Spectroscopic Survey of Runaway Star Candidates

Aakash Bhat & Stephan Geier

What is a star?

Dmitry Brant/Wikimedia Commons

Gas balls in equilibrium

Gravitational force acting on shell r with thickness dr inward

$$G = -g\rho dr$$

Balanced by force due to pressure outward (Fusion processes) $P_i - P_e = -\frac{\partial P}{\partial r} dr$

Hydrostatic equilibrium

X-Shooter spectral library, http://xsl.u-strasbg.fr/

X-Shooter spectral library, http://xsl.u-strasbg.fr/

The **nuclear lifetime** on the main sequence is a strong function of *L* and therefore *M*

It ranges from several million years to more than the age of the Universe for $M < 0.8 M_{\odot}$

Hot MS stars are short-lived

Hot MS stars are very rare

Offner et al. 2014, in: Protostars and Planets VI, 53

Thomas 1967, ZA, 67, 420

Degenerate helium core grows in mass due to central H-burning

In low-mass stars the core is radiative

 \rightarrow No efficient mixing in the core

→ Hydrogen is consumed starting in the center

→ Smooth transition to shell burning

Due to the high density in the core, the electron gas becomes **degenerate**

→ Isothermal, degenerate core is stable

 \rightarrow Core can grow in mass

No heating during core contraction due to equation of state

$$P_{\rm e} = 1.0036 \times 10^{13} \left(\frac{\rho}{\mu_{\rm e}}\right)^{5/3}$$

Thomas 1967, ZA, 67, 420

H-shell burning starts \rightarrow Core contracts, envelope expands

Temperature of the core increases

- → Increase of temperature in the H-burning shell
- → Core contraction heats transition layer between core and shell

Critical temperature for helium burning ($\sim 10^8$ K) is reached for a core mass of about 0.48 M_{\odot}

Due to **energy losses via neutrinos** in the center, helium is ignited in a shell

 $\langle \sigma v \rangle \sim$

Due to the high temperature dependency of the 3α reaction rate $\langle \sigma v \rangle \sim \rho T^{40}$, nuclear energy is released fast and increases the core temperature

Degenerate gas cannot expand with increasing temperature

Runaway burning of helium

Helium flash

Runaway burning of helium under degenerate conditions

 \rightarrow Degeneracy is lifted

→ Core expands, density drops

 \rightarrow Stable He-core burning

Kippenhahn, Weigert & Weiss 2012

Phase of **stable He-core** and H-shell burning

→ Stars occupy a region of (about) constant luminosity

Horizontal Branch stars

- → Different mass loss η on the RGB leads to different thickness of the hydrogen envelopes
- → Mass of the He-core is constant (~ $0.48 M_{\odot}$)
- \rightarrow Diverse types of HB stars

Horizontal Branch stars

→ The thinner the hydrogen envelope, the bluer the HB star

→ Morphology of HB depends on metallicity and age

Red Clump stars \rightarrow Red giants \rightarrow Intermediate mass stars \rightarrow Young population

Red Horizontal Branch (RHB) stars

- \rightarrow Redward of the MS
- \rightarrow (Sub-)giants
- \rightarrow Spectral types K, G
- → metal-poor, old population

Renzini & Fusi Pecci 1988, ARA&A, 26, 199

RR Lyr stars

- \rightarrow (Sub-)giants
- \rightarrow Spectral types F
- → metal-poor, old population
- \rightarrow Pulsators

Renzini & Fusi Pecci 1988, ARA&A, 26, 199

Blue Horizontal Branch (BHB) stars

- \rightarrow Blueward of the MS
- \rightarrow (Sub-)dwarfs
- → Spectral types A, B (HBA, HBB)
- \rightarrow chemically peculiar

Renzini & Fusi Pecci 1988, ARA&A, 26, 199

Extreme Horizontal Branch (EHB) stars

- \rightarrow Subdwarfs
- \rightarrow Spectral types O, B (sdO, sdB)
- → Extremely thin hydrogen envelopes, **no H-shell burning**

Heber 2016, PASP, 128, 966

Raghavan et al. 2010, ApJS, 190, 1

Raghavan et al. 2010, ApJS, 190, 1

Stable mass transfer

Common envelope phase

Reichardt 2016, Youtube

Stable RLOF + CE channel (mass ratio < 1.2 – 1.5)

Unstable RLOF

Common envelope

Short-period sdB binary

WD .

 $P_{\rm orb} = 0.1 - 10 \text{ days}$ $M_{\rm sdB} = 0.40 - 0.49 \text{ M}_{\odot}$ CE-only channel (mass ratio > 1.2 - 1.5) Stable RLOF channel (mass ratio < 1.2 - 1.5)

Stable RLOF near tip of RGB

Close binary evolution

- → Helium-burning core of a red giant stripped by binary interaction
- → Stable and unstable masstransfer possible
- \rightarrow sdO/Bs predicted to be in close and wide binaries

Heber 2016, PASP, 128, 966

Common envelope

Short-period sdB binary MS

 $P_{\rm orb} = 0.1 - 10 \text{ days}$ $M_{\rm sdB} = 0.40 - 0.49 \text{ M}_{\odot}$

 $P_{\rm orb} = 10 - 500 \,\rm days$ $M_{\rm sdB} = 0.30 - 0.45 \,\rm M_{\odot}$

~30% of the sdO/Bs are in composite double-lined binaries

Companions are K/G/F-type main sequence stars

The orbital periods of the ~ 30 solved systems (P = 300 - 1200 d) are in the appropriate range for prior RLOF mass-transfer

Vos et al. 2017, A&A, 605, 109

$\sim 30\%$ of the sdO/Bs are in single-lined close binaries

Companions are M-type main sequence stars, brown dwarfs and white dwarfs

The orbital periods of the ~ 300 solved systems (P = 0.03 - 30 d) are typical for post-CE systems

 $\sim 30\%$ of the sdO/Bs don't show any signs of binarity

→ Close substellar companions such as brown dwarfs or planets

→ Evaporation or merger during CE evolution?

ESA/ATG medialab

Heber 2016, PASP, 128, 966

Heber 2016, PASP, 128, 966

Spectral lines are shifted w.r.t. their rest wavelengths

 \rightarrow Doppler effect

$$\frac{\lambda - \lambda_0}{\lambda_0} = \frac{\Delta \lambda}{\lambda_0} = \frac{\nu}{c} \quad \text{for } \nu \ll c$$

- λ observed wavelength
- λ_0 rest wavelength
- v radial velocity

Youtube, Pogge, Ohio State University

ESO

Measuring line-shift

\rightarrow Radial velocity

Earth's orbital motion can contribute ± 30 km/s (maximum)

Earth's rotation can contribute ± 460 m/s (maximum)

RVs and times must be corrected for Earths motion around the barycenter of the solar system (up to $\pm 30 \text{ kms}^{-1}$ in RV and $\pm 8 \text{ min}$ in time)

- → Location of the telescope must be known (GPS)
- → Most accurate determination of observation time: High-speed photometers measure photon weighted midpoint of exposures

ESO

Earth's orbital motion can contribute ± 30 km/s (maximum)

Earth's rotation can contribute ± 460 m/s (maximum)

RVs and times must be corrected for Earths motion around the barycenter of the solar system (up to $\pm 30 \text{ kms}^{-1}$ in RV and $\pm 8 \text{ min}$ in time)

→ For close binaries with high RV shifts often slightly less accurate heliocentric corrections are used

→ Times are approximated by adding half of the exposure time to the starting time

ESO

Raghavan et al. 2010, ApJS, 190, 1

Raghavan et al. 2010, ApJS, 190, 1