Photometric variability of binaries

Research workshop on evolved stars

Veronika Schaffenroth

30.08.2022

Institute for Physics and Astronomy
Email: schaffenroth@astro.physik.uni-potsdam.de
Room: 2.118

Introduction

Stars, whose brightness vary periodically, semi-periodically or irregularly as seen from earth

- extrinsic variables: variability is due to the eclipse of one star by another or the effect of stellar rotation
- intrinsic variables: variation is due to physical changes in the star or stellar system

Extrinsic variables

Transiting planets/Eclipsing binaries

Rotating variables

Pulsating variables

Cataclysmic variables

Types of variable stars

Binary Stars: Overview

Binaries

$50 \%-80 \%$ of all stars in the solar neighbourhood belong to multiple systems.

Duchene \& Kraus 2013
\rightarrow stellar evolution cannot be understood without understanding binary evolution

Rough classification:
apparent binaries: stars are not physically associated, just happen to lie along same line of sight ("optical doubles").
visual binaries: bound system that can be resolved into multiple stars
(e.g., Mizar); can image orbital motion, periods typically 1 year to several 1000 years.
spectroscopic binaries: bound systems, cannot resolve image into multiple stars, but see Doppler effect in stellar spectrum; often short periods (hours...months).

To determine stellar masses, use Kepler's 3rd law:

$$
\frac{a^{3}}{P^{2}}=\frac{G}{4 \pi^{2}}\left(m_{1}+m_{2}\right)
$$

where

- $M_{1,2}$: masses
- P : period
- a semimajor axis

Observational quantities:

- P - directly measurable
- a - measurable from image if and only if distance to binary and the inclination are known

Problem when analysing orbits: orientation of orbit in space: "inclination"

In simplest case: real semimajor axis:

$$
a_{\text {observed }}=a_{\text {real }} \cos i
$$

Spectroscopic Binaries

Spectroscopic binaries: Components close together: orbital motion via periodic Doppler shift of spectral lines.
SB2 = both spectra are visible
SB1 = only one spectrum visible
in eclipsing SB2 systems the inclination (close to $\mathrm{i}=90^{\circ}$) and masses for both components can be determined.

CD $-30^{\circ} 11223$ (Geier, ..., Schaffenroth et al. 2013, A\&A 554, 10)

Motion of star visible through
Doppler shift
in stellar spectrum:

$$
\frac{\Delta \lambda}{\lambda}=\frac{v_{r}}{c}=\frac{v \sin i}{c} \sin \frac{2 \pi}{P} t
$$

Spectroscopic binaries

Double-lined spectra, case SB2

Assume circular orbit ($e=0$)
K_{1}, K_{2} velocity half amplitudes of components $1 \& 2$
$P \quad$ orbital period
$2 \pi a_{1 / 2}$ orbital radii of components $1 \& 2$

$$
\begin{aligned}
& K_{1 / 2}=\frac{2 \pi a_{1 / 2}}{P} \sin i \\
\Rightarrow & a_{1 / 2} \sin i=\frac{P}{2 \pi} K_{1 / 2}
\end{aligned}
$$

again $\sin i$ remains indetermined

Spectroscopic binaries

centre of mass law:

$$
\frac{M_{1}}{M_{2}}=\frac{a_{2}}{a_{1}}=\frac{K_{2}}{K_{1}}
$$

Kepler's third law:

$$
\begin{gathered}
M_{1}+M_{2}=\frac{4 \pi^{2}}{G P^{2}} a^{3}, \\
a=a_{1}+a_{2}=\frac{P}{2 \pi}\left(K_{1}+\frac{P}{2 \pi} K_{2}\right) / \sin i \\
\Rightarrow M_{1}+M_{2}=\frac{4 \pi^{2}}{G P^{2}} \frac{P^{3}}{(2 \pi)^{3}} \frac{\left(K_{1}+K_{2}\right)^{3}}{(\sin i)^{3}}(\star) \\
\Rightarrow M_{1}+M_{2}=\frac{P}{2 \pi G} \frac{\left(K_{1}+K_{2}\right)^{3}}{(\sin i)^{3}}
\end{gathered}
$$

$$
\left(M_{1}+M_{2}\right)(\sin i)^{3}=\frac{P}{2 \pi G}\left(K_{1}+K_{2}\right)^{3}
$$

