Data reduction II Photometry with IRAF

Harry Dawson Research workshop on evolved stars August 2023

Introduction

See the introduction to IRAF talk

Text in yellow is for typing into IRAF terminal

 In my slides IRAF terminals are black or papaya colour

Why data reduction?

 We need to subtract – or reduce – instrumental effects and background contamination.

Reducing instrumental effects:

- **BIAS**: image with 'zero' exposure time. Estimate of the real zero of the CCD.
- FLAT: image of a uniformly illuminated surface.
 Estimate sensitivity difference throughout the CCD + dust grains, scratches etc.
- DARK: image with the same exposure time of the science image with the shutter closed.
 Estimate the level of background current.

More is more

- Each of the counts on the images has an associated uncertainty.
- If we take n images, each with an uncertainty σ_i , the uncertainty on the average will be σ_i/\sqrt{n} .
- Therefore, the first step in data reduction is to calculate the average for BIAS, FLAT, and DARK images.

More is more

- Each of the counts on the images has an associated uncertainty.
- If we take n images, each with an uncertainty σ_i , the uncertainty on the average will be σ_i/\sqrt{n} .
- Therefore, the first step in data reduction is to calculate the average for BIAS, FLAT, and DARK images.
 - **BIAS**: not available for 65 cm telescope.
 - **FLAT**: master flat has already been created.
 - **DARK**: we need to calculate the median dark.

Mean or median?

- Either of those can be representative of a distribution which one should we use?
- The mean is sensitive to outliers the median is robust against outliers.
- The mean is not descriptive for skewed distributions.
- Give preference to the <u>median</u>!

IRAF – Image Reduction and Analysis Facility

We'll use the package
 noao.imred.ccdred
 for the data reduction, and
 noao.digiphot.daophot
 for the photometry.

• Load each part of the packages by typing their name followed by enter.

E				peliso	li@oc1	ans:2/en	vs/iraf27/i	raf				
	ecl> r	noao										
		artdata.	dig	iphot.		nobsole	ete.	oneds	pec.			
		astcat.	foc	as.		nproto.		rv.				
		astrometry.	1mr	ed.		observa	atory	surfp	hot.			
		astutii.	111 C I	ocal.		opsulli	L .	twods	pec.			
	noao>	imred										
		argus.	cruti	1.	ech	elle.	iids.		kpnoc	oude.	specred.	
		bias.	ctios	lit.	gen	eric.	irred		kpnos	lit.	vtel.	
		ccdred.	dtoi.		hyd	ra.	irs.		quadri	ed.		
	imred	> codred										
	1111 00.	badpiximage		ccdma	sk		flato	ombine		mksky	flat	
		ccdgroups		ccdpr	dproc mkfring		ngecor	gecor setin		strument		
		ccdhedit		ccdte	st.		mkill	mkillumcor		zerocombine		
		ccdinstrume	nt	combi	ne 		mkill	umflat				
		ccdlist		darkc	ompi	ne	ткску	cor				
	ccdre	a> П										
		D										
Γ												

Preparing working directory

• Always have a copy of original raw data!

● !mkdir reduction ● !mkdir reduction_copy

 All the files that we work with have to be in the same directory:

- science frames
- masterflats (same filters as your science frames!)
- darks

Check your data

PACKAGE = tvTASK = displayimage image to be displayed frame 1 frame to be written into (bpmask = BPM) bad pixel mask (bpdispl= none) bad pixel display (noneloverlaylinterpolate) (bpcolor= red) bad pixel colors (overlag=) overlay mask (ocolors= green) overlay colors (erase = ues) erase frame (border = no) erase unfilled area of window (select = yes) display frame being loaded (repeat = no) repeat previous display parameters (fill = no) scale image to fit display window (zscale = yes) display range of greylevels near median (contras= 0.25) contrast adjustment for zscale algorithm (zrange = yes) display full image intensity range Sample mask (nsample= 1000) maximum number of sample pixels to use (xcenter= 0.5) display window horizontal center (ycenter= 0.5) display window vertical center 1.) display window horizontal size (xsize = (ysize 1.) display window vertical size (xmag = 1.) display window horizontal magnification (ymag 1.) display window vertical magnification (order = 0) spatial interpolator order (0=replicate, 1=linear) (z1) minimum greylevel to be displayed 🕇 maximum greylevel to be displayed (ztrans = log) greylevel transformation (linearllog|noneluser) (lutfile=) file containing user defined look up table (mode q1)

Image Reduction and Analysis Facility

Play around with these default values to get an image you're happy with

display (image name)

epar display

Check (all) your data

All data is already in the same directory

!ds9 &

Creat a list with science frames.
 ls filename*.fits > list_science

 Display images in ds9 and <u>relocate</u> useless frames imexam @list_science 1 (n next frame p previous frame q quit)

 Remove useless science frames: clouds? Satellites? tracking problems? Etc.
 But avoid removing unnecessarily!!

Master flat

 The master flats have already been created, but it is good practice to inspect them.

• Display the flat:

display masterflat-R.fit

• Plot the flat:

implot masterflat-R.fit
'l' and 'c' to switch axes

• Check image statistics:

imstat masterflat-R.fit

Master flat

File Edit Vie	Edit View Frame Bin Zoom Scale Color Region WCS Analysis Help																	
File		masterflat-F	sterflat-R.fit								1							
Object																Y		
Value																_ <u>_</u>		
WCS																	- x	
Physical	Х			Y														
Image	х			Y														
Frame 3	х	1			0		•											
file		edit		vie	w	ſ	rame	bin		zoom	scale	color		region	wcs	an	nalysis	help
new		rgb		3	3d		delete	clear		single	tile	bl	ink	first	prev		next	last

Creating a master dark

 What is the exposure time of the images we will analyse? Check the header! Single frame: imhead [image name] lo+ | page Multible frames: hsel Object*fits \$I,exptime yes ("exptime" is the fits header keword)

Which dark images should we use?
 imhead df-* lo+ | grep EXPTIME or hsel

 Create a list (text document) containing the names of the dark frames using the same exposure time as the science images.

Ls df* > df_60s_list

Creating a master dark – epar darkcombine

Creating a master dark –

```
Aug 30 16:01: IMCOMBINE
  combine = median, scale = exposure, zero = none, weight = none
  reject = sigclip, mclip = yes, nkeep = 1
  lsigma = 5., hsigma = 5.
  blank = 0.
                Images
       df60s__0001.fits
       df60s__0002.fits
       df60s__0003.fits
       df60s__0004.fits
       df60s__0005.fits
       df60s__0006.fits
       df60s__0007.fits
       df60s__0008.fits
       df60s__0009.fits
       df60s 0010.fits
```

Output image = Dark, ncombine = 10

Check what you got! display imstat

Reducing the science images

- We have images on two different filters: R or V.
 You have to use the correct master flat for each of them.
- Make a list containing the R images, and another containing the V images, e.g.

ls Cyg2*R*.fit > Rimgs ls Cyg2*V*.fit > Vimgs

 Use the task ccdproc to divide the images by the flat and subtract the dark current. Do it separately for R and V images.

Reducing the science images 1 -

Check parameters!

Continues

Reducing the science images 2 epar codproc

pelisoli@	octans:2/envs/iraf27/iraf _ 🗆 🛪	3
	IRAF	
Image Reduc	tion and Analysis Facility	
PACKAGE = ccdred		
TASK = ccdproc		
More		
(zero = 🗋)	Zero level calibration image	
(dark = — Dark.fits)	Dark count calibration image	
(flat —=——> masterflat–V.fit)	Flat field images	
(illum =)	Illumination correction images	
(fringe =)	Fringe correction images	
(minrepl= 1.)	Minimum flat field value	
(scantyp= shortscan)	Scan type (shortscan longscan)	
(nscan = 1)	Number of short scan lines	
(interac= no)	Fit overscan interactively?	
(functio= legendre)	Fitting function	
(order = 1)	Number of polynomial terms or spline pieces	
(sample = *)	Sample points to fit	
(naverag= 1)	Number of sample points to complne	
(hiterat= 1)	Number of rejection iterations	
(low_rej= 3.)	Low sigma rejection factor	
(nign_re= 3.)	High sigma rejection factor	
(grow = 0.)	Rejection growing radius	

:go

Reducing the science images 3 <u>cc</u>dproc in action

ale=28645.95 Object_3__R_0028.fits: Aug 30 16:19 Dark count correction image is Dark.fits wit h scale=1. Object_3__R_0028.fits: Aug 30 16:19 Flat field image is masterflat-R.fit with sc ale=28645.95 Object_3__R_0029.fits: Aug 30 16:20 Dark count correction image is Dark.fits wit h scale=1. Object_3__R_0029.fits: Aug 30 16:20 Flat field image is masterflat-R.fit with sc ale=28645.95 Object_3__R_0030.fits: Aug 30 16:20 Dark count correction image is Dark.fits wit

Check what you got! Reduced files start with "c"

S

display

imstat (raw vs reduced frame)

imhead (reduction steps added into the end of the fits header)

Now that the images have been reduced, we can perform photometry.

- The first step is to run the task daofind, which will find the stars in our images.
- There are a few parameters we need to measure in our image to best setup daofind: the sky and the F(ull)W(idth)H(alf)M(aximum)
- For that, display an image at the beginning of the sequence, middle, and end:

display cCyg2R001.fit 1
display cCyg2R111.fit 2
display cCyg2R223.fit 3

Use the task imexamine – choose a relatively bright star near the centre of the image. Centre the cursor on this star.
 r → display the radial profile
 e → show contours
 a → write measurements to the screen

- Check the sky values in the three images. We will use this to set our initial guess for the background. The value of sigma is in turn the square-root of the background (assuming Poissonic noise).
 - If the values are very different, use the median; if they are similar, use the mean.

E. g.

sky = 415. sigma = 20.4

 Check the FWHM in the three images. We will use this to set the aperture and the sky region for the photometry.

epar DAOFIND (to find the stars coordinates)

"cTarget...*fits" selects many files

DAOFIND

The very best is to align your images. We will do it on Friday.

DAOFIND (datapars)

":q" to go back

pelisoli@octans:2/envs/iraf27/iraf	_ 🗆 🗙
IRAF	
Image Reduction and Analysis Facility	
PACKAGE = daophot	
TASK = datapars	
(scale =1.) Image scale in units per pixel	
(fwhmpsf= 2.5) FWHM of the PSF in scale units	
(emissio= yes) Features are positive?	
(sigma =20.) Standard deviation of background in counts	S
(datamin= INDEF) Minimum good data value	
(datamax= INDEF) Maximum good data value	
(noise = poisson) Noise model	
(ccdread=) CCD readout noise image header keyword	
(gain =	
(readnoi= 0.) CCD readout noise in electrons	
(epadu = 1.3) Gain in electrons per count	
(exposur= EXPTIME) Exposure time image header keyword	
(airmass=) Airmass image header keyword	
(filter = FILTER) Filter image header keyword	
(obstime= UT) Time of observation image header keyword	
(itime = 1.) Exposure time	
(xairmas= INDEF) Airmass	
(ifilter= INDEF) Filter	
(otime = INDEF) Time of observation	
(mode = ql)	

DAOFIND (findpars)

DAOFIND in action

FWHM of features in scale units (2.7) (CR or value):
New FWHM of features: 2.7 scale units 2.7 pixels
Standard deviation of background in counts (41.2) (CR or value):
New standard deviation of background: 41.2 counts
Detection threshold in sigma (5.) (CR or value):
New detection threshold: 5. sigma 206. counts
Minimum good data value (INDEF) (CR or value):
New minimum good data value: INDEF counts
Maximum good data value (INDEF) (CR or value):

• You might see this. Press enter.

 Depending on the IRAF version you might see a lot of numbers running on the screen.

	545.99	/26.55	-2.242	0.4/2	-0.116	0.189	1041		
	32.06	729.13	-0.228	0.405	-0.511	0.681	1042		
	375.02	728.18	-0.400	0.666	0.236	0.077	1043		
	409.17	727.93	-0.678	0.499	-0.359	0.170	1044		
	585.04	727.64	-2.160	0.528	-0.154	0.232	1045		
	134.03	728.76	-0.790	0.513	-0.763	0.001	1046		
	257.36	728.97	-0.835	0.457	-0.790	-0.208	1047		
	731.38	728.65	-2.831	0.506	-0.287	0.054	1048		
	979.69	729.83	-0.357	0.692	0.231	-0.168	1049		
	277.59	731.73	-0.727	0.545	-0.608	0.211	1050		
	891.52	730.58	-2.332	0.534	-0.400	-0.022	1051		
	77.04	733.07	-0.427	0.515	-0.025	0.528	1052		
	352.91	734.49	-1.049	0.523	-0.457	0.251	1053		
	808.54	734.80	-1.416	0.538	0.224	0.123	1054		
	823.96	735.24	-1.343	0.631	0.210	0.406	1055		
t	hreshold:	206. re	lerr: 1.19	0.2	<= sharp	<= 1.	-1. <=	round	<= 1.
-1	k - - X - -								
a	aopnot/ 🔳								

DAOFIND (outputs)

• Text files: *.fits.coo.1

 Check what you got (e.g | more filename)

	da	aophot> ! ma	ore cObjec [.]	t_3R_00	01.fits.d	:00.1		
8	#	(IRAF	= NOAO/I	RAFV2.16		version	%-23s	
1	#	(USER	= sinope			name	%-23s	
	#	(HOST	= sinope	-ThinkPad	-X280	computer	%-23s	
	#	(DATE	= 2022-0	8-31		uuuu-mm-dd	%-23s	
	#	(TTMF	= 09.41.	37		hh.mm.es	x-23s	
	#	(PACKAGE	= apphot			name	% 200 %−23e	
	#	(TASK	= depfice	Ч		name	% 205 %-23e	
1	#	V THON	- 080110	u		Hame	<i>6</i> 203	
8	#I		- 1			unito	9_00 Ta	
8	#1	/ SURLE	- 1.				%-20.7g	
	#1	А ЕМПИРОЕ И ЕМТОСТОМ	- 2.7			scareunit	&=∠ง./g ช_ววเ	
	н 1+		- yes			SWITCH	&=∠3D ≈ 00 7	
1	1#		- INDEF			counts	k-∠3./g	
	#1		= INDEF			counts	%-23./g	
	#	(EXPUSURE	=			keyword	%-23s	
	#	(AIRMASS	= ""			keyword	%-23s	
	#	(FILIER	= FILIER			keyword	%-23s	
8	#	OBSIIME	= 01			keyword	%-23s	
	#							
	#	(NOISE	= poisso	n		model	%-23s	
	#	(SIGMA	= 41.2			counts	%-23.7g	
1	#	(GAIN	= GAIN			keyword	%-23s	
	#	(EPADU	= 1.3			e-/adu	%-23.7g	
	#	<pre>CCDREAD</pre>	= ""			keyword	%-23s	
8	#	<pre></pre>	= 0.			e-	%-23.7g	
	#							
8	#	(IMAGE	= cObjec	t_3R_00	01.fits	imagename	%-23s	
	#	(FWHMPSF	= 2.7			scaleunit	%-23.7g	
、	#	(THRESHOLD	= 5.			sigma	%-23.7g	
	#	(NSIGMA	= 1.5			sigma	%-23.7g	
8	#	(RATIO	= 1.			number	%-23.7g	
8	#	(THETA	= 0.			degrees	%-23.7g	
	#							
	#	(SHARPLO	= 0.2			number	%-23.7g	
5	#	(SHARPHI	= 1.			number	%-23.7g	
	#	(ROUNDLO	= -1.			number	%-23.7g	
	#	(ROUNDHI	= 1.			number	%-23.7g	
	#						_	
	#	N XCENTER	YCENTER	MAG	SHARPNES	SS SROUND	GROUND	ID
	#	Jpixels	pixels	#	#	#	#	#
	#	⁻ ‰−13.3f	%-10.3f	%-9.3f	%-12 . 3f	%-12.3	f %-12.3f	%-6d
	#							
		873.889	2.343	-0.477	0.697	-0.288	0.298	1
Z		479.859	4.346	-0.008	0.662	-0.377	-0.587	2
		926.247	4.867	-0.732	0.584	0.344	0.009	3
		805.686	6.033	-0.296	0.514	-0.417	0.162	4
		1052.871	6.328	-1.039	0.556	-0.131	0.102	5
		444 770	7 600	0.040	0 400	0 4 5 0	0.000	0

DAOFIND (tdump - massasing text files)

- To check the stars that have been found, let's mark them on the image.
- First, dump the coordinates and the ID of the stars onto a file (choose one coordinate file):

tdump cCyg2R001.fit.coo.l columns=c1,c2,c7 > coordsR

Check what you got: I more coordsR

 You might need to check the name of the columns: tprint [FILE].coo.1 | less "q" to exit

Edit the parameters of the task tymark (next slide)

DAOFIND (tvmark: to display the found stars)

C		pelisoli@octans:	2/envs/iraf27/iraf	_ 🗆 🗙
	PACKAGE = tv TASK = tvmark	I Image Reduction a	R A F nd Analysis Facility	display cObject epar tvmark
	<pre>frame = coords = (logfile= (autolog= (outimag= (deletio= (command= (mark = (radii = (radii = (lengths= (font = (lengths= (font = (number = (number = (nxoffse= (nyoffse= (nyoffse= (txsize = (toleran= (interac=</pre>	1 Defau coordsR Input) Outpu no) Autom) Outpu) Outpu) Outpu) Image circle) The m 25) Radii 0) Lengt raster) Defau 0) Gray yes) Label no) Numbe 0) X off 3) Size 2) Size 1.5) Toler no) Mode	<pre>lt frame number for display coordinate list t log file atically log each marking com t snapped image t coordinate deletions list cursor: [x y wcs] key [cmd] ark type in image pixels of concentri hs and width in image pixels lt font level of marks to be drawn the marked coordinates r the marked coordinates set in display pixels of numb set in display pixels of numb of mark type point in display of text and numbers in font u ance for deleting coordinates of use</pre>	er er pixels nits in image pixe
	(mode =	q1)		

_ccdred>

DAOFIND (tvmark)

Open coords file to check the index of the identified stars (left: xcoord, middle:ycoord, right:index)

	_		-					
MAGE	t	c0b	ject_3	_R_0001.f	its	imagename	%−23s	
WHMPSF	d	2.9	9 scal	eunit %-	23.78	3		
HRESHOL	d	5.	sigma	%-23	.7g			
ISIGMA	d	1.5	sigma	%-2	3.7g			
RATI0	d	1.	number	%-23	.7g			
THETA	d	0.	degree	s %-23	.7g			
SHARPLO	d	0.2	numbe	~ %-2	3.7g			
SHARPHI	d	1.	number	%-23	.7g			
ROUNDLO	d	-1.	numbe	- %-2	3.7g			
ROUNDHI	d	1.	number	%-23	.7g			
873.	8	7500	00000000	L 2.	32400	000000000000000000000000000000000000000)1	1
926.	. 24	1600	00000000	L 4.	86800	000000000000000000000000000000000000000)1	2
			805.68	5		6.04	11	3
			1052.87	6.	32800	000000000000000000000000000000000000000)1	4
			111.774	ŧ 7.	52600	000000000000000000000000000000000000000)1	5
467.	. 28	3900	00000000	L 9.	29100	000000000000000000000000000000000000000)2	6
840.	.96	5000	00000000	L 9.	28200	000000000000000000000000000000000000000)1	7
561.	27	7100	00000000	L		11.40	53	8
738.	92	2000	00000000	2		12.22	26	9
454.	. 58	3200	00000000	L		13.99	99	10
512	41	1700	00000000	L 15	.1250	000000000000000000000000000000000000000)1	11
260.	65	5100	00000000	L 16	.3680	000000000000000000000000000000000000000)1	12
879.	. 64	1400	00000000	2		17.47	77	13
446.	63	8000	00000000	L 17	.8180	000000000000000000000000000000000000000)1	14
717.	. 23	8000	00000000	L		18.3	39	15
988.	. 05	5100	00000000	2		20.31	.7	16
415.	. 38	3700	00000000	L 20	.6910	00000000000)1	17
631.	. 10	0700	00000000	3		22.03	39	18
			684.69	5		23.02	28	19
			257.86	5		23.87	76	20
238.	.75	5000	00000000	L 25	.0080	00000000000)1	21
			362.54	3 25	.0280	00000000000)1	22
826.	62	2000	00000000	L 25	.6630	000000000000000000000000000000000000000)1	23
402	. 0-	+200		L .		112.00		100
89.4	101			2		113.63	50	107
240	. 09	9900		L		114.50	03	108
979.	. 64	1/00	00000000	<u>/</u>		117.21	.4	109

 tvmark is also useful to help us define the aperture, annulus, and dannulus

Aperture (<u>radii</u>): where the flux of the star will be measured. Usually ~2.5 x FWHM

NB! tvmark: radii Phot: aperture, annulus, dannulus

> Dannulus: <u>width</u> of the ring to count the background. ~5-10 pixels

* For a Gaussian distribution: FWHM = 2.35σ 99.99% of the light is contained within $4\sigma = 1.7FWHM$ Annulus (<u>radii</u>): distance at which to start counting the background. At least 2.5 x FWHM ~4 x FWHM in our

DAOPHOT - epar phot

DAOPHOT (centerpars)

PHOT (fitskypars)

Your data specific!

pelisoli@	octans:2/envs/iraf27/iraf _ 🗆 🗙
	IRAF
Image Reduc	tion and Analysis Facility
PACKAGE = daophot	
TASK = fitskypars	
(salgori=mode)	Sky fitting algorithm
(annulus= 15.)	Inner radius of sky annulus in scale units
(dannulu= 10.)	Width of sky annulus in scale units
(skyvalu= 415.)	User sky value
(smaxite= 20)	Maximum number of sky fitting iterations
(sloclip= 0.)	Lower clipping factor in percent
(shiclip= 0.)	Upper clipping factor in percent
(snrejec= 50)	Maximum number of sky fitting rejection iteratio
(sloreje= 3.)	Lower K-sigma rejection limit in sky sigma
(shireje= 3.)	Upper K-sigma rejection limit in sky sigma
(khist = 3.)	Half width of histogram in sky sigma
(binsize= 0.1)	Binsize of histogram in sky sigma
(smooth = no)	Boxcar smooth the histogram
(rgrow = 0.)	Region growing radius in scale units
(mksky = no)	Mark sky annuli on the display
(mode = ql)	

PHOT in action

Centering algorithm (centroid) (CR or value): New centering algorithm: centroid Centering box width in scale units (5.) (CR or value) New centering box width: 5. scale units 5. p Sky fitting algorithm (mode) (CR or value): Sky fitting algorithm: mode Inner radius of sky annulus in scale units (10.8) (CR New inner radius of sky annulus: 10.8 scale u Width of the sky annulus in scale units (5.) (CR or v New width of the sky annulus: 5. scale units File/list of aperture radii in scale units (6.8) (CR Aperture radius 1: 6.8 scale units 6.8 pixels Standard deviation of background in counts (41.2) (CR	: ixe or nit alu 5. or	<pre>due): s 10.8 pixels e): pixels value): co0ject_0n_vvoo.iico c00ject_0n_vvoo.iico c00ject_0_0_n_vvoo.iico c00ject_0_0_0_0_vvoo.iico c00ject_0_0_0_vvoo.iico c00ject_0_0_0_vvoo.</pre>
Lots of numbers on the screen but not always.		cob ject_3R_0039.fits cob ject_3R_0039.fits

cObject_3__R_0039.fits cObject_3__R_0039.fits daophot>

Possibly have to confirm your parameters.

JJ. TT	120.00	T005 .000	10.200	UN
117.80	724.61	1630.774	15.417	ok
157.64	724.52	1629.492	14.740	ok
488.41	726.61	1622.06	15.953	ok
600.71	725.55	1630.802	14.261	ok
39.93	727.46	1623.682	15.590	ok
535.45	726.53	1639.767	14.240	ok
546.02	726.52	1630.498	13.923	ok
31.74	729.13	1628.021	15.771	ok
375.03	728.29	1632.699	16.592	ok
409.29	727.89	1621.293	15.092	ok
585.08	727.53	1646.165	14.111	ok
134.08	728.71	1629.078	15.446	ok
257.49	729.09	1633.361	15.320	ok
731.43	728.55	1622.969	13.429	ok
979.61	729.73	1629.34	INDEF	err
277.56	731.54	1627.014	INDEF	err
891.51	730.55	1630.98	INDEF	err
76.90	732.82	1636.415	INDEF	err
352.86	734.45	1613.267	INDEF	err
808.50	734.55	1631.013	INDEF	err
823.97	735.11	1624.323	INDEF	err

PHOT (outputs)

Text files:
 *.fits.coo.1.mag.1
 or *mag.2 if done
 twice

 Check what you got (e.g ! more filename)

IMPORTANT COLUMNS c4 = star ID c5 = x coordinate c6 = y coordinate c29 = magnitude c30 = magnitude errorc28 = flux.

#	MINSNRATIO = 1.			number	%-23.7g	
#	CMAXITER = 10			number	%-23d	
#P	(MAXSHIFI = 1.			scaleuni	.t %-23./g	
#1	ULEHN = no			switch	%-23D + %-00 7-	
#P	KULEHNI – I. V DOLTD – O			scaleuni	.t &=23./g + %_22.7~	
#P	KCLIP – 2. KCLIP – 3			scareuni	.ι δ-23.7g 9-22.7α	
#	KULLIN - J.			атвша	% 20.7g	
#	SALGORITHM = mode			algorith	nm %-23s	
#	(ANNULUS = 10.8)			scaleuni	t %-23.7g	
#	$\Delta DANNULUS = 5.$			scaleuni	t %-23.7g	
#	SKYVALUE = 1697			counts	%-23.7g	
#ŀ	KHIST = 3.			sigma	%-23.7g	
#ŀ	BINSIZE = 0.1			sigma	%-23.7g	
#ŀ	(SMOOTH = no			switch	%−23b	
#ŀ	SMAXITER = 10			number	%-23d	
#1	(SLOCLIP = 0.			percent	%-23.7g	
#ŀ	SHICLIP = 0.			percent	%-23./g	
#1	SNREJEUT = 50			number	%-23d	
#1	V SLUKEJEUT = 3.			sigma	%-23./g	
#P	DGDON - A			sigma ecaleuni	-23.7g	
#	A RUNUM - V.			scareum	. 6 20.7g	
#	WEIGHTING = const	ant		model	% -235	
#	(APERTURES = 6.8			scaleuni	t %-23s	
#	ZMAG = 25.			zeropoir	nt %-23.7g	
#				<u> </u>		
#N	I IMAGE	XINIT	YINIT	ID	COORDS	LID
#L	imagename	pixels	pixels	##	filename	##
#	%-23s	%-10 . 3f	%-10.3f	%-6d	%-23s	%-6d
#		уситет	VCUTET	VEDD	VEDD	CTED CEDDOD
#	Inivels nivels	nivels	nivels	nivels	nivels	## cerrors
#F	% -14.3f % -11.3	~ %-8.3f	%-8.3f	%-8.3f	%-15.3f	%-5d %-9s
#						
#N	I MSKY STI	DEV	SSKEW		NSKY NSREJ	SIER SERROR
#L	l counts cou	ints	counts		npix npix	## serrors
#F	‴‰−18.7g %−2	l5.7g	%-15.7g		%-7d %-9d	%-5d %-9s
# #		DMACC				
#P	ILILME AH.	LKMH55	IFILIEK		UIIME	
#U	$3 - 18 7 \alpha$ $3 - 4$	10er 5.7α	name %_22e		9-22e	111
#	% 101/g % .		% 203		× 203	-
#1	I RAPERT SUM	AREA	FLU	х	MAG MERF	PIER PERROR
#L	scale counts	pixels	s cou	nts	mag mag	## perrors
#F	%-12.2f %-14.7g	×-11.7	′g %−1	4.7g	%-7.3f %-6.	.3 1 % -5d %-9s
#						
	bject_3R_0001.fit	s 873.889	2.343	1	cObject_3R_	_0001.fits.1
	8/3.612 2.269	-0.2//	-0.0/4	0.011	0.012	102 EdgeImage
	10/2./02 42	170828 NEE	D 11.5639	Э	210 10	V NoError
	1. INI 6.80 0	Δ	κ Δ		TNDEE TNDE	F 301 OffTmage
C	V.	v.	4 0 40	0		
	bject 3 R 0001 fit	s 479-859	4.34h	2	CUD lect 3 R	VVVI.T1LS./
	bject_3R_0001.fit 479.975 4.400	s 479.859. 0.116	4.346	0.011	CUBJect_3R_ 0.017	0 NoError
	bject_3R_0001.fit 479.975 4.400 1664.66 45	s 479.859 0.116 .23207	4.346 0.054 25.3954	0.011 3	0.017 216 33	0 NoError 0 NoError

Photometry (text files)

Dump the photometry into a text file:
 Make a list of photometry files: ls *R*mag.1 > Rmag_files
 tdump @Rmag_files columns=c4,c5,c6,c29,c30,c28 > R_mags

NUISE t poisson model %-23s daophot> tdump @Rmag_files columns=c4,c7,c8,c29,c30,c31 > R_mags ERROR: Table `@Rmag_files' does not exist or cannot be opened. daophot> []

* if tdump refuses to read from a list, use txdump as follows:

txdump @Vmag_files fields=ID,XCENTER,YCENTER,FLUX,MAG,MERR > R_mags

daophot> ! more get_mags
tdump c0bject_3__R_0001.fits.mag.1 columns=c4,c7,c8,c29,c30,c31 >> R_mags
tdump c0bject_3__R_0002.fits.mag.1 columns=c4,c7,c8,c29,c30,c31 >> R_mags
tdump c0bject_3__R_0003.fits.mag.1 columns=c4,c7,c8,c29,c30,c31 >> R_mags

Check what you got (next slide).

PHOT (file R_mags)

 A VERY LARGE TEXT FILE 35k lines

Or filename + star ID This is a problem. Contact Tiina

2.269000000000001

4.400000000000001

4.775000000000002

5.969

daophot> ! more R_mags
cObject_3R_0001s.fits1
cObject_3R_0001s.fits2
cObject_3R_0001s.fits3
cObject_3R_0001s.fits4

ecl> ! more R_mags c4 %5d c6 %15.13g Π c7 D %8.6g c29 п %16.14g %6.5g c30 n c28 Π %10.8g IRAF t NOAO/IRAFV2.16 version %-23s USER t sinope %-23s name HOST t sinope-ThinkPad-X280 %-23s computer t 2022-08-31 DATE %-23s yyyy-mm-dd TIME d 10:51:26 hh:mm:ss %-23s %-23s PACKAGE t apphot name TASK t phot %-23s name %-23.7g SCALE d 1. units FWHMPSF d 2.7 scaleunit %-23.7g EMISSION t yes %-23b switch DATAMIN d INDEF counts %-23.7g DATAMAX d INDEF counts %-23.7g EXPOSURE t '' keyword %-23s AIRMASS t '' keyword %-23s t FILTER FILTER keyword %-23s OBSTIME t UT %-23s keyword NOISE t poisson model %-23s SIGMA d 41.2 counts %-23.7g t GAIN %-23s GAIN keyword FPADU d 1.3 e-/adu %-23.7g CCDREAD t '' keyword %-23s READNOIS d 0. e-%-23.7g CALGORIT t centroid algorithm %-23s CBOXWIDT d 5. scaleunit %-23.7g CTHRESHO d 0. sigma %-23.7g MINSNRAT d 1. number %-23.7g CMAXITER i 10 number %-23d MAXSHIFT d 1. scaleunit %-23.7g CLEAN %-23b t no switch RCLEAN d 1. scaleunit %-23.7g RCLIP d 2. scaleunit %-23.7g d 3. sigma %-23.7g KCLEAN SALGORIT t mode algorithm %-23s ANNULUS d 10.8 scaleunit %-23.7g DANNULUS d 5. scaleunit %-23.7g SKYVALUE d 1697. counts %-23.7g KHIST d 3. sigma %-23.7g %-23.7g BINSIZE d 0.1 sigma SMOOTH t no switch %-23b SMAXITER i 10 number %-23d SLOCLIP d 0. %-23.7g percent SHICLIP d 0. %-23.7g percent SNREJECT i 50 number %-23d SLOREJEC d 3. %-23.7g sigma SHIREJEC d 3. sigma %-23.7g RGROW d 0. scaleunit %-23.7g WEIGHTIN t constant %-23s model APERTURE d 6.8 scaleunit %-23s ZMAG d 25. zeropoint %-23.7g 873.612000000002 2,269000000000001 1 2 479,975000000002 4,400000000000000 3 926.375000000001 4.775000000000002 805.612000000002 5.969 4 Ę 1052.827 6.4620000000000000 6 111.693 7.513000000000000 7 446.7300000000002 8.537000000000002 8 467.375000000001 9.39300000000002 841.016 9.324000000000001 9 10 561.41499999999999 11.537 738.872000000001 12.329 14.105 454.489 -0.27700000000000001 512.457000000001 15.163 0.116 260.548000000001 16.42600000000001

879.581000000002

717.4210000000001

446.578

1012.429

0.128

-0.074000000000000002

17.44600000000001

17.70500000000001

18.34200000000000

17.28

INDEF INDEF 0. INDEF INDEF ٥. INDEF INDEF 0. INDEF INDEF ٥. INDEF INDEF ٥. 15.301 0.085000000000000001 7576.38900000001 9064.93700000001 15.107 0.086000000000000002 14,522 0.050000000000000001 15535.0200000001 0.0930000000000002 7234.9 15.351 8993.30700000001 15.115 0.06600000000000000 14.189 0.029000000000000001 21102.71 15.024 0.07700000000000001 9782.39300000002 14.212 0.029000000000000001 20669.9200000001 13.927 0.022000000000000001 26861.27 14.898 0.054000000000000001 10984.86 12.8 0.00800000000000000001 75871.37 15.831 4652.41700000002 0.116 5865.32300000001 15.579 0.097000000000000000

 Check the ID of your star and of a few comparison stars with tvmark.
 <u>https://aladin.u-strasbg.fr/AladinLite/</u> might be useful to help identify

your star.

 Comparison stars are needed to remove background variations from the light curve.

Photometry (more *massaging* of text <u>fil</u>es)

Copy the photometry of the star and each comparison into separate files.

! awk '{if (\$1==135) print;}' R_mags > R_star

- ! awk '{if (\$1==160) print;}' R_mags > R_comp1
- ! awk '{if (\$1==172) print;}' R_mags > R_comp2
- ! awk '{if (\$1==175) print;}' R_mags > R_comp3
- ! awk '{if (\$1==222) print;}' R_mags > R_comp4

Replace with correct IDs

 It is a good sanity check to plot the x and y coordinates of each star, to make sure it was correctly identified in all images.

 Another good check is to plot the magnitudes of your comparison stars.

They have to be fairly constant!

Building the light curve

RA and DEC in a format 279.8767083356 (18h:39m:30.4s) -5.902749998734 (-5d:54m:09.8s)

- To turn our measurements into a light curve, we need the times for each observation. We will use the task setjd to obtain that.
- The headers of our images are missing one important information: coordinates (RA, DEC, Epoch). Use the task hedit to add those to all images.

E			pelisoli@o	octans:2/envs/iraf27/iraf	_ = ×
				IRAF	
			Image Reduct	tion and Analysis Facility	
	PACKAGE	= imutil			
	TASK	= hedit			
	images	=	@Rimgs	images to be edited	
	fields	=	EPOCH	fields to be edited	
	value	=	2000	value expression	
	(add	=	yes)	add rather than edit fields	
	(addonly	J=	no)	add only if field does not exist	
	(delete	=	no)	delete rather than edit fields	
	(verify	=	no)	verify each edit operation	
	(show	=	yes)	print record of each edit operation	
	(update	=	yes)	enable updating of the image header	
	(mode	=	ql)		
П					

Building the light curve

 We also need to set the observatory parameters to be used for setjd. We do that with the task observatory:

	xgterm – 🗆 🗙
Image Reduc PACKAGE = noao TASK = observatory	IRAF tion and Analysis Facility
command = 🗌 🛛 🛛 set	Command (setllistlimages)
obsid =	Observatory to set, list, or image default
images =	List of images
(verbose= no)	Verbose output?
(observa= ondrejov) (name =) (longitu= 14.78364) (latitud= 49.910556) (altitud= 528.) (timezon= -1.) override= ql)	Observatory identification Observatory name Observatory longitude (degrees) Observatory latitude (degrees) Observatory altitude (meters) Observatory time zone Observatory identification

Exit "ctrl+d" or ":go"

Building the light curve (setjd)

het: McDonald Observatory - Hobby-Eberly Telescope jcdo: Jack C. Davis Observatory, Western Nevada College lno: Langkawi National Observatory obspars: Use parameters from OBSERVATORY task

_Observatory identification (ondrejov):

			pensone		
			Image Reduc	I R A F tion and Analysis Facility	
	PACKAGE	= onedspec			
	TASK	= setjd			
		Ť			
	images	=	@Rimgs	Images	Hold down the enter
	(observ	a= -	obspars)	Observatory of observation	Leave and the Hillson and a
	(date	=	date-obs)	Date of observation keyword	key until all images
	(time	=	ut)	Time of observation keyword	have been done
	(exposu	r=	exptime)	Exposure time keuword	nave been done.
	(ra		ra)	Right ascension (bours) keuword	
	(dec	=	dec)	Neclination (degrees) keuword	
	(enoch	=	enach)	Epoch (Jeans) keyword	
	(epoch		epociti	Epoch (gears) Kegword	
	(id	=	id)	Output Julian date keyword	
	(hid	=	hid)	Output Helocentric Julian date keyword	
	(lid	=	lid)	Output local Julian date keuword	
	(utdate	=	yes)	Is observation date UT?	
	(uttime	=	yes)	Is observation time UT?	
	(liston	1=	no)	List only without modifying images?	
	(mode	=	ql)		
Г					
				ESC-? for HELP	

setjd > R_jd (R_jd is an output file. Check it!)

Building the light curve Check your column numbers! Might be different.

 To do differential photometry, we need to normalise the magnitudes of the star and of the comparison stars. First, check what is the average magnitude (6th column):

! awk '{sum+=\$5;n++} END {print sum/n;}' R_star

- Repeat that for all the comparison stars, and combine them into one file:
 - ! paste mag_comp1 mag_comp2 mag_comp3 mag_comp4 > all_comp
- Average the comparison stars:

! awk '{printf "%7.4f %6.4f\n", (\$1+\$3+\$5+\$7)/4.0, sqrt(\$2*\$2+ \$4*\$4+\$6*\$6+\$8*\$8)}' all_comp > mag_comp

Building the light curve

Combine the magnitudes of the star and the comparison magnitude:
 l paste mag_star mag_comp > comb_mag

Subtract the comparison from the star to remove background variations:
 awk '{printf "%7.4f %6.4f\n", (\$1-\$3), sqrt(\$2*\$2+\$4*\$4)}'
 comb_mag > diff_mag

 Select the column containing the Heliocentric Julian Date from the file created with setjd:

awk '!/#/ {print \$3}' R_jd > R_hjd

(Type this in a regular terminal. Does not work in IRAF)

Combine that with the magnitude to obtain the lightcurve:
 l paste R_hjd diff_mag > R_lightcurve

Voilà! Now you have a light curve.

Repeat the same for the other filter.

Light curves

Photometry – summary

- Create master files for bias, flat, and dark (zerocombine, — flatcombine, darkcombine).
 - Reduce the science images using ccdproc.
 - Measure sky and FWHM with imexamine.
 - Use the dask daofind to find the stars; do not forget to change the datapars according to your measurements, and set the threshold in findpars.
 - Use the task phot to do the photometry; do not forget to update centerpars, fitskypars and photpars.
 - Check ID for your star and comparison stars using display and tymark.
 - Inspect the coordinates for the star and comparison stars to guarantee there was no misidentification.
 - Inspect the magnitudes of the comparison stars; they should be fairly constant.

Use observatory and setjd to obtain the times of observation.

 Paste the times and differential magnitude (star - averaged comparison) into one file to obtain the light curve.

Optional task

We did a lot by hand, but:

1) excecute the IRAF commands from IRAF terminal display filename fits frame=1 zscale=yes zrange=yes Very useful to save the reduction steps/commands into a text file! Easy to redo or use as template in the future.

2) Create your own IRAF tasks/scripts (more complicated).