B \propto \frac{dB}{d\Phi} \nabla \Phi$  $\propto$  g
- in the convective case F  $\approx$  g<sup>0.32</sup> (Lucy's law, 1967)
- derive numerically from appropriate model atmospheres
- $F \propto g^{y}$  (tables by Claret & Bloemen, 2011)

Claret & Bloemen (2011, A&A 529, A75)

# Gravity darkening



Tidally-distorted, limb-darkened, eclipsing, with and without gravity darkening.

- non-spherical stars, surface gravity varies across the surface
- derive numerically from appropriate model atmospheres
- $F \propto g^{y}$  (tables by Claret & Bloemen, 2011)

# Reflection effect



Heber et al. 2004, A&A 420, 251

- light variation by irradiated hemisphere of the companion
- companion has phases like the moon or Venus
- e.g. HS2333+3927: Hot star
  (33000K) & cool star (3000K)
- Albedo: percentage of light refelected from the irradiated surface.

# Refection effect



Vuckovic et al. 2016

- The refelction effect is not simply reflected light
- the irradiated hemisphere is strongly heated
- e.g. AA Dor: A hot subdwarf (40000K) & brown dwarf (3000K)
- hemisphere is heated to more than 20000K
- redistribution of flux from one wavelengths range to the other
  - $\rightarrow$  albedo can be larger than 1 (100%)
- synchronised rotation, no heat exchange expected

# Reflection effect



<sup>•</sup> CoRoT 1b: Hot Jupiter: mass M=1.03M<sub>Jup</sub>;

radius: R=1.49 R<sub>Jup</sub>

- CoRoT 1b: Reflection effect and eclipse of a transiting planet discovered for the first time (Snellen et al. 2009)
- Orbital period 1.509 d, light variation 0.01%

$$T_{2,\text{new}} = T_2 \left( 1 + \alpha \left( \frac{T_1}{T_2} \right)^4 \left( \frac{R_1}{a} \right)^2 \right)^{0.25}$$
(3.13)

#### The Roche Model

# The search for and analysis of new sdB binaries as well as the classification of variable hot subdwarf candidates

Research workshop on evolved stars

# Veronika Schaffenroth

10.09.2021

Institute for Physics and Astronomy Email: schaffenroth@astro.physik.uni-potsdam.de Room: 2.118 Introduction

# Hot subdwarf stars of spectral type B (sdB)

4–2



Introduction

Hot subdwarfs in binaries with unseen companion discovered by RV method



CD-30°1122, *P* = 0.0498 d (Geier et al. 2013)

PHL 457, *P* = 0.3131 d (Schaffenroth et al. 2014)

$$f(m) = \frac{M_2^3 \sin^3 i}{(M_1 + M_2)^2} = \frac{K_1^3 P}{2\pi G}$$
  
more than 50% of sdBs in close binaries (P < 1 d

Introduction

# Formation of sdB binary



Introduction

#### Soker 1998 AJ

- Orbit of planet in envelope of evolved star
- fate of planet:
  - evaporation
  - merger with the core
  - survival for  $\geq 10 M_{\text{Jupiter}}$  depending on separation
    - $\rightarrow$  ejection of envelope



© Mark Garlick / HELAS

#### $\rightarrow$ studying the influence of planets on stellar evolution

# Light variation of compact sdB binaries



Introduction

#### **Ellipsoidal Variations**

## Ellipsoidal modulation and Doppler beaming (sdB+WD)



Pelisoli et al. (2021) Introduction

### Eclipsing Reflection effect (HW Vir systems)



## Reflection effect



Introduction

# -Minimum companion masses of hot subdwarfs with cool companions $\begin{bmatrix} \sqrt{4} - 1 \\ -1 \end{bmatrix}$



$$f(m) = \frac{M_2^3 \sin^3 i}{(M_1 + M_2)^2} = \frac{K_1^3 P}{2\pi G}$$

Introduction

# Ground-based lightcurve surveys

### OGLE

**Optical Gravitational Lensing Experiment** 



 $\rightarrow$  observation of the lightcurve of many stars in different fields  $\rightarrow$  discovery of planetary transits, pulsators, eclipsing binaries

CRTS, PTF, ZTF, BlackGEM, ....

## ATLAS

Asteroid Terrestrial-impact Last Alert System



 $\rightarrow$  a robotic astronomical survey looking for near-earth objects  $\rightarrow$  located in Hawaii, planned in the southern hemisphere

## 150 HW Vir candidate systems: P = 0.05 - 1.26 d



# The EREBOS project

EREBOS (Eclipsing Reflection Effect Binaries from **Optical** Surveys)

- homogeneous data analysis of all newly discovered HW Vir systems
- photometric and spectroscopic follow-up of all targets to determine fundamental (*M*, *R*), atmospheric (*T*<sub>eff</sub>, log *g*) and system parameters (*a*, *P*)
- spectroscopic and photometric follow-up

### Key questions:

- minimum mass of the companion necessary to eject the common envelope?
- fraction of close substellar companions to sdB stars
- better understanding of the CE phase and the reflection effect





EREBOS God of darkness

# Target selection – Gaia catalogue of hot subdwarf candidates



Photometric projects

## Photometric project I



 $\rightarrow$  Crossmatch with photometric surveys – search for, follow-up observation of and light curve analysis of HW Vir system candidates to derive fundamental parameters

### Photometric project II



Geier et al. 2019

 $\rightarrow$  Crossmatch with new Gaia photometric variable catalogue – search for, follow-up observation of and classification of light curves of variable hot subdwarf candidates

 $\rightarrow$  amplitude, period, light curve shape