\Rightarrow two equations for three unknowns ($\left.M_{1}+M_{2}, \sin i\right)$, $\sin i$ can only be determined for eclipsing binaries

Spectroscopic binaries

Single-lined spectra, case SB1

(only one spectrum visible):
K_{2} unknown: $K_{2}=K_{1} \frac{M_{1}}{M_{2}}$
Insert in equation (\star):

$$
\begin{gathered}
\left(M_{1}+M_{2}\right)(\sin i)^{3}=\frac{P}{2 \pi G}\left(K_{1}+K_{1} \frac{M_{1}}{M_{2}}\right)^{3} \\
\frac{M_{2}\left(1+\frac{M_{1}}{M_{2}}\right)(\sin i)^{3}}{\left(1+\frac{M_{1}}{M_{2}}\right)^{3}}=\frac{P K_{1}^{3}}{2 \pi G}
\end{gathered}
$$

Mass function $f(M)$:

$$
f(M)=\frac{M_{2}(\sin i)^{3}}{\left(1+\frac{M_{1}}{M_{2}}\right)^{2}}=\frac{P K_{1}^{3}}{2 \pi G}
$$

Spectroscopic binaries: Radial velocity curve

http://astro.unl.edu/naap/esp/animations/radialVelocitySimulator.html

Light Curves of Eclipsing Binary Stars

Eclipsing Binaries

Determination of diameters d_{A} and d_{B} from eclipse timing:
Duration of eclipse:

$$
\begin{equation*}
d_{A}+d_{B}=v\left(t_{5}-t_{2}\right) \tag{3.1}
\end{equation*}
$$

Duration of eclipse egress:

$$
\begin{equation*}
d_{A}-d_{B}=v\left(t_{4}-t_{3}\right) \tag{3.2}
\end{equation*}
$$

therefore:

$$
\begin{align*}
& d_{A}=\frac{1}{2} v\left(t_{5}-t_{2}+t_{4}-t_{3}\right) \tag{3.3}\\
& d_{B}=\frac{1}{2} v\left(t_{5}-t_{2}-t_{4}+t_{3}\right) \tag{3.4}
\end{align*}
$$

Note: requires extremely accurate photometry

Eclipsing Binaries

Stephan-Boltzmann-Law

$$
\begin{equation*}
L_{1 / 2}=4 \pi R_{1 / 2}^{2} T_{1 / 2}^{4} \tag{3.5}
\end{equation*}
$$

$$
\begin{array}{cc}
\frac{T_{1}}{T_{2}}=\left(\frac{F 1-F 2}{F_{1}-F_{3}}\right)^{1 / 4} & \text { (3.6) } \quad \frac{R_{1}}{R_{2}}=\left(\frac{F 1-F 3}{F_{2}}\right)^{1 / 2} \\
\frac{R_{1}}{a}=\frac{1}{2}\left(\sin 2 \pi \Phi_{a}-\sin 2 \pi \Phi_{b}\right) & \text { (3.7) }
\end{array} \frac{R_{2}}{a}=\frac{1}{2}\left(\sin 2 \pi \Phi_{a}+\sin 2 \pi \Phi_{b}\right) .
$$

Eccentricity in eclipsing binaries

$$
\Delta t=\frac{2 P}{\pi} e \cos \omega
$$

R. Hynes

In a close binary system: Gravitational potential described by the Roche potential:
$\Phi_{R}(\mathbf{r})=-\frac{G M_{1}}{\left|\mathbf{r}-\mathbf{r}_{1}\right|}-\frac{G M_{2}}{\left|\mathbf{r}-\mathbf{r}_{2}\right|}-\frac{1}{2}(\vec{\omega} \times \mathbf{r})^{2}$
and where

$$
\vec{\omega}=\left(\frac{G M}{a^{3}}\right)^{1 / 2} \hat{e}
$$

Stellar surfaces are isosurfaces of this potential
\Rightarrow stars are non-spherical
\Longrightarrow Stellar magnitude changes with orbit. Roche radius:

$$
\begin{equation*}
\frac{R_{L}}{a}=\frac{0.49 q^{2 / 3}}{0.6 q^{2 / 3}+\ln \left(1+q^{1 / 3}\right)} \tag{3.11}
\end{equation*}
$$

Carroll \& Ostlie

Approximations:

- stellar potentials are point-like (most of the stellar mass in concentrated in its core)
- Orbits are circularised (quickly established by tidal forces)
- rotation axes are perpendicular to the orbital plane
- stellar rotation is synchronous (tidally locked to the orbit)

The Roche Model

Detached Binaries

The Roche Model

Contact Binaries

The Roche Model

Overcontact Binaries

The Roche Model

light curves of eclipsing binaries: detached, contact, overcontact (top to bottom)

FIGURE 3.17. Center-to-limb variation. This figure shows the aspect angle (angle between normal vector \mathbf{n} and radiation emission direction e) appearin in the mathematical formulation of the limb-darkening. The right part of th figure illustrates that the depth of the atmosphere region (and thus temperature accessible to an observer varies with the aspect angle γ.

Kallrath \& Milone (1999)

- intensity of the stellar disk decreases from the centre to the limb temperature is increaing with increasing photospheric depth
- can be measured for the sun
- can be measured by microlensing
- can be calculated from model atmospheres
- linear law: $I=I_{0}(1-\epsilon+\epsilon \cos \theta)$
$\epsilon=$ limb darkening factor, wavelength dependent sun in the UV ($<1600 \AA$): limb brightening due to chromospheric temperature rise

Limb darkening

Claret \& Bloemen (2011, A\&A 529, A75)

- limb darkening coefficient is temperature dependent
- other laws in use

Claret's law:

$$
\begin{align*}
& \quad I / I_{0}=1-a_{1}\left(1-\mu^{1 / 2}\right)-a_{2}(1-\mu)-a_{3}\left(1-\mu^{3 / 2}\right)-a_{3}\left(1-\mu^{2}\right) \tag{3.12}\\
& \mu=\cos \gamma
\end{align*}
$$

HD 209458b: the first transiting exoplanet discovered, HST light curve:

- Transit is not central
- transit depth is not constant
$\bullet \longrightarrow$ caused by limb darkening

Brown et al. (2001, ApJ 552:699)

- non-spherical stars, surface gravity varies across the surface
- von Zeipel's Theorem: radiative atmospheres: black body: diffusion equation
- due to temperature gradient in star Flux $F_{R} \propto \nabla B \propto \frac{d B}{d \phi} \nabla \Phi$ $\propto g$
- in the convective case $\mathrm{F} \approx \mathrm{g}^{0.32}$ (Lucy's law, 1967)
- derive numerically from appropriate model atmospheres
- $F \propto g^{y}$ (tables by Claret \& Bloemen, 2011)

- non-spherical stars, surface gravity varies across the surface
- derive numerically from appropriate model atmospheres
- $F \propto g^{y}$ (tables by Claret \& Bloemen, 2011)

Tidally-distorted, limb-darkened, eclipsing, with and without grav-
ity darkening.

Heber et al. 2004, A\&A 420, 251

- light variation by irradiated hemisphere of the companion
- companion has phases like the moon or Venus
- e.g. HS2333+3927: Hot star (33000K) \& cool star (3000K)
- Albedo: percentage of light refelected from the irradiated surface.
- The refelction effect is not simply reflected light
- the irradiated hemisphere is strongly heated
- e.g. AA Dor: A hot subdwarf (40000K) \& brown dwarf (3000K)
- hemisphere is heated to more than 20000K
- redistribution of flux from one wavelengths range to the other \longrightarrow albedo can be larger than 1 (100\%)
- synchronised rotation, no heat exchange expected

Vuckovic et al. 2016

- CoRoT 1b: Hot Jupiter: mass $\mathrm{M}=1.03 \mathrm{M}_{\mathrm{Jup}}$; radius: $\mathrm{R}=1.49 \mathrm{R}_{\text {Jup }}$
- CoRoT 1b: Reflection effect and eclipse of a transiting planet discovered for the first time (Snellen et al. 2009)
- Orbital period 1.509 d , light variation 0.01\%

Snellen et al., 2009, Nature 459,543

The search for and analysis of new sdB binaries as well as the classification of variable hot subdwarf candidates

Research workshop on evolved stars

Veronika Schaffenroth

$$
10.09 .2021
$$

Institute for Physics and Astronomy
Email: schaffenroth@astro.physik.uni-potsdam.de
Room: 2.118

Introduction

Hot subdwarfs in binaries with unseen companion discovered by RV method

CD-30 $1122, ~ P=0.0498 \mathrm{~d}$ (Geier et al. 2013)

PHL 457, $P=0.3131$ d (Schaffenroth et al. 2014)

$$
f(m)=\frac{M_{2}^{3} \sin ^{3} i}{\left(M_{1}+M_{2}\right)^{2}}=\frac{K_{1}^{3} P}{2 \pi G}
$$

more than 50% of $s d B s$ in close binaries ($P<1 \mathrm{~d}$)

Formation of sdB binary
Ctable RLOF + CE channel
(mass ratio $<1.2-1.5$)

Han et al. $(2002,2003)$

Soker 1998 AJ

- Orbit of planet in envelope of evolved star
- fate of planet:
- evaporation
- merger with the core
- survival for $\geq 10 M_{\text {Jupiter }}$ depending on separation
\rightarrow ejection of envelope
\rightarrow studying the influence of planets on stellar evolution

Ellipsoidal Variations

Ellipsoidal modulation and Doppler beaming (sdB+WD)

Pelisoli et al: (2021)
Introduction

Eclipsing Reflection effect (sdB+dM/BD) systems

Eclipsing Reflection effect (HW Vir systems)

Schaffenroth et al. 2019 in press

$$
f(m)=\frac{M_{2}^{3} \sin ^{3} i}{\left(M_{1}+M_{2}\right)^{2}}=\frac{K_{1}^{3} P}{2 \pi G}
$$

OGLE

Optical Gravitational Lensing Experiment

\rightarrow observation of the lightcurve of many stars in different fields
\rightarrow discovery of planetary transits, pulsators, eclipsing binaries CRTS, PTF, ZTF, BlackGEM,

ATLAS

Asteroid Terrestrial-impact Last Alert System

\rightarrow a robotic astronomical survey looking for near-earth objects
\rightarrow located in Hawaii, planned in the southern hemisphere

EREBOS (Eclipsing Reflection Effect Binaries from Optical

 Surveys)- homogeneous data analysis of all newly discovered HW Vir systems
- photometric and spectroscopic follow-up of all targets to determine fundamental (M, R), atmospheric ($T_{\text {eff }}, \log g$) and system parameters (a, P)
- spectroscopic and photometric follow-up

Key questions:

- minimum mass of the companion necessary to eject the common envelope?
- fraction of close substellar companions to sdB stars
- better understanding of the CE phase and the reflection
 effect

Target selection - Gaia catalogue of hot subdwarf candidates

Geier et al. 2019

Photometric project I

Geier et al. 2019
\rightarrow Crossmatch with photometric surveys - search for, follow-up observation of and light curve analysis of HW Vir system candidates to derive fundamental parameters

Geier et al. 2019
\rightarrow Crossmatch with new Gaia photometric variable catalogue - search for, follow-up observation of and classification of light curves of variable hot subdwarf candidates
\rightarrow amplitude, period, light curve shape

