Data reduction II Photometry with IRAF

Tiina Liimets (tiina.liimets@asu.cas.cz Office nr 209)

Research workshop on evolved stars 01.09.2022

Introduction

- Veronika's introduction to IRAF
- Text in yellow is for typing in IRAF terminal
- In my slides IRAF terminals are black or papaya color

Why data reduction?

 We need to subtract – or reduce – instrumental effects and background contamination.

Reducing instrumental effects:

- **BIAS**: image with zero exposure time. Estimate of the real zero of the CCD.
- FLAT: image of a uniformly illuminated surface.
 Estimate sensitivity difference throughout the CCD + dust grains.
- DARK: image with the same exposure time of the science image with the shutter closed.
 - Estimate the level of background current.

More is better

- Each of the counts on the images has an associated uncertainty.
- If we take n images, each with an uncertainty σ_i , the uncertainty on the average will be σ_i/\sqrt{n} .
- Therefore, the first step in data reduction is to calculate the average for BIAS, FLAT, and DARK images.

More is better

- Each of the counts on the images has an associated uncertainty.
- If we take n images, each with an uncertainty σ_i , the uncertainty on the average will be σ_i/\sqrt{n} .
- Therefore, the first step in data reduction is to calculate the average for BIAS, FLAT, and DARK images.

BIAS: not available for 65 cm telescope.

FLAT: master flat has already been created.

DARK: we need to calculate the median dark.

Mean or median?

- Either of those can be representative of a distribution which one should we use?
- The mean is sensitive to outliers the median is robust against outliers.
- The mean is not descriptive for skewed distributions.
- Give preference to the <u>median!</u>

IRAF - Image Reduction and Analysis Facility

We'll use the package noao.imred.ccdred

for the data reduction, and noao.digiphot.daophot

for the photometry.

• Load each part of the packages by typing their name followed by enter.

```
ecl> noao
      artdata.
                     digiphot.
                                    nobsolete.
                                                   onedspec.
      astcat.
                     focas.
                                    nproto.
                                                   rv.
                     imred.
                                    observatory
                                                   surfphot.
      astrometry.
      astutil.
                     mtlocal.
                                    obsutil.
                                                   twodspec.
noao> imred
                   crutil.
                                echelle.
                                             iids.
      argus.
                                                         kpnocoude.
                                                                      specred.
      bias.
                   ctioslit.
                                generic.
                                             irred.
                                                         kpnoslit.
                                                                      vtel.
                   dtoi.
                                                         quadred.
      ccdred.
                                hydra.
                                             irs.
imred> ccdred
      badpiximage
                         ccdmask
                                             flatcombine
                                                                mkskuflat
                                             mkfringecor
      ccdgroups
                         ccdproc
                                                                setinstrument
      ccdhedit
                         ccdtest.
                                            mkillumcor
                                                                zerocombine
      ccdinstrument
                         combine
                                            mkillumflat
      ccdlist
                         darkcombine
                                            mkskycor
ccdred> \Pi
```

Preparing working directory

- Always have a copy of original raw data!
- ! mkdir reduction
- All the files that we work with have to be in the same directory: science frames masterflats (same filters as your science frames) darks

How to properly see your data!!!!

- Full flux range of the CCD is usually up to 65 000 ADUs.
 Make sure you see them all!
- Good initial guess is to display flux range near mean.
 (use imstat to get the mean value)

How to properly see your data!!!!

```
Image Reduction and Analysis Facility
PACKAGE = tv
   TASK = display
                                image to be displayed
image
frame
                             1 frame to be written into
(bpmask =
                           BPM) bad pixel mask
(bpdispl=
                          none) bad pixel display (noneloverlaylinterpolate)
(bpcolor=
                           red) bad pixel colors
                              ) overlay mask
(overlay=
(ocolors=
                         green) overlay colors
(erase =
                           ues) erase frame
(border =
                            no) erase unfilled area of window
(select_=
                           yes) display frame being loaded
(repeat =
                            no) repeat previous display parameters
(fill =
                            no) scale image to fit display window
(zscale =
                           yes) display range of greylevels near median
                          0.25) contrast adjustment for zscale algorithm
(contras=
(zrange =
                           yes) display full image intensity range
(zmask =
                              フ sample mask
(nsample=
                          1000) maximum number of sample pixels to use
(xcenter=
                           0.5) display window horizontal center
                           0.5) display window vertical center
(ucenter=
(xsize =
                            1.) display window horizontal size
(ysize =
                            1.) display window vertical size
(xmag
                            1.) display window horizontal magnification
                            1.) display window vertical magnification
(ymag
Corder
                             4) spatial interpolator order (0=replicate, 1=linear)
(z1
                                minimum greylevel to be displayed
(z2
                                maximum greylevel to be displayed
                           log) greylevel transformation (linear llog lnone luser)
(ztrans =
(lutfile=
                              ) file containing user defined look up table
                            ql)
(mode
```

epar display

Choose the parameters well!

Play around with it!

< this is good average guess

Check your data

- All data is already in the same directory
- Remove useless science frames: clouds, satellites, tracking problems, etc.
- Creat a list with science frames.
 Is filename*.fits > list_science
- Display images in ds9 and <u>relocate</u> useless frames
 Open ds9, if not already open: !ds9 &
 Set proper parameters in display: epar display imexam @list_science 1
 (n next frame p previous frame q quit)

Master flat

- The master flats have already been created, but it is good practice to inspect them.
- Display the flat:

display masterflat-R.fit

Plot the flat:

implot masterflat-R.fit

Check image statistics:

imstat masterflat-R.fit

Master flat

Creating a master dark

- What is the exposure time of the images we will analyse?
 Check the header!
 Single frame: imhead [image name] lo+ | page
 Multible frames: hsel Object*fits \$I,exptime yes
 ("exptime" is the fits header keword)
- Which dark images should we use?
 imhead df-* lo+ | grep EXPTIME or hsel
- Create a list (text document) containing the names of the dark frames using the same exposure time as the science images.

