Introduction to photometry/spectroscopy

Research workshop on evolved stars

Matti Dorsch

29. 09. 2022

Institute for Physics and Astronomy Email: <matti.dorsch@fau.de> Room: 2.118

Perek 2-m telescope

- Manufacturer: Carl Zeiss Jena
- Type of mount: Equatorial
- Primary parabolic mirror D=2 m, thickness 0.3 m, weight 2340 kg
- Original optical setting: primary, Cassegrain, coudé focus
- Current optical setting: optical fiber from primary to coudé focus
- Effective focal length: F=63.5 m
- Effective focal rati: f/4.5 in primary and f/32 in coudé.
- Instruments:
	- **–** single order spectrograph
	- **–** echelle spectrograph
	- **–** photometric camera

Reflective telescopes 6

Photometry

from Greek photo- ("light") and -metry ("measure") aims at measuring the flux or intensity of electromagnetic radiation emitted by astronomical objects

Stefan-Boltzmann law: Flux (power emitted per square-meter surface) of a blackbody:

$$
F = B = \int_0^\infty B_\lambda(\lambda) d\lambda = \sigma T^4
$$

where $\sigma = 5.67 \times 10^{-8}$ W m⁻² K⁻⁴ "hotter bodies have a much higher luminosity"

Wien's displacement law: Wavelength of maximum blackbody emission:

 $\lambda_{\text{max}} = 2898/T \mu m$

"hotter bodies radiate at higher energies"

Color-temperature relation

Photometric filters

Photometric system

- set of well-defined passbands (or filters)
- standard stars for each photometric system
- observations of lightcurves usually in one or several filters

Bolometric correction

• converts observed magnitude in a certain filter to its bolometric magnitude (dependent on spectral type)

$$
BC_V = M_{\text{bol}} - M_V \tag{2.1}
$$

SDSS filters

Johnson filters

A historic and current photometric reference: Vega!

Bolometric magnitudes

• apparent magnitude *m^x* in filter *x*

$$
m_x - m_{x,\text{ref}} = -2.5 \log(F_x/F_{x,\text{ref}}) \tag{2.2}
$$

• absolute magnitude *M^x* in filter *x*

$$
m_x - M_x = 5 \log(d) - 5
$$
 (2.3)

Extinction correction and $BC \rightarrow bolometric$ absolute magnitude

Extinction *A^V*

- absorption and scattering of electromagnetic radiation by dust and gas between an emitting astronomical object and the observer
- shorter wavelengths (blue) are more heavily reddened than longer (red) wavelengths
- colour index *B* − *V*, colour excess *E^B*−*^V*

$$
E_{B-V} = (B - V) - (B - V)0 \qquad (2.4)
$$

$$
A_V = R_V E_{B-V}, R_V \approx 3.1 \text{ (Milky Way)}
$$

• true distance

$$
d = 10^{0.2(m-M+5-A_V)}
$$

Interstellar reddening

The darker curves are for a colour excess $E(44-55) = 0.1$ mag while the lighter curves are for 0.3 mag.

Atmospheric extinction

• $V = V_0 + \kappa(\lambda)X(z)$ $\kappa(\lambda)$ is the extinction coefficient *z* is the zenith distance *X* is the air mass $X(z) \approx \cos^{-1} z$

• extinction greater for blue than for red

Standard stