Data reduction of the Echelle spectra using IRAF

Mauricio Cabezas
23.08.2023

Workshop on observational techniques
21 August - 1 September 2023 at Ondřejov observatory

IRAF - first steps

https://iraf.net
help task
Plot spectrum
splot spec.fit
Plot set of spectra
specplot @spec.list
specplot e*.fit,01.fit,02.fit...
Check header
imhead spec.fit/@spec.list I+ | page
Select some field from header
hselect spec.fit/@spec.list \$l,obj-name,exptime yes
Check stats of spectrum
imstat spec.fit/@spec.list
See image with ds9
!ds9 \&
display spec.fit Nframe (nframe=1,..,12)

```

\section*{EDIT:}
```

1) login.cl line ~ 34
set stdimage $=$ imt4096
set imextn = "oif:imh fxf:fit,fits ..."
2) include data of Ondrejov observatory in the database, edit file obsdb.dat (path:
~miniconda3/envs/iraf38/iraf/noao/lib/obsdb.dat)
This is the EXPORT version of IRAF V2.16 supporting PC systems.
Welcome to IRAF. To list the available commands, type ? or ??. To get detailed information about a command, type 'help <command>'. To run a command or load a package, type its name. Type 'bye' to exit a package, or 'logout' to get out of the CL. Type 'news' to find out what is new in the version of the system you are using.
Visit http://iraf net if you have questions or to report problems.
The following commands or packages are currently defined:
(Updated on 2013-12-13)

adccdrom.	deitab.
cfh12k.	esowfi.
cirred.	finder.
ctio.	fitsutil.
cutoutpkg.	gemini.
dataio.	gmisc.
dbms.	guiapps.

images.
kepler.
language.
lists.
mem0.
mscdb.
mscred.

```
mtools. nfextern. noa. obsolete. plot. proto. rvsao.
softools.
sqiid.
stecf.
stsdas.
tsdas.
ystem.
tables.
ucsclris.
name = "Ondrejov observatory"
longitude \(=345: 12: 59\)
latitude \(=49: 54: 38\)
altitude \(=528\)
timezone \(=-1\)

\section*{OESRED.CL}

\section*{SEMI automatic}
- always check your data!
input
(output =
(idtarge=
(napertu= (id
imstat
ds9
splot
- Divided in two parts: Calibration and Science.

Useful for many exposures same night
- Parameters were tested and works exclusively for OES.
- for now, recommend stepbystep

\section*{- WORKSHOPI}
- oesred.cl
- 20230629
- e2023*.fit
- 20232308
- e2023*.fit

Imhead *.fit (quick inspection) epar oesred (or any task- edit parameter)
e202306290034.fit Spectrum target to reduce(.fit) alplyr) Output filename
alp Lyr) Target name on header
49) Number of apertures to be found 0022) Observation id number
\# CALIBRATION PARAMETERS
yes) do you want organize files?
no) Combine zero level images?
no) Trim flat and comp?
no) Use trim flat \& comp?
no) Apply zero level correction to flat \& comp?
no) Combine comparison lamp images?
no) Combine flat field images?
no) Extract flat apertures?
no) Extract comparison apertures?
no) Use database folder for identification?
idcomp_2307) folder name with identification database
no) Identify features in spectrum for dispersion solution?
\# OBJECT PARAMETERS
no) Trim object?
no) Use trim object?
no) Apply zero level correction to object?
no) Remove cosmic rays?
no) Use object with cosmic rays extraction?
no) Extract object apertures?
no) Apply flat correction to object?
no) calculate JD + heliocentric correction?
no) refer database identification to images?
no) normalize spectra?
no) combine normalized spcectra?
\# TASK PARAMETERS
legendre) Continuum fitting function
5) Order of continuum fitting function
spline3) Trace apertures fitting fucntion
5) Order of apertures fitting function
no) Edit object apertures?
no) Review object apertures?
q1)

\section*{1) Initial parameters!}

Check type of "image":
DISPAXIS \(=\)
GRATNAME \(=\)
GRATNAME= '3
SLITTYPE= 'BLADE AUTOGUID= 'MO
SLITWID =
COLIMAT = 'open
TLE-TRCS = '0
TLE-TRGV= '-22.3 -15.3'
TLE-TRHD = '-46.9083 38.8601'
TLE-TRRD= '183656.340 +38470'
TLE-TRUS= '0.0000 0.0000'
SGH-MCO = 'coude
SGH-MSC = 'star
SGH-OIC =
TM-DIFF =
OBJECT = 'alp Lyr '
IMAGETYP= 'object
OBSERVER= 'Kubatova, Novotny'
SYSVER = 'PESO exported.exp'
READSPD \(=\) ' 100 kHz
for example, alp Lyr spectrum.
- take note about the filename and the target name in the header!

FILENAME= 'e202306290034.fit'
CAMFOCUS \(=\) e202306290034.fit 3080
SPECTEMP=
SPECFILT =
SLITHEIG=
imhead e*.fit(short way)
- print list filename and object type
hselect e*.fit \$l,object yes
check header!
imhead e202109060001.fit I+ \| page
3080. / Camera focus position
22.9 / 18288
\(0 /\) Spectral filter
\(1.07 /\) Slit hight in mm

\section*{ALWAYS keep raw data as backup!!}
```

64 \#\#\#\#\#\#\# define variables
6 5 name="Mauricio Cabezas "
66 email='mauricio.cabezas@asu.cas.cz

```

Ae202306290029.fit[2048,2048][ushort]: comp e202306290030.fit[2048,2048][ushort]: comp e202306290031.fit[2048,2048][ushort]: zero e202306290032.fit[2048,2048][ushort]: zero e202306290033.fit[2048,2048][ushort]: zero e202306290034.fit[2048,2048][ushort]: alp Lyr e202306290035.fit[2048,2048][ushort]: Cyg X-1 e202306290036.fit[2048, 2048][ushort]: HD 340883 e202306290037.fit[2048,2048][ushort]: HD 339368 e202306290038.fit[2048,2048][ushort]: comp e202306290039.fit[2048,2048][ushort]: comp e202306290040.fit[2048,2048][ushort]: comp
\(\qquad\)

cl

Good to know and have contact who performed the reduction
/ Dispersion axis along lines
f Grating name - ID
/ Type of slit - blade or image slicers
/ Status of autoguider system
\(0.6 /\) Slit width in mm
/ Collimator mask status
Correction Set
/ Guiding Value
f Hour and Declination Axis
/ Right ascension and Declination
/ User Speed
/ Mirror Coude Des
/ Mirror Star Calibration
\(2 /\) OES Iodine cell
-2 / T1688068811 - P1688068813
\(/\) Title of observation
/ Type of observation, eg. FLAT
/ Observers

input:The complete fit file name of our target, science
output:Filename of the final reduced spectrum > "output-id.fit", why 'id'?
\(\rightarrow\) same target, same night
Idtarget: EXACT name of the target which is in the header!!
naperture:Number of apertures, important if we wanna use the wavelenght calibration database. Keep in 49.
id:recommended the last four numbers of the fit file

\section*{2) sort files!}
- complete first set of parameteres, in the part of calibration set:
orgfile \(=\) yes
:go

After this step files are organized, you can check each folder and files.
Example:

imstat @flat.dat
\begin{tabular}{|c|c|c|c|c|c|}
\hline \# IMAGE & NPIX ME & MEAN S & STDDEV & MIN & MAX \\
\hline e202109060006.fit & 4194304 & 931.1 & 2621. & 0. & 25203. \\
\hline e202109060007.fit & 4194304 & 949.1 & 2679. & 0. & 25797. \\
\hline e202109060008.fit & 4194304 & 944.7 & 2664. & 0. & 25560. \\
\hline e202109060009.fit & 4194304 & 941.4 & 2654. & 0. & 25521. \\
\hline e202109060010.fit & 4194304 & 940.2 & 2649. & 0. & 25405. \\
\hline
\end{tabular}
- visual inspection:
\(\begin{aligned} & \text { !ds9 \& } \\ & \text { display e202306290011.fit } 1\end{aligned} \quad \left\lvert\, \begin{gathered}\text { Corgfile= } \\ \text { (zerocom= } \\ \text { (trimcal= } \\ \text { (ifenimal }\end{gathered}\right.\)
 007.fit

003.fit





e202306290 006.fit
e202306290 012.fit
alp Lyr) Target name on header
49) Number of apertures to be found 0022) Observation id number
\# Calibration parameters
yes) do you want organize files?
no) Combine zero level images?
no) Trim flat and comp?


Before each run be sure we are in the MAIN folder (20230629/)! pwd

\section*{3) Combine zeros!}
- before, is possible edit the list zero.dat - change the previous task to "no"
orgfile = no
zerocom = yes
:go
- new file: Zero.fit
```


ZEROCOMBINE

if (access("zero/Zero.fit")){
zerocomb=no
}
if (zerocomb==yes){
cd "zero/"
unlearn zerocombine
zerocombine.reject="minmax"
zerocombine.rdnoise= "READNOIS"
zerocombine.gain = "GAIN"
zerocombine (input="@zero.dat",output="Zero.fit")
cd "../"
}

```


\section*{4) trim flat and comp (recommended)}
- completely optional, but usually the first and last pixel of each aperture is saturated and can be annoying during normalization.
- related with lines database 'idcomp'
zerocom = no trimcal = yes
iftrimc = yes
:go
- new files, prefix \(\mathbf{T}\)

Te*.fit

4) trim flat and comp (recommended)

If we apply trim and you want to use the trimmed images, you need to set iftrimc=yes during the whole reduction!
```

133 if (trimcal==yes){
134 unlearn ccdproc
135 ccdproc.trimsec = "[2:2035,*]"
136

ccdproc.trimsec = "[5:2025,800:1500]"

 ccdproc.trim = yes
 ccdproc.fixpix = no
 ccdproc.overscan = no
 ccdproc.darkcor= no
 ccdproc.zerocor=no
 ccdproc.flatcor=no
 #
 cd "flat/"
 ccdproc.ccdtype = "flat"
 ccdproc (images="@flat.dat",output="T@flat.dat")
 cd ".../'
 #
 cd "comp/"
 ccdproc.ccdtype = "comp"
 ccdproc (images="@comp.dat",output="T@comp.dat")
 cd "../"
    ```
5) Bias correction \(\rightarrow\) flat and comp

\# CALIbRATION PARAMETERS
(orgfile= (zerocom= (trimcal= (zerocor=
(compcom= (flatapa= More ecl>
no) do you want organize files?
no) Combine zero level images?
no) Trim flat and comp?
yes) Use trim flat \& comp?
yes) Apply zero level correction to flat \& comp?
no) Combine comparison lamp images?
no) Combine flat field images?
no) Extract flat apertures?
no) Extract comparison apertures?
- new files, prefix \(\mathbf{Z}\) ZTe*.fit
me / workshop / 20230629 / flat

\section*{5) Bias correction flat and comp}
```

if (zerocorcal=yes){

imarith (operand1="flat/flat.fits", op="/", operand2="zero/Zero.fits", result="Zflat.fits")

imarith (operand1="comp/comp.fits", op="/", operand2="zero/Zero.fits", result="Zcomp.fits")

unlearn ccdproc
ccdproc.ccdtype="zero"

ccdproc.trimsec = "[5:2025,800:1500]"

ccdproc.fixpix = no
ccdproc.overscan = no
ccdproc.darkcor= no
ccdproc.zerocor=no
ccdproc.flatcor=no

cd "flat/
ccdproc.ccdtype="flat"
ccdproc.zerocor=yes
ccdproc.zero=" . ./zero/Zero.fit"
if (iftrimc==yes){
ccdproc (images="T@flat.dat",output="ZT@flat.dat")
} else {
ccdproc (images="@flat.dat",output="Z@flat.dat")
}
cd
\#
cd "comp/"
ccdproc.ccdtype="comp"
ccdproc.zerocor=yes
ccdproc.zero="../zero/Zero.fit"
if (iftrimc==yes){
ccdproc (images="T@comp.dat",output="ZT@comp.dat")
} else {
ccdproc (images="@comp.dat",output="Z@comp.dat")
}
cd "

```

\section*{6) Combine comp (ThAr)}
iftrimc = yes (keep "yes")
zerocor = no
compcom = yes
:go
- new file

ZTcomp.fit
\# CALIBRATION PARAMETERS
no) do you want organize files?
no) Combine zero level images?
no) Trim flat and comp?
yes) Use trim flat \& comp?
no) Apply zero level correction to flat \& comp?
yes) Combine comparison lamp images?
no) Combine flat field images?
no) Extract flat apertures?
no) Extract comparison apertures?

alplyr


flat


ESC-? for HELP

\section*{7) Combine flat field}

6) and 7) Combine comp/flat field
```


COMBINE - comp/lamp

if (compcomb==yes) {
cd "comp/"
unlearn imcombine
\# imcombine.reject = "none"
imcombine.reject = "none"
imcombine.lsigma = 3
imcombine.hsigma = 3
imcombine.rdnoise= "READNOIS"
imcombine.gain = "GAIN"
imcombine.scale = "exposure"
imcombine.expname="EXPTIME"

imcombine (input="@comp.dat",output = "comp.fits")

 if (iftrimc==yes){
 imcombine (input="ZT@comp.dat",output = "../ZTcomp.fit")
 } else {
 imcombine (input="Z@comp.dat",output = "../Zcomp.fit")
 }
 cd "../"
 }
 ###### COMBINE flat
 if (flatcomb==yes){
 cd "flat/"
 if (iftrimc==yes){
 imcombine (input="ZT@flat.dat",output = "../ZTflat.fit")
 } else {
 imcombine (input="Z@flat.dat",output = "../Zflat.fit")
 }
 cd "../"
 }

```
8) Model apertures - Flat
iftrimc = yes
flatcom = no
flatapa \(=\) yes
:go

\section*{Find apertures for Ztflat? (yes):}

\section*{Number of apertures to be found automatically (49):}

Resize apertures for ZTflat? (yes): Edit apertures for Ztflat? (yes):
- accept everything with "enter" or typing "yes". Default answer in parenthesis.
- value in parenthesis (yes/no) is Predefined. press ENTER
- in order to do everything a bit easy/fast. We will use a database for wavelength calibration, for that we need to choose 49 apertures.

Background fitting is not necessarily because overlapping.

\section*{CURSOR KEY - interactive}

\section*{Good practice:}

\section*{- NEVER resize the window directly when} interactive is activated!
if yes \(\rightarrow\) ' \(:\) ' resize \(\rightarrow\) enter
NEVER do click on the interactive window! if yes \(\rightarrow\) click on green square \(\rightarrow\) Delete

Help window: '?'
\(q+q \rightarrow\) exit help
Window: \(w+e+e \rightarrow\) Zoom bottom left/top right corner
\(w+a \rightarrow\) redraw/ show all \(w+u / d / l / r \rightarrow\) move up/down/left/right

\section*{APEXTRACT CURSOR KEY SUMMARY}


\section*{8) Model apertures - Flat}
- first aperture near the pixel \(\sim 860-890\) mark: m


\section*{8) Model apertures - Flat}


- delete extra apertures

We need only 49
\(\rightarrow\) over the aperture Then : d

First aperture Number 1, no 50

Sort: 0

\section*{'1'}
enter

- check apertures,
Zoom in/out and
Aperture numbers

All right? \(\rightarrow\) ' \(q\) '
‘Trace apertures for Ztflat?
(yes)


\section*{8) Model apertures - Flat}

Fit curve to aperture \(\mathbf{N}\) of Ztflat interactively (yes): YES
Write apertures for ZTflat to database (yes):
Extract aperture for ZTflat? (yes):
Review extracted spectra from ZTflat? (yes): YES
Review extracted spectrum for aperture 1 from ZTflat? (yes) YES


Polinomial fitting of the echelle orders
- change order :o N
- change function:
:f spline3/legendre/ chebyshev
- relative residuals \(\mathbf{k}\)
- residuals (px) j
- aperture h

```

\#\#\#\#\#APERTURES - APALL FLAT
if (flatapall==yes){
echelle
unlearn apall
apall.format = "echelle"
apall.extras=no
apall.extract=yes
apall.nsum=15
apall. lower=-5
apall.upper=5
apall.b_order=3
apall.b_sample="-10:-6,6:10
apall.nfind=nap
\#apall.minsep=10
apall.minsep=5
apall.maxsep=1000
apall.ylevel = 0.04
apall.bkg=yes
\#apall.bkg=no
apall.t_nsum = 10
apall.t_function = tfunct
apall.t_niter=100
apall.t_order=torder
apall.clean=no
apall.readnoi= 0
apall.gain ==1
\#apall.width=9
\#apall.width=5

apall.weights = "none"

 apall (input=inflat, output = "A"//inflat)
    ```
9) Model apertures - Comparison lamp
- Template: AZTflat.fit
iftrimc = yes
flatapa \(=\) no
compapa \(=\) yes
:go
Edit apertures for ZTcomp? (yes):
Can be "no" but always is better to check it!
\[
\mathbf{q}
\]

Write apertures for ZTcomp to database (yes): Extract aperture spectra for ZTcomp? (yes): Review extracted spectra from ZTcomp? (yes): Review extracted spectrum for aperture 1 from ZTcomp? (yes) YES
- if you are using database, check if the first aperture corresponds to the first aperture in the atlas. (inside folder idcomp_*
(orgfile= (zerocom= (trimcal= (iftrimc= (zerocor= ( compcom= (flatcom= (flatapa= (compapa= (iddatab= (idf olde= (idencom=
\# CALIBRATION PARAMETERS
no) do you want organize files?
no) Combine zero level images?
no) Trim flat and comp?
yes) Use trim flat \& comp?
no) Apply zero level correction to flat \& comp?
no) Combine comparison lamp images?
no) Combine flat field images?
no) Extract flat apertures?
yes) Extract comparison apertures?
no) Use database folder for identification?
idcomp_2307) folder name with identification database
no) Identify features in spectrum for dispersion sol


\section*{9) Model apertures - Comparison Iamp}


\section*{9) Model apertures - Comparison lamp}
- reference \(\rightarrow\) AZTflat
- new file: AZTcomp.fit

284 \#\#\#\#\#APERTURES - COMP
285 if (compapall==yes) \{
286 apall.referen=inflat
287
apall.format \(=\) "echelle"
apall. find=no
apall. recente=no
apall.resize=no apall.trace=no
apall. fittrace=no
apall. extras=no
apall. ylevel \(=0.04\)
apall. extract=yes
apall (input=incomp, output="A"//incomp//".fit")
\(\}\)
kshop / 20230629

\section*{10) Wavelength calibration}
- using database, folder "idcomp" must be in the main path
iftrimc = yes
compapa = no
iddatab = yes
idfolder = idcomp_2307
idencom = yes
:go
\# CALIBRATION PARAMETERS
(orgfile=
(zerocom= (trimcal=
(iftrimc=
(zerocor=
(compcom=
(flatcom=
(flatapa=
(compapa=
(iddatab=
(idfolde=
(idencom=
no) do you want organize files?
no) Combine zero level images?
no) Trim flat and comp?
yes) Use trim flat \& comp?
no) Apply zero level correction to flat \& comp?
no) Combine comparison lamp images?
no) Combine flat field images?
no) Extract flat apertures?
no) Extract comparison apertures?
yes) Use database folder for identification?
idcomp_2307) folder name with identification database
yes) Identify features in spectrum for dispersion
- in database, lines can be shifted few pixels,
in order to fix it we need to "shift" the lines of our database. If doesn't work, recommend delete every line with d, and mark new lines (m) comparing with the atlas.

Shift \(\rightarrow \mathbf{s}\)
- always fit!
f (delete point d), q, q
- rms ~ 0.007 acceptable
- Write feature data to the database (yes)?

No match!



\section*{10) Wavelength calibration - fit}
- NO pattern in residuals
- no high order is recommended
- d to eliminate point
- q, f to refit and update plot


- better RMS, no significant
\(\rightarrow \mathbf{q}, \mathbf{q}\) to the next aperture
identify iazcomp. 0001 - Ap 1
Write feature data to the database (yes)?
- yes, 49 times :)

\section*{10) Wavelength calibration - but..if not match?? :(}
- delete all lines
- NO press F!
- compare the Atlas and mark manually > 5 lines mark: m, wavelength, enter delete: d zoom in/out (w,e,e)
- now f to fit, check residuals, \(\mathbf{q}\)

N0A0/IRAF V2.16 mauricio@mauricio Wed 13:26:35 30-Dec-2020 identify iazcomp.0002-Ap 2


\section*{10) Wavelength calibration - but..if not match?? :(}

L, automatic mark
- f, refit
- 'clean'
\(\rightarrow\) happy, q,q
■


NOAO/IRAF V2.16 mauricioGlenovo Tue 14:52;41 22-Aug-2023 identify iazcomp. 0002 - Ap 2
\(\rightarrow\)

\section*{10) Wavelength calibration}
- using the database
- for each aperture a file is created with the calibration information, which later will use as reference to the object's apertures.
- new files: iazcomp.00**.fit


\section*{\#\#\#\#\# IDENTIFY 1D}
if (idencomp==yes) \{
unlear directory
unlearn scopy
directory.sort=yes
directory "identify/" | scan (iddir)
if (iddir=="no") \{
mkdir (newdir="identify")
\}
copy (input="A"//incomp,output="identify/")
cd "identify/"
lpar scopy
scopy. format="onedspec"
scopy (input="A"//incomp, output="iazcomp")
print "second"
unlearn refspectra
unlearn hedit
hedit.addonly=yes
hedit.verify=no
hedit.show=no
for (i=1; i <=nap; i+=1) \{
printf ("iazcomp.00\%02d.fit\n",(i)) | scan(ecname)
if (iddatabase==yes) \{
printf ("iazcomp.00\%02d\n",(i)) | scan(refname) hedit (images=ecname, fields="REFSPEC1", value=refname)
\}
identify.coordli="linelists\$thar.dat"
\#lpar identify
identify (images=ecname)
\}
cd "../"

\section*{10) Wavelength calibration - idcomp_* database}
- pixel
- Last one is the valid
\# Mon 16:09:08 14-Aug-2023
begin identify iazcomp.0020 - Ap 20 id iazcomp.0020 task identify image iazcomp.0020 - Ap 20 aperture 20 aplow 1245.04 aphigh 1254.39 units Angstroms
features 39 \(44.335122 .49923 \quad 5122.4995 \quad 4.011\) \(248.495115 .04518 \quad 5115.0448 \quad 4.011\) \(\begin{array}{rrrrrr}349.35 & 5111.2775 & 5111.2781 & 4.0 & 1 & 1 \\ 390.23 & 5109.73442 & 5109.7331 & 4.0 & 1 & 1\end{array}\) \(390.235109 .73442 \quad 5109.7331\) \(613.855101 .12945 \quad 5101.1299\) \(\begin{array}{lll}692.37 & 5098.04247 & 5098.0432\end{array}\) \(731.705096 .48345 \quad 5096.4848\) \(767.33 \quad 5095.06367 \quad 5095.0639\) \(891.655090 .05504 \quad 5090.0513\) \(912.215089 .21879 \quad 5089.2192\) 986.445086 .179675086 .1774 \(1015.29 \quad 5084.9903 \quad 5084.9935\) 1100.625081 .445745081 .4462 \(1242.465075 .46606 \quad 5075.4659\) \(1261.725074 .64575 \quad 5074.6465\) \(1385.295069 .33375 \quad 5069.3384\) \(1416.625067 .97393 \quad 5067.9737\) \(1435.825067 .13772 \quad 5067.1379\) \(1444.035066 .77966 \quad 5066.7773\) \(1458.765066 .13623 \quad 5066.1355\) \(1493.745064 .60369 \quad 5064.602\) \(1518.465063 .51693 \quad 5063.5157\) \(1531.755062 .93097 \quad 5062.9325\) \(1551.965062 .03813 \quad 5062.0371\) \(1560.535061 .65909 \quad 5061.6562\) \(1601.015059 .86252 \quad 5059.8611\) 6.011 6.011 4.011 6.011 6.011 4.011 6.011 4.011 4.011 6.011 4.011 4.011 \(\begin{array}{llll}4.0 & 1 & 1 \\ 4 & 0 & 1 & 1\end{array}\) \(\begin{array}{lll}.0 & 1 & 1 \\ .0 & 1 & 1\end{array}\)
6.011
- real/fitted
wavelength
- marked wavelength

\section*{11) Trim Object}

\section*{IMPORTANT, first check} these parameters are ok!


PACKAGE = clpackage
TASK = oesred
> iftrimc = yes
> iddatab = no
> idfolder = idcomp
> idencom = no

trimob \(=\) yes
iftrimo = yes
:go

\section*{\# OBJECT PARAMETERS}
```

(trimob =
(iftrimo=
(zerocor=
(crays =
(ifcrays=
(objecta=
(flatcor=
(helioco=
(idref =
(norm)=$=$

```
```

yes) Trim object?
yes) Use trim object?
no) Apply zero level correction to object?
no) Remove cosmic rays?
no) Use object with cosmic rays extraction?
no) Extract object apertures?
no) Apply flat correction to object?
no) calculate JD + heliocentric correction?
no) refer database identification to images?
no) normalize spectra?

```

\section*{11) Trim Object}
- trimsection has to be the same as calibration DON'T change!
```

68 if (trimob==yes){
unlearn ccdproc
ccdproc.trimsec = "[2:2035,*]"
ccdproc.trim = yes
ccdproc.fixpix = no
ccdproc.overscan = no
ccdproc.darkcor= no
ccdproc.zerocor=no
ccdproc.flatcor=no
\#
cd (oname)
ccdproc.ccdtype = "object"
ccdproc (images=spec, output="T"//spec)
cd "../"
}

```

New file: alplyr/Te2023*.fit


\section*{12) Bias correction object}

\section*{iftrimc = yes \\ trimob \(=\) no \\ iftrimo = yes \\ zerocor = yes}
(trimob = (iftrimo= (zerocor= \({ }^{\text {[ }}\) [
(crays (ifcrays= (objecta= (flatcor= (helioco= (idref = (norm \(=\)
\# OBJECT PARAMETERS
no) Trim object?
yes) Use trim object?
yes) Apply zero level correction to object?
no) Remove cosmic rays?
no) Use object with cosmic rays extraction?
no) Extract object apertures?
no) Apply flat correction to object?
no) calculate JD + heliocentric correction?
no) refer database identification to images?
no) normalize spectra?

90
New file: alplyr/ZTe2023*.fit
```

393 if (zerocorob==yes) {
cd (oname)
unlearn ccdproc
ccdproc.ccdtype="zero"
ccdproc.fixpix = no
ccdproc.overscan = no
ccdproc.darkcor= no
ccdproc.zerocor=no
ccdproc.flatcor=no
\#
ccdproc.ccdtype="object"
ccdproc.zerocor=yes
ccdproc.zero=" . ./zero/Zero.fit'
ccdproc (images=inobject,output="Z"//inobject)
cd "../"

```
    \#imarith (operand1=spec, op="/", operand2=". ./zero/Zero.fits", result= ogfile
\}
\[
\begin{aligned}
& \text { iftrimc = yes } \\
& \text { iftrimo = yes } \\
& \text { zerocor = no } \\
& \text { crays = yes } \\
& \text { ifcrays = yes } \\
& \text { :go }
\end{aligned}
\]
(trimob \(=\)
(iftrimo=
(zerocor=
(crays
(ifcrays=
(objecta=
(flatcor=
(helioco=
(idref =
( norm

\section*{\# OBJECT PARAMETERS}
no) Trim object?
yes) Use trim object?
no) Apply zero level correction to object? yes) Remove cosmic rays?
yes) Use object with cosmic rays extraction?
no) Extract object apertures?
no) Apply flat correction to object?
no) calculate JD + heliocentric correction?
no) refer database identification to images? no) normalize spectra?
- read GAIN and READtoNOISE from header

New files: alplyr/CrZTe2023*.fit \(\leftarrow\) cleaned

\[
\text { alplyr/MCrZTe2023*.fit } \leftarrow \text { mask }
\]

412 \#\#\#\#\#COSMIC RAY
if (crays==yes) \{
stsdas
\#\#\#\#\#\#
\#read gain
cd (oname)
hselect (images="Z"//inobject,fields="GAIN", exp=yes) | scan (gainh)
hselect (images="Z"//inobject,fields="READNOIS", exp=yes) | scan (readnh) \#print (gainh)
inputCR="Z" //inobject
outputCR="CrZ" //inobject
outmaskCR="MCrZ" //inobject
gainCR = gainh \# 2 \#3
readnCR = readnh \#2
xorderCR = 3
yorderCR = 3
sigclipCR \(=4.5\)
sigfracCR \(=0.3\)
430 objlimCR \(=0.75 \# 0\) to 5,5 more conservative discrimination
niterCR = 5
verboseCR = no

\section*{14) Extract apertures - Object}
iftrimc = yes
iftrimo = yes
crays = no
ifcrays = yes
objecta \(=\) yes
:go

\# OBJECT PARAMETERS
no) Trim object?
yes) Use trim object?
no) Apply zero level correction to object?
no) Remove cosmic rays?
yes) Use object with cosmic rays extraction?
yes) Extract object apertures?
no) Apply flat correction to object?
no) calculate JD + heliocentric correction?
no) refer database identification to images?

\section*{14) Extract apertures - Object}

Edit apertures for CrZTe2023*? (yes):
Review extracted spectrum for aperture 1 from CrZTe2023*? (yes)
Write apertures for CrZTe2023* to database? (yes):
\(q \rightarrow\) if yes, with \(q\) you move to the next aperture
Extract aperture spectra for CrZTe2023*? (yes):

First view of our target!!! BUT!! :)

Still in pixel :(
For example aperture 36 is the spectral region of H -alpha


\section*{14) Extract apertures - Object}
new file: alplyr/ACrZTe2023*.fit
```

\#\#\#\#\#APERTURES - OBJECT
if (objectapall==yes){
apall.referen=inflat
apall.format = "echelle"
apall.find=no
apall.recente=no
apall.resize=no
apall.trace=no
apall.fittrace=no
apall.extras=no
apall.extract=yes
apall.edit=edit_o
apall.review=review_o
\#\# check database
unlear directory
directory.sort=yes
directory oname//"/database/" | scan (iddir)
if (iddir=="no"){
mkdir (newdir=oname//"/database")
copy (input="database/*",output=oname//"/database/")
}
\#\#
cd (oname)
apall (input=inobject, output="A"//inobject)
cd

NOAD/IRAF V2.16 mauricioglenovo Tue 16:47:43 22-Aug-2023
15) Flat correction
iftrimc = yes
iftrimo = yes
ifcrays = yes/no
objecta $=$ no
flatcor = yes :90
To see or plot use the task splot spec.fit

To move between orders (\rightarrow to the right/ higher aperture) \rightarrow to the left/ lower aperture

\# OBJECT PARAMETERS
(trimob $=$ (iftrimo= (zerocor= (crays (ifcrays= (objecta= (flatcor= (helioco= (idref
(norm
no) Trim object?
yes) Use trim object?
no) Apply zero level correction to object?
no) Remove cosmic rays?
yes) Use object with cosmic rays extraction?
no) Extract object apertures?
yes) Apply flat correction to object?
no) calculate JD + heliocentric correction?
no) refer database identification to images?
no) normalize spectra?

15) Flat correction

new file: FACrZTe2023*.fit

In Flat correction we have to divide. By dividing the science spectrum by the flat-field image, we are effectively correcting for the variations in

- sensitivity
- illumination
- detector response.

```
###### FLAT correction
#print ("FA"//inobject)
if (flatcor==yes){
    imarith (operand1=oname//"/A"//inobject, op="/", operand2="A"//inflat, result=oname//"/FA"//inobject)
```

 \#imcopy ("FA" //inobject, oldoutput, verb-)
 \#move (files="FA"//inobject, newdir=oname//"/")
 16) JD + heliocentric correction
iftrimc = yes
iftrimo = yes
ifcrays = no
flatcor $=$ no
helioco = yes
:go
$\left[\begin{array}{lr}\text { (ifcrays }= & \text { yes) Use object with cosmic rays extraction? } \\ \text { (objecta= } & \text { no) Extract object apertures? } \\ \text { (flatcor= } & \text { no) Apply flat correction to object? } \\ \text { (helioco }= & \text { yes) calculate JD }+ \text { heliocentric correction? } \\ \text { (idref }= & \text { no) refer database identification to images? } \\ \text { (norm }= & \text { no }) \text { normalize spectra? }\end{array}\right.$
More
20:0:17CrZTe202306290034 fit
\# $\begin{aligned} & \text { \# SET JD: Observatory parameters for Ondrejov Observatory } \\ & \text { \# } \\ & \text { Imd }\end{aligned}$
\# SETJD: Observatory parameters for Ondrejov Observatory
\# timezone $=-1$
Warning: Image header parameter not found (UTMIDDLE)
\# RVCORRECT: Observatory parameters for Ondrejov Observatory
latitude $=49: 54: 38$
longitude $=345: 12: 59$
altitude $=528$
\#\#YR MO DY UT RA DEC VOBS
\#\# HJD VOBS VHELID VLSR
2023 6 29-20:00:17 18:36:56 38:47:01
$2460125.33628 \quad 0.00 \quad 21.070$
FACrZTe202306290034 . fit VDIURNAL VLUNAR VANNUAL VSOLAR
0.0
$0.171-0.004 \quad 1.907 \quad 19.625$

Check long header:
imhead FCrAZTe2023*.fit I+

CUL_2	$=$	1.		
HJD	$=$	2460125.33628259		
VHELIO	$=$	2.07395459376786		
VLSR	$=$	21.6990646774371		
VSUN	$=$	20.	18.	30.
1900.				

16) JD + heliocentric correction

\# \#\#\#\#\# SETJD + HELIOCOR
if (heliocor==yes) $\{$
cd (oname)
359 \#CALC UTMIDDLE
360 hselect (images="other/"//spec,fields="TM_START", exp=yes) | scan (utstart)
361 hselect (images="other/"//spec,fields="EXPTIME", exp=yes) | scan (expt)
362 utmidhr=int((utstart + expt/2)/3600)
363 utmidmin=int((((utstart + expt/2)/3600)-utmidhr)*60)
364 utmidsec=int(((((utstart +expt/2)/3600)-utmidhr)*60 - utmidmin)*60)
365 utmid =(utmidhr//":"//utmidmin//":"//utmidsec)
366 printf ("\%d:\%d:\%dn",utmidhr,utmidmin,utmidsec) | scan (utmid)

Δ

UTMIDDLE
print (utmid,inobject)
unlearn hedit
hedit. addonly=no
hedit.verify=no
hedit.show=no
hedit (images="FA" / /inobject, fields="UT", value=utmid) \#\#hedit (images="N"//oname//".fit", fields="UT", value=utmid) \# hedit (images="N"//oname//".fits", fields="UTMIDDLE", value=utmid) unlearn setjd
setjd.observatory="ondrejov"
setjd.epoch="epoch"
setjd.time="UTMIDDLE"
setjd (images="FA"//inobject)
rv
unlearn rvcorrect
rv.rvcorrect.input=yes
rv.rvcorrect.imupdate=yes
rv.rvcorrect. epoch=2000.
rv.rvcorrect.observatory="ondrejov"
rv.rvcorrect (images="FA"//inobject)
\#\#save header
print ("FA"//inobject)
\#imheader (images="FA"//inobject)
imhead ("FA"//inobject, l+ ,> oname//".hd")
\#dopcor.isvelocity=yes
\#dopcor (input="N"//oname//id//".fit", output=oname//"-"//id//".fit" \#system.move (files=oname//"-"//id//".fit", newdir=". ./") cd "../"
301 \}
17) Ref spectrum
iftrimc = yes
iftrimo = yes
ifcrays = no
helioco = no
idref = yes
:go
\# OBJECT PARAMETERS
(trimob =
(iftrimo=
(zerocor=
(crays
(ifcrays=
(objecta=
(flatcor=
(helioco=
(idref
(norm
no) Trim object?
yes) Use trim object?
no) Apply zero level correction to object?
no) Remove cosmic rays?
yes) Use object with cosmic rays extraction?
no) Extract object apertures?
no) Apply flat correction to object?
no) calculate JD + heliocentric correction?
yes) refer database identification to images?
no) normalize spectra?

```
wap.0045.fit: ap = 45, w1 = 7839.5, w2 = 7970.266, dw = 0.064321, nw = 2034
[ap.0046] refspec1='iazcomp.0046'
ap.0046.fit: REFSPEC1 = 'iazcomp.0046 1.'
wap.0046.fit: ap = 46, w1 = 8017.647, w2 = 8151.399, dw = 0.06579, nw = 2034
[ap.0047] refspec1='iazcomp.0047'
ap.0047.fit: REFSPEC1 = 'iazcomp.0047 1.'
wap.0047.fit: ap = 47, w1 = 8204.084, w2 = 8340.946, dw = 0.06732, nw = 2034
[ap.0048] refspec1='iazcomp.0048'
ap.0048.fit: REFSPEC1 = 'iazcomp.0048 1.'
wap.0048.fit: ap = 48, w1 = 8399.397, w2 = 8539.591, dw = 0.068959, nw = 2034
[ap.0049] refspec1='iazcomp.0049'
ap.0049.fit: REFSPEC1 = 'iazcomp.0049 1.'
wap.0049.fit: ap = 49, w1 = 8605.969, w2 = 8788.151, dw = 0.089612, nw = 2034
ecl>
```


17) Ref spectrum

Read database of wavelength calibration and apply!
splot wap.0036.fit
NO more pixels!!! :)
\rightarrow aperture $36 \rightarrow \mathrm{H}$-alpha
Check if ok
Good Wavelength calibration !!

17) Ref spectrum

New files:

ap.00XX.fit 1D spectra in pixels
wap.00XX.fit 1D spectra in Angstrom
wap_asc/wap.00XX.asc ascii file for each aperture (useful)


```
unlear directo
directory. sort=no
directory oname//"/" | scan (iddir)
if (iddir=="no")s
        mkdir (newdir=oname)
}
cd oname//
unlear onedspec
scopy.format="onedspec
scopy (input="FA"//inobject, output="ap")
unlearn refspectra
dispcor.w1=INDEF
dispcor.w2=INDEF
dispcor.w2-INDEF
dispcor.nw=INDEF
dispcor.flux=no
cd "../identify/"
system
for (i=1; i <=nap; i+=1) {
            printf ("ap.00%02d.fit\n",(i)) | scan(oap)
            printf ("iazcomp.00%02d.fit\n",(i)) | scan(ecname)
            refspectra.sort="epoch"
            refspectra.group="epoch
            refspectra.answer=yes
            efspectra.answer=yes
            refspectra.confirm=no
            system.move (files="../"//oname//"/"//oap, newdir="../identify/")
            refspectra (input=oap, referen=ecname)
            dispcor (input=oap, output="w" / /oap)
            system.move (files=oap,newdir="../"//oname)
            system.move (files="w"//oap,newdir="../"//oname)
cd "
cd oname//
wspectext.header=no
mkdir (newdir="wap_asc")
mkdir (newdir="wap_asc")
for (i=1; i <=nap; i+=1) {
    printf ("ap.00%02d\n",(i)) | scan(oap)
    wspectext (input="w"//oap//".fit",output="w" //oap//".asc")
    system.move (files="w" //oap//".asc",newdir="wap_asc")
    }
    system.move (files=oname//".hd",newdir="wap_asc")
    cd "wap_asc"
    lls wap*.asc > norm.list
    #### create python script
    cd " create python script
```


18) Normalization

iftrimc = yes
iftrimo = yes
ifcrays = no
idref $=$ no
norm = yes
:go

(objecta=	no) Extract object apertures?
(flatcor=	no) Apply flat correction to object?
(helioco=	no) calculate JD + heliocentric correction?
(idref $=$	no) refer database identification to images?
(norm $=$	yes) normalize spectra?
More	
wap.0001.fitfap.0001.fitnap.0001.fit	
Fit [1,1] of wap.0001.fit w/ graph? (yeslnolskiplYESINOISKIP) (yes):	

Fit [1,1] of wap.0001.fit w/ graph? (yes|no|skip|YES|NO|SKIP) (yes):

18) Normalization

- change order : o N
- residuals j
- high rejection :hi N
- low rejection :lo \mathbf{N}
- function :f legendre/spline3/chebyshev
- select region s..s
- delete region z
- delete all regions t
- zoom/window w, e..e resize w,a move right w,r move left \mathbf{w}, \mathbf{l} move up $\mathbf{w , u}$ move down w,d

18) Normalization

- residuals j
- high rejection :hi N

18) Normalization

Advises / Good practices

- Start with low order
- Hot stars or wide lines \rightarrow

Legendre or chebyshev

- sometimes faster just change high/low rejection
- Dont frustrate if poor normalization is Just experience, there is not ABSOLUTE way

```
##### normalization
if (norm==yes){
    cd (oname)
    unlearn continuum
    unlearn scombine
    continuum.type="fit"
    continuum.function=cfunction
    continuum.order=corder
    continuum.naverage=10
    continuum.markrej=no
    continuum.niterat=2000
    continuum.high_re=2
    continuum.low_re=1.5
    continuum.grow=0
    for (i=1; i <=nap; i+=1) {
        printf ("wap.00%02d.fit\n",(i)) | scan(wap)
        printf ("fap.00%02d.fit\n",(i)) | scan(fap)
        printf ("nap.00%02d.fit\n",(i)) | scan(nnap)
        print (wap, fap, nnap)
    continuum (input=wap, output=fap)
    }
    cd "../"
}
```

21) merging
iftrimc = yes
iftrimo = yes
ifcrays = no
norm = no
ncombine $=$ yes
:go
new file: alpLyr-0022.fit

SPLOT

splot alpLyr-0016.fit
Fit: gaussian: k..k(or g) lorentzian: k..I
voigt: k..v
centroid e..e

snr: m..m

Change unit (angstrom to km / s)
:u km/s 6562.8 an :u an

SPECPLOT

specplot spec1.fit,spec2.fits
Change step: step 1 (or any number)
See wavelength: u
snr: m..m

Change unit (angstrom to km/s)
:u km/s 6562.8 an :u an
Replot: \mathbf{r}

General Remarks

Thank you!!

The optimal reduction process always will be different for each instrument.

- IRAF "sometimes" is a bit tricky, but really useful.
- Quick check/inspection of spectra!!
- Versatil program because many parameters (sometimes too many).
- Pre-defined task.
- "opensource" you can write your own task/package.
- Xgterm - nice interactive tool.
- Slow with computation, python/idl/fortran would be good option.