Creating a master dark - epar darkcombine

Check parameters!

Ccdtype has to be empty!
Just put space.

```
pelisoli@octans:...2/envs/iraf27/iraf
                                   IRAF
                    Image Reduction and Analysis Facility
PACKAGE = ccdred
                                       @[name of the list you've
  TASK = darkcombine
                                               created
input = 🗍
                         @dark List of dark images to combine
(output =
                          Dark) Output dark image root name
(combine=
                        median) Type of combine operation
                       sigolip) Tupe of rejection
(reject =
                              ) CCD image type to combine
(ccdtype=
                            πο) Process images before combining?
(process=
(delete =
                            no) Delete input images after combining?
(clobber=
                            no) Clobber existing output image?
(scale =
                      exposure) Image scaling
                              ) Image section for computing statistics
(statsec=
                             0) minmax: Number of low pixels to reject
(nlow
                             1) minmax: Number of high pixels to reject
(nhigh =
                             1) Minimum to keep (pos) or maximum to reject (neg)
(nkeep =
(molip =
                           yes) Use median in sigma clipping algorithms?
(lsigma =
                            5.) Lower sigma clipping factor
(hsigma =
                            5.) Upper sigma clipping factor
(rdnoise=
                            0.) ccdclip: CCD readout noise (electrons)
                           1.3) ccdclip: CCD gain (electrons/DN)
(gain
                            0.) ccdclip: Sensitivity noise (fraction)
(snoise =
(polip =
                          -0.5) pclip: Percentile clipping parameter
                            0.) Value if there are no pixels
(blank =
(mode
                            q1)
```

Creating a master dark -

```
Aug 30 16:01: IMCOMBINE
  combine = median, scale = exposure, zero = none, weight = none
  reject = sigclip, mclip = yes, nkeep = 1
  lsigma = 5., hsigma = 5.
  blank = 0.
                Images
       df60s__0001.fits
       df60s__0002.fits
       df60s__0003.fits
       df60s__0004.fits
       df60s__0005.fits
       df60s__0006.fits
       df60s__0007.fits
       df60s__0008.fits
       df60s__0009.fits
       df60s 0010.fits
  Output image = Dark, ncombine = 10
```

Check what you got! display imstat

Reducing the science images

- We have images on two different filters: R or V.
 You have to use the correct master flat for each of them.
- Make a list containing the R images, and another containing the V images, e.g.

 Use the task ccdproc to divide the images by the flat and subtract the dark current. Do it separately for R and V images.

Reducing the science images 1 - ccdproc

Check parameters!

```
pelisoli@octans:...2/envs/iraf27/iraf
                                   IRAF
                    Image Reduction and Analysis Facility
PACKAGE = ccdred
  TASK = ccdproc
                        @Vimgs List of CCD images to correct
images = |
(output =
                   c//@Vimgs) List of output CCD images
(ccdtype=
                              ) CCD image type to correct
                             0) Maximum image caching memory (in Mbytes)
(max_cac=
                            no) List processing steps only?
(noproc =
(fixpix =
                            no) Fix bad CCD lines and columns?
(oversca=
                            no) Apply overscan strip correction?
                            no) Trim the image?
(trim
                            no) Apply zero level correction?
(zerocor=
                           yes) Apply dark count correction?
(darkcor=
(flatcor=
                           yes) Apply flat field correction?
(illumco=
                            no) Apply illumination correction?
                            no) Apply fringe correction?
(fringec=
(readcor=
                            no) Convert zero level image to readout correction?
                            no) Convert flat field image to scan correction?
(scancor=
(readaxi=
                          line) Read out axis (column|line)
(fixfile=
                              ) File describing the bad lines and columns
(biassec=
                                Overscan strip image section
                               ) Trim data section
(trimsec=
More
                                                                    for HELP
```

Reducing the science images 2 - ccdproc

```
IRAF
                    Image Reduction and Analysis Facility
PACKAGE = ccdred
  TASK = ccdproc
More
        = Π
(zero
                              ) Zero level calibration image
(dark
                     Dark.fits) Dark count calibration image
(flat
              masterflat–V.fit) Flat field images
(illum =
                              ) Illumination correction images
                              ) Fringe correction images
(fringe =
                            1.) Minimum flat field value
(minrepl=
                     shortscan) Scan type (shortscan|longscan)
(scantup=
(nscan =
                             1) Number of short scan lines
                            no) Fit overscan interactively?
(interac=
(functio=
                      legendre) Fitting function
(order =
                             1) Number of polynomial terms or spline pieces
(sample =
                             *) Sample points to fit
(naverag=
                             1) Number of sample points to combine
(niterat=
                             1) Number of rejection iterations
(low_rej=
                            3.) Low sigma rejection factor
(high_re=
                            3.) High sigma rejection factor
(grow
                            0.) Rejection growing radius
(mode
                            q1)
                                                             ESC-? for HELP
```

Reducing the science images 3 <u>ccdproc</u> in action

```
ale=28645.95
Object_3__R_0028.fits: Aug 30 16:19 Dark count correction image is Dark.fits with scale=1.
Object_3__R_0028.fits: Aug 30 16:19 Flat field image is masterflat-R.fit with scale=28645.95
Object_3__R_0029.fits: Aug 30 16:20 Dark count correction image is Dark.fits with scale=1.
Object_3__R_0029.fits: Aug 30 16:20 Flat field image is masterflat-R.fit with scale=28645.95
Object_3__R_0030.fits: Aug 30 16:20 Dark count correction image is Dark.fits with scale=28645.95
```

Check what you got! Reduced files start with "c"
 display
 imstat (raw vs reduced frame)
 imhead (reduction steps added into the end of the fits header)

- Now that the images have been reduced, we can perform photometry.
- The first step is to run the task daofind, which will find the stars in our images.
- There are a few parameters we need to measure in our image to best setup daofind: the sky and the F(ull)W(idth)H(alf)M(aximum)
- For that, display an image at the beginning of the sequence, middle, and end:

```
display cCyg2R001.fit 1 display cCyg2R111.fit 2 display cCyg2R223.fit 3
```

• Use the task **imexamine** – choose a relatively bright near the centre of the image. Centre the cursor on this star.

```
r → display the radial profile
e → show contours

a → write measurements to the screen
```


 Check the sky values in the three images. We will use this to set our initial guess for the background. The value of sigma is in turn the square-root of the background (assuming Poissonic noise).

If the values are very different, use the median; if they are similar, use the mean.

E.g.

 Check the FWHM in the three images. We will use this to set the aperture and the sky region for the photometry.

DAOFIND (to find the stars coordinates)

"cCyg*fits" selects many files

```
pel/soli@octans:...2/envs/iraf27/iraf
                                                           IRAF
                                           Image Reduction and Analysis Facility
                       PACKAGE = daophot
                          TASK = daofind
In which image(s)
                               = cCyg2R001.fit,cCyg2R223.fit Input image(s)
                       image
    to run it
                       output =
                                              default Output coordinate file(s) (default: image.coo.?)
                                                      ) Output density enhancement image(s)
                       (starmap=
                       (skymap =
                                                       Output sky image(s)
                       (datapar=
                                  :e
                                                      ) Data dependent parameters
                                   :e
                       (findpar=
                                                      ) Object detection parameters
                                              nearest) Boundary extension (constant|nearest|reflect|wra
                       (boundar=
                                                    0.) Constant for boundary extension
                       (constan=
                                                    no) Interactive mode?
                       (interac=
                       (icomman=
                                                      ) Image cursor: [x y wcs] key [cmd]
                                                      ) Graphics cursor: [x y wcs] key [cmd]
                       (gcomman=
                                            )_.wcsout) The output coordinate system (logical, tv,physica
                       (wcsout =
                                             )_.cache) Cache the image pixels?
                       (cache =
                       (verifu =
                                            )_.verify) Verify critical daofind parameters?
                       (update =
                                            )_.update) Update critical daofind parameters?
                       (verbose=
                                           )_.verbose) Print daofind messages?
                       (graphic=
                                          )_.graphics) Graphics device
                       (displau=
                                           )_.display) Display device
                       (mode
                                                    q1)
                                                                                           for HELP
```

DAOFIND

The very best is to align your images. We will do it on Friday.

DAOFIND (datapars)

":q" to go back

	pelisoli@octans:2/envs/iraf27/iraf _ 🗀 🛪
PACKAGE = daophot TASK = datapars	I R A F Image Reduction and Analysis Facility
TASK = datapars (scale =	1.) Image scale in units per pixel 2.5) FWHM of the PSF in scale units yes) Features are positive? 20.) Standard deviation of background in counts INDEF) Minimum good data value INDEF) Maximum good data value poisson) Noise model CCD readout noise image header keyword GAIN) CCD gain image header keyword O.) CCD readout noise in electrons 1.3) Gain in electrons per count EXPTIME) Exposure time image header keyword Airmass image header keyword FILTER) Filter image header keyword UT) Time of observation image header keyword 1.) Exposure time INDEF) Airmass INDEF) Filter INDEF) Time of observation
(mode =	q1)
	ESC-? for HELP

DAOFIND (findpars)

DAOFIND in action

```
FWHM of features in scale units (2.7) (CR or value):

New FWHM of features: 2.7 scale units 2.7 pixels
Standard deviation of background in counts (41.2) (CR or value):

New standard deviation of background: 41.2 counts

Detection threshold in sigma (5.) (CR or value):

New detection threshold: 5. sigma 206. counts

Minimum good data value (INDEF) (CR or value):

New minimum good data value: INDEF counts

Maximum good data value (INDEF) (CR or value):
```

You might see this.
 Press enter.

 Depending on the IRAF version you might see a lot of numbers running on the screen.

```
545.99
          726.55
                   -2.242
                           0.472
                                  -0.116
                                           0.189
                                                 1041
  32.06
          729.13
                   -0.228
                           0.405
                                  -0.511
                                           0.681
                                                 1042
 375.02
          728.18
                   -0.400
                                   0.236
                           0.666
                                           0.077
                                                 1043
          727.93
                   -0.678
                           0.499
                                  -0.359
  409.17
                                           0.170
                                                 1044
 585.04
          727.64
                           0.528
                   -2.160
                                  -0.154
                                           0.232
                                                1045
          728.76
  134.03
                   -0.790
                           0.513
                                  -0.763
                                           0.001 1046
 257.36
          728.97
                   -0.835
                           0.457
                                  -0.790
                                          -0.208
                                                 1047
  731.38
          728.65
                   -2.831
                           0.506
                                  -0.287
                                           0.054
                                                 1048
          729.83
  979.69
                   -0.357
                           0.692
                                   0.231
                                          -0.168 1049
          731.73
 277.59
                   -0.727
                           0.545
                                  -0.608
                                           0.211 1050
          730.58
                           0.534
                                          -0.022 1051
  891.52
                   -2.332
                                  -0.400
                   -0.427
  77.04
          733.07
                           0.515
                                  -0.025
                                           0.528
                                                 1052
          734.49
                           0.523
                                           0.251
                   -1.049
                                  -0.457
  352.91
                                                 1053
 808.54
          734.80
                           0.538
                                           0.123
                   -1.416
                                   0.224
                                                 1054
          735.24
 823.96
                   -1.343
                           0.631
                                   0.210
                                           0.406
                                                 1055
daophot>
```

DAOFIND (outputs)

- Text files: *.fits.coo.1
- Check what you got (e.g ! more filename)

```
daophot> ! more cObject_3__R_0001.fits.coo.1
                                                      %-23s
#K IRAF
               = NOAO/IRAFV2.16
                                           version
                                                      %-23s
#K USER
               = sinope
                                           name
#K HOST
               = sinope-ThinkPad-X280
                                                      %-23s
                                           computer
#K DATE
                                          yyyy-mm-dd %-23s
               = 2022-08-31
#K TIME
                                                      %-23s
               = 09:41:37
                                           hh:mm:ss
#K PACKAGE
                                                      %-23s
               = apphot
                                           name
#K TASK
                                                      %-23s
               = daofind
                                           name
#K SCALE
                                                      %-23.7g
               = 1.
                                           units
#K FWHMPSF
               = 2.7
                                                      %-23.7g
                                           scaleunit
#K EMISSION
                                                      %-23b
               = yes
                                           switch
#K DATAMIN
               = INDEF
                                                      %-23.7g
                                           counts
#K DATAMAX
               = INDEF
                                                      %-23.7g
                                           counts
#K EXPOSURE
                                                      %-23s
                                           keyword
#K AIRMASS
                                          keyword
                                                      %-23s
               = FILTER
#K FILTER
                                          keyword
                                                      %-23s
                                                      %-23s
#K OBSTIME
               = UT
                                           keyword
#K NOISE
                                                      %-23s
               = poisson
                                           model
#K SIGMA
               = 41.2
                                                      %-23.7g
                                           counts
               = GAIN
                                                      %-23s
#K GAIN
                                           keyword
                                                      %-23.7g
#K EPADU
               = 1.3
                                           e-/adu
               = ""
#K CCDREAD
                                                      %-23s
                                           keyword
#K READNOISE
               = 0.
                                                      %-23.7g
#K IMAGE
               = c0b_ject_3_R_0001.fits
                                                      %-23s
                                          imagename
               = 2.7
#K FWHMPSF
                                                      %-23.7g
                                           scaleunit
               = 5.
#K THRESHOLD
                                                      %-23.7g
                                          sigma
               = 1.5
#K NSIGMA
                                                      %-23.7g
                                          sigma
                                                      %-23.7g
#K RATIO
               = 1.
                                           number
               = 0.
                                                      %-23.7g
#K THETA
                                           degrees
#K SHARPLO
               = 0.2
                                                      %-23.7g
                                           number
#K SHARPHI
               = 1.
                                                      %-23.7g
                                           number
#K ROUNDLO
               = -1.
                                           number
                                                      %-23.7g
#K ROUNDHI
               = 1.
                                                      %-23.7g
                                           number
#N XCENTER
              YCENTER
                        MAG
                                  SHARPNESS
                                               SROUND
                                                            GROUND
                                                                        ID
#U pixels
              pixels
#F %-13.3f
                                  %-12.3f
              %-10.3f
                        %-9.3f
                                               %-12.3f
                                                            %-12.3f
                                                                        %-6d
   873.889
              2.343
                                  0.697
                                               -0.288
                                                            0.298
                        -0.477
                                                                        1
   479.859
              4.346
                        -0.008
                                  0.662
                                               -0.377
                                                            -0.587
                                  0.584
   926.247
              4.867
                        -0.732
                                               0.344
                                                            0.009
   805.686
              6.033
                                  0.514
                        -0.296
                                                            0.162
                                               -0.417
              6.328
                                  0.556
                                               -0.131
                                                                         5
   1052.871
                         -1.039
                                                            0.102
```

DAOFIND (tdump - massasing text files)

- To check the stars that have been found, let's mark them on the image.
- First, dump the coordinates and the ID of the stars onto a file (choose one coordinate file):

tdump cCyg2R001.fit.coo.1 columns=c1,c2,c7 > coordsR

- Check what you got: ! more coordsR
- You might need to check the name of the columns:

```
tprint [FILE].coo.1 | less "q" to exit
```

Edit the parameters of the task tymark (next slide)

DAOFIND (tvmark: to display the found stars)

```
IRAF
                    Image Reduction and Analysis Facility
PACKAGE = tv
   TASK = tvmark
frame
                             1 Default frame number for display
                       coordsR Input coordinate list
coords =
(logfile=
                              ) Output log file
                            no) Automatically log each marking command
(autolog=
(outimag=
                              ) Output snapped image
(deletio=
                              ) Output coordinate deletions list
                              ) Image cursor: [x y wcs] key [cmd]
(command=
                        circle) The mark type
(mark
                            25) Radii in image pixels of concentric circles
(radii =
                             0) Lengths and width in image pixels of concentric
(lengths=
(font
                        raster) Default font
                             0) Gray level of marks to be drawn
(color
                           yes) Label the marked coordinates
(label =
                            no) Number the marked coordinates
(number =
(nxoffse=
                             0) X offset in display pixels of number
(nyoffse=
                             0) Y offset in display pixels of number
(pointsi=
                             3) Size of mark type point in display pixels
(txsize =
                             2) Size of text and numbers in font units
(toleran=
                           1.5) Tolerance for deleting coordinates in image pixe
                            no) Mode of use
(interac=
                            q1)
(mode
ccdred>
```

DAOFIND (tvmark)

tvmark is also useful to help us define the aperture, annulus, and dannulus

NB!

tymark: radii

Aperture (radii): where the flux of the star will be measured. Usually ~2.5 x FWHM

Phot: aperture, annulus, dannulus

Dannulus: width of the ring to count the background. ~5-10 pixels

* For a Gaussian distribution: FWHM = 2.35σ 99.99% of the light is contained within $4\sigma = 1.7$ FWHM

Annulus (radii): distance at which to start counting the background. At least 2.5 x FWHM ~4 x FWHM in our example

PHOT

List of reduced R (or V) images.

NB!One coordinate file for all frames

```
pelisoli@octans:...2/envs/iraf27/iraf
                                    IRAF
                    Image Reduction and Analysis Facility
PACKAGE = daophot
   TASK = phot
                   ·@cimgsR_beg Input image(s)
image
coords = cCyg2R001.fit.coo.1 Input coordinate list(s) (default: image.coo.?)
output =
                       default Output photometry file(s) (default: image.mag.?)
skufile =
                                 Input sky value file(s)
(plotfil=
                               ) Output plot metacode file
(datapar=
                                 Data dependent parameters
(centerp= :e
                               ) Centering parameters
(fitskup= :e
                                 Sky fitting parameters
(photpar=
                                 Photometry parameters
                            no) Interactive mode?
(interac=
(radplot=
                            no) Plot the radial profiles?
                               ) Image cursor: [x y wcs] key [cmd]
(icomman=
(gcomman=
                                 Graphics cursor: [x y wcs] key [cmd]
                      )_.wcsin) The input coordinate system (logical, tv,physical
(wcsin =
                     )_.wcsout) The output coordinate system (logical, tv, physica
(wcsout =
(cache =
                      )_.cache) Cache the input image pixels in memory?
(verifu =
                     )_.verify) Verify critical phot parameters?
                     )_.update) Update critical phot parameters?
(update =
(verbose=
                     )_.verbose) Print phot messages?
(graphic=
                   )_.graphics) Graphics device
                     )_.display) Display device
(display=
More
                                                                     for HELP
```

PHOT (centerpars)

PHOT (fitskypars)

Your data specific!

```
pelisoli@octans:...2/envs/iraf27/iraf
                                   IRAF
                    Image Reduction and Analysis Facility
PACKAGE = daophot
   TASK = fitskupars
(salgori=
                          mode) Sky fitting algorithm
(annulus=
                           15.) Inner radius of sky annulus in scale units
(dannulu=
                           10.) Width of sky annulus in scale units
                          415.) User sky value
(skyvalu=
(smaxite=
                            20) Maximum number of sky fitting iterations
(sloclip=
                            0.) Lower clipping factor in percent
(shiclip=
                            0.) Upper clipping factor in percent
(snrejec=
                             50) Maximum number of sky fitting rejection iteratio
(sloreje=
                            3.) Lower K-sigma rejection limit in sky sigma
(shireje=
                            3.) Upper K-sigma rejection limit in sky sigma
(khist =
                            3.) Half width of histogram in sky sigma
(binsize=
                           0.1) Binsize of histogram in sky sigma
                            no) Boxcar smooth the histogram
(smooth =
(rgrow =
                            0.) Region growing radius in scale units
(mksku
                            no) Mark sky annuli on the display
                            q1)
(mode
                                                                     for HELP
```

PHOT

PHOT in action

```
Centering algorithm (centroid) (CR or value):

New centering algorithm: centroid

Centering box width in scale units (5.) (CR or value):

New centering box width: 5. scale units 5. pixels

Sky fitting algorithm (mode) (CR or value):

Sky fitting algorithm: mode

Inner radius of sky annulus in scale units (10.8) (CR or value):

New inner radius of sky annulus: 10.8 scale units 10.8 pixels

Width of the sky annulus in scale units (5.) (CR or value):

New width of the sky annulus: 5. scale units 5. pixels

File/list of aperture radii in scale units (6.8) (CR or value):

Aperture radius 1: 6.8 scale units 6.8 pixels

Standard deviation of background in counts (41.2) (CR
```

Lots of numbers on the screen but not always.

Possibly have to confirm your parameters.

```
confect_2_v_vvovitre
                                            1002.000
cObject_3__R_0039.fits
                           117.80
                                    724.61 1630.774
                                                       15.417 ok
cObject_3__R_0039.fits
                           157.64
                                    724.52 1629.492
                                                       14.740
cObject_3__R_0039.fits
                           488.41
                                    726.61
                                             1622.06
                                                       15.953
                                                                ok
                                           1630.802
                                                       14.261
c0bject_3__R_0039.fits
                           600.71
                                    725.55
                                                                ok
cObject_3__R_0039.fits
                           39.93
                                    727.46
                                           1623.682
                                                       15.590
                                                                ok
cObject_3__R_0039.fits
                           535.45
                                    726.53 1639.767
                                                       14.240
                                                                ok
                                                       13.923
c0bject_3__R_0039.fits
                           546.02
                                    726.52 1630.498
                                                                ok
                           31.74
cObject_3__R_0039.fits
                                    729.13 1628.021
                                                       15.771
                                    728.29 1632.699
cObject_3__R_0039.fits
                           375.03
                                                       16.592
                                                                ok
cObject_3__R_0039.fits
                                    727.89 1621.293
                           409.29
                                                       15.092
                                                                ok
cObject_3__R_0039.fits
                           585.08
                                    727.53
                                            1646.165
                                                       14.111
                                                                ok
cObject_3__R_0039.fits
                           134.08
                                    728.71
                                            1629.078
                                                       15.446
                                                                ok
cObject_3__R_0039.fits
                           257.49
                                    729.09
                                            1633.361
                                                       15.320
                                                                ok
cObject_3__R_0039.fits
                           731.43
                                    728.55 1622.969
                                                       13.429
                                                                ok
                                             1629.34
cObject_3__R_0039.fits
                           979.61
                                    729.73
                                                        INDEF
                                                                err
                           277.56
cObject_3__R_0039.fits
                                    731.54
                                            1627.014
                                                         INDEF
                                                                err
cObject_3__R_0039.fits
                           891.51
                                    730.55
                                             1630.98
                                                         INDEF
                                                                err
cObject_3__R_0039.fits
                           76.90
                                    732.82
                                            1636,415
                                                         INDEF
                                                                err
cObject_3__R_0039.fits
                           352.86
                                    734.45
                                            1613,267
                                                         INDEF
                                                                err
cObject_3__R_0039.fits
                           808.50
                                            1631.013
                                                         INDEF
                                    734.55
                                                                err
c0bject_3__R_0039.fits
                           823.97
                                    735.11 1624.323
                                                         INDEF
                                                                err
daophot>
```

PHOT (outputs)

- Text files:
 *.fits.coo.1.mag.1
 or *mag.2 if done twice
- Check what you got (e.g ! more filename)

IMPORTANT COLUMNS

c4 = star ID c5 = x coordinate c6 = y coordinate c29 = magnitude c30 = magnitude error c28= flux.

```
#K CIHKESHULD = V.
                                                     %-23./g
#K MINSNRATIO = 1.
                                                     %-23.7g
                                          number
#K CMAXITER
                                                     %-23d
                                          number
#K MAXSHIFT
                                          scaleunit %-23.7g
#K CLEAN
              = no
                                          switch
                                                     %-23b
#K RCLEAN
              = 1.
                                          scaleunit %-23.7g
#K RCLIP
              = 2.
                                          scaleunit %-23.7g
#K KCLEAN
              = 3.
                                          sigma
                                                     %-23.7g
#K SALGORITHM = mode
                                          algorithm %-23s
#K ANNULUS
              = 10.8
                                          scaleunit %-23.7g
#K DANNULUS
              = 5.
                                          scaleunit %-23.7g
#K SKYVALUE
              = 1697.
                                          counts
                                                     %-23.7g
              = 3.
#K KHIST
                                          sigma
                                                     %-23.7g
#K BINSIZE
              = 0.1
                                                     %-23.7g
                                          sigma
#K SMOOTH
                                                     %-23b
              = no
                                          switch
#K SMAXITER
              = 10
                                                     %-23d
                                          number
#K SLOCL TP
              = 0.
                                                     %-23.7g
                                          percent
#K SHICLIP
                                                     %-23.7g
                                          percent
#K SNREJECT
                                          number
                                                     %-23d
#K SLOREJECT
                                          sigma
                                                     %-23.7g
#K SHIREJECT
                                          sigma
                                                     %-23.7g
#K RGROW
              = 0.
                                          scaleunit %-23.7g
#K WEIGHTING
             = constant
                                                     %-23s
                                          model
#K APERTURES
              = 6.8
                                          scaleunit %-23s
#K ZMAG
              = 25.
                                          zeropoint %-23.7g
                                                   COORDS
#N IMAGE
                        XINIT
                                  YINIT
                                             ID
                                                                           LID
                                  pixels
                                             ##
                                                   filename
                                                                           ##
#U imagename
                        pixels
#F %-23s
                                  %-10.3f
                        %-10.3f
                                             %-6d
                                                   %-23s
                                                                           %-6d
#N XCENTER
              YCENTER
                                                   YERR
                          XSHIFT
                                  YSHIFT XERR
                                                                    CIER CERROR
#U pixels
              pixels
                                  pixels pixels
                                                   pixels
                                                                         cerrors
                          pixels
#F %-14.3f
              %-11.3f
                          %-8.3f
                                  %-8.3f %-8.3f %-15.3f
                                                                    %-5d %-9s
#N MSKY
                  STDEV
                                  SSKEW
                                                  NSKY
                                                         NSREJ
                                                                    SIER SERROR
#U counts
                  counts
                                  counts
                                                  npix
                                                         npix
                                                                         serrors
                                                                    %-5d %-9s
#F %-18.7g
                  %-15.7g
                                  %-15.7g
                                                  %-7d
                                                         %-9d
                                                          OTIME
#N ITIME
                  XAIRMASS
                                  IFILTER
#U timeunit
                  number
                                  name
                                                          timeunit
                                                          %-23s
#F %-18.7g
                  %-15.7g
                                  %-23s
#N RAPERT
            SUM
                           AREA
                                      FLUX
                                                     MAG
                                                            MERR
                                                                    PIER PERROR
#U scale
            counts
                           pixels
                                       counts
                                                                         perrors
                                                             mag
                                                     %-7.3f %-6.3 %-5d %-9s
#F %-12.2f %-14.7g
                           %-11.7g
                                      %-14.7g
c0bject_3__R_0001.fits 873.889
                                  2.343
                                                   c0bject_3__R_0001.fits.1
              2.269
                                                   0.012
   873.612
                          -0.277
                                  -0.074 0.011
                                                                   102 EdgeImage
   1672.762
                  42.76828
                                  11.56399
                                                  216
                                                         10
                                                                        NoError
                  INDEF
                                                          00:41:07.186
   1.
            ٥.
                                      ٥.
                                                     INDEF INDEF 301 OffImage
   6.80
c0bject_3_R_0001.fits 479.859
                                  4.346
                                                   c0b_ject_3__R_0001.fits.2
                                                                        NoError
   479.975
              4.400
                          0.116
                                  0.054
                                          0.011
                                                   0.017
   1664.66
                  45.23207
                                  25.39543
                                                  216
                                                                        NoError
                  INDEF
                                                          00:41:07.186
                                  R
```

Photometry (massaging text files)

Dump the photometry into a text file:

Make a list of photometry files: Is *R*mag.1 > Rmag_files tdump @Rmag_files columns=c4,c5,c6,c29,c30,c28 > R_mags

```
NUISE t poisson model %-23s
daophot> tdump @Rmag_files columns=c4,c7,c8,c29,c30,c31 > R_mags
ERROR: Table `@Rmag_files' does not exist or cannot be opened.
daophot> [
```

* if tdump refuses to read from a list, use awk to create a file with one tdump per line:

```
! Is *mag.1 | awk '{printf "tdump %s columns=c4,c5,c6,c29,c30,c28 >> R_mags\n", $1}' > get_mags
```

```
daophot> ! more get_mags
tdump c0bject_3__R_0001.fits.mag.1 columns=c4,c7,c8,c29,c30,c31 >> R_mags
tdump c0bject_3__R_0002.fits.mag.1 columns=c4,c7,c8,c29,c30,c31 >> R_mags
tdump c0bject_3__R_0003.fits.mag.1 columns=c4,c7,c8,c29,c30,c31 >> R_mags
```

cl < get_mags (this is minimal IRAF scripting)</pre>

Check what you got (next slide).

PHOT (file R mags)

A VERY LARGE **TEXT FILE** 35k lines

Or filename + star ID This is a problem. **Contact Tiina**

```
daophot> ! more R_mags
cObject_3__R_0001s.fits1
                                      2.269000000000001
cObject_3__R_0001s.fits2
                                      4.400000000000001
cObject_3__R_0001s.fits3
                                      4.7750000000000002
c0b ject_3_R_0001s.fits4
```

```
561.4149999999999
                   10
                           38.8720000000001
 -0.2770000000000001
                           12.4570000000001
                   0.116 :60.5480000000001
                           :79.5810000000002
                   0.128
                                     446.578
-0.07400000000000002 <sub>'17.421000000000</sub>
```

ecl> ! more R_mags

PACKAGE t apphot

EMISSION t yes

EXPOSURE t ''

AIRMASS t ''

OBSTIME t UT

CCDREAD t ''

READNOIS d 0.

CMAXITER i 10

MAXSHIFT d 1. CLEAN

BINSIZE d 0.1

SMOOTH t no

SMAXITER i 10

SLOCLIP d 0.

SHICLIP d 0.

SNREJECT i 50

SLOREJEC d 3.

APERTURE d 6.8

SHIREJEC d 3. sigma

WEIGHTIN t constant

d 0.

KCLEAN SALGORIT t mode

CALGORIT t centroid

CTHRESHO d O. sigma

MINSNRAT d 1. number

t no

d 3. sigma

d 3. sigma

t NOAO/IRAFV2.16

t 2022-08-31

d 1. units

t sinope-ThinkPad-X280

d 2.7 scaleunit %-23.7g

d 10:51:26 hh:mm:ss

keyword

keyword

keyword

t sinope

t phot

DATAMIN d INDEF counts DATAMAX d INDEF counts

t FILTER

t poisson

d 41.2 counts t GAIN

d 1.3 e-/adu

CBOXWIDT d 5. scaleunit %-23.7g

number

ANNULUS d 10.8 scaleunit %-23.7g DANNULUS d 5. scaleunit %-23.7g SKYVALUE d 1697. counts

percent

percent

d 1. scaleunit %-23.7g d 2. scaleunit %-23.7g

с6

с7

c28

DATE

TIME

TASK

SCALE

NOISE

GATN **FPADU** %5d

%15.13g

%8.6g %16.14g

%6.5g

version

computer

switch %-23.7g

keyword

keyword

algorithm %-23s

algorithm %-23s

model

yyyy-mm-dd

name

%-23s

%-23s

%-23s

%-23s

%-23s

%-23s

%-23b

%-23s

%-23s

%-23s

%-23s

%-23b

%-23b

%-23s

2.269000000000001

4.400000000000001

4.775000000000002

6.462000000000001

7.513000000000001

8.537000000000002

9.393000000000002

9.324000000000001

16.42600000000001

17.44600000000001

17.70500000000001

18.34200000000001

5.969

11.537

12.329

14.105

15.163

%10.8g

%-23.7g

%-23.7g

%-23.7g

%-23.7g

%-23s

%-23.7g

%-23.7g

%-23.7g

%-23.7g

switch

model

%-23.7g

%-23d

%-23.7g %-23.7g

%-23d

%-23.7g

%-23.7g

1052.827

scaleunit %-23.7g

scaleunit %-23s zeropoint %-23.7g 873.6120000000002

479.9750000000002

926.3750000000001

805.6120000000002

446.7300000000002

467.3750000000001

%-23.7g

%-23d

scaleunit %-23.7g

```
INDEF
                         INDEF
 INDEF
                         INDEF
 INDEF
                         INDEF
INDEF
                         INDEF
15.301
          0.085000000000000001
15.107
          0.08600000000000002
14.522
          0.05000000000000001
15.351
          0.09300000000000002
15.115
          0.06600000000000001
14.189
          0.02900000000000001
15.024
          0.07700000000000001
14.212
          0.02900000000000001
13.927
          0.02200000000000001
14.898
          0.05400000000000001
 12.8
         0.008000000000000001
15.831
                         0.116
```

INDEF

INDEF

0.
0.
7576.389000000001
9064.937000000001
15535.02000000001
7234.9
8993.307000000001
21102.71
9782.393000000002
20669.9200000001
26861.27
10004 00

٥.

75871.37

4652.417000000002

5865.323000000001

Check the ID of your star and of a few comparison stars with tvmark.
 https://aladin.u-strasbg.fr/AladinLite/ might be useful to help identify your star.

Comparison stars are needed to remove background variations from the light

curve.

Photometry (more massaging of text files)

Copy the photometry of the star and each comparison into separate files.

```
! awk '{if ($1==135) print;}' R_mags > R_star
! awk '{if ($1==160) print;}' R_mags > R_comp1
! awk '{if ($1==172) print;}' R_mags > R_comp2
! awk '{if ($1==175) print;}' R_mags > R_comp3
! awk '{if ($1==222) print;}' R_mags > R_comp4
```

Replace with correct IDs

• It is a good sanity check to plot the x and y coordinates of each star, to make sure it was correctly identified in all images.

Another good check is to plot the magnitudes of your comparison stars.
 They have to be fairly constant!

RA and DEC in a format 279.8767083356 (18h:39m:30.4s) -5.902749998734 (-5d:54m:09.8s)

- To turn our measurements into a light curve, we need the times for each observation. We will use the task setjo to obtain that.
- The headers of our images are missing one important information: coordinates (RA, DEC, Epoch). Use the task **hedit** to add those to all images.

```
IRAF
                    Image Reduction and Analysis Facility
PACKAGE = imutil
   TASK = hedit
images =
                        @Rimgs images to be edited
fields
                         EPOCH fields to be edited
value
                          2000 value expression
                           yes) add rather than edit fields
(add
                            no) add only if field does not exist
(addonlu=
                               delete rather than edit fields
(delete =
                            no) verify each edit operation
(verifu =
                           yes) print record of each edit operation
(show
                           yes) enable updating of the image header
(update =
mode
                            q1)
```

 We also need to set the observatory parameters to be used for setjd. We do that with the task observatory:

```
xgterm
                    Image Reduction and Analysis Facility
PACKAGE = noao
   TASK = observatory
command = ||
                           set Command (set|list|images)
                                 Observatory to set, list, or image default
obsid
                                 List of images
images =
                             no) Verbose output?
(verbose=
(observa=
                      ondrejov) Observatory identification
                              ) Observatory name
(name
(longitu=
                      14.78364) Observatory longitude (degrees)
(latitud=
                     49.910556) Observatory latitude (degrees)
(altitud=
                          528.) Observatory altitude (meters)
(timezon=
                           -1.) Observatory time zone
override=
                                 Observatory identification
                             q1)
(mode
```

Building the light curve (setjd)

het: McDonald Ubservatory - Hobby-Eberly Telescope jcdo: Jack C. Davis Observatory, Western Nevada College Ino: Langkawi National Observatory obspars: Use parameters from OBSERVATORY task Observatory identification (ondrejov):

pelisoli@octans:...2/envs/iraf27/iraf

```
IRAF
                    Image Reduction and Analysis Facility
PACKAGE = onedspec
  TASK = setjd
images =
                        @Rimgs Images
(observa=
                       obspars) Observatory of observation
(date
                      date-obs) Date of observation keyword
(time
                            ut) Time of observation keyword
(exposur=
                       exptime) Exposure time keyword
(ra
                            ra) Right ascension (hours) keyword
                           dec) Declination (degrees) keyword
(dec
(epoch =
                         epoch) Epoch (years) keyword
                            jd) Output Julian date keyword
(id
(hjd
                           hjd) Output Helocentric Julian date keyword
                           ljd) Output local Julian date keyword
(1jd)
(utdate =
                           ues) Is observation date UT?
(uttime =
                           yes) Is observation time UT?
(listonl=
                            no) List only without modifying images?
(mode = 
                            q1)
                                                             ESC-? for HELP
```

This may not work!

Newer IRAF should have ondrejov in the predefined list > super! If not, we will do it together.

Check your column numbers! Might be different.

 To do differential photometry, we need to normalise the magnitudes of the star and of the comparison stars. First, check what is the average magnitude (6th column):

```
! awk '{sum+=$6;n++} END {print sum/n;}' R_star
```

Then subtract it from each value: ____ replace with calculated average

```
! awk '{printf "%7.4f %6.4f\n", $6-18.7529, $7}' R_star > mag_star
(6: mag column, 7: mag error column)
```

- Repeat that for all the comparison stars, and combine them into one file:
- ! paste mag_comp1 mag_comp2 mag_comp3 mag_comp4 > all_comp
 - Average the comparison stars:

```
! awk '{printf "%7.4f %6.4f\n", ($1+$3+$5+$7)/4.0, sqrt($2*$2+
$4*$4+$6*$6+$8*$8)}' all_comp > mag_comp
```

• Combine the magnitudes of the star and the comparison magnitude:

```
! paste mag_star mag_comp > comb_mag
```

Subtract the comparison from the star to remove background variations:

```
! awk '{printf "%7.4f %6.4f\n", ($1-$3), sqrt($2*$2+$4*$4)}'
comb_mag > diff_mag
```

 Select the column containing the Heliocentric Julian Date from the file created with setjd:

```
awk '!/#/ {print $3}' R_jd > R_hjd
(Type this in a regular terminal. Does not work in IRAF)
```

Combine that with the magnitude to obtain the lightcurve:

```
! paste R_hjd diff_mag > R_lightcurve
```

Voilà! Now you have a light curve.

Repeat the same for the other filter.

Light curves

Photometry – summary

- Create master files for bias, flat, and dark (zerocombine, flatcombine, darkcombine).
- Reduce the science images using ccdproc.
- Measure sky and FWHM with imexamine.
- Use the dask daofind to find the stars; do not forget to change the datapars
 according to your measurements, and set the threshold in findpars.
- Use the task phot to do the photometry; do not forget to update centerpars, fitskypars and photpars.
- Check ID for your star and comparison stars using display and tymark.
- Inspect the coordinates for the star and comparison stars to guarantee there was no misidentification.
- Inspect the magnitudes of the comparison stars; they should be fairly constant.
- Use observatory and setjd to obtain the times of observation.
- Paste the times and differential magnitude (star averaged comparison) into one file to obtain the light curve.

Optional task

- We did a lot by hand, but:
 - 1) excecute the IRAF commands from IRAF terminal display filename.fits frame=1 zscale=yes zrange=yes

 Very useful to save the reduction steps/commands into a text file!

 Easy to redo or use as template in the future.
 - 2) Create your own IRAF tasks/scripts (more complicated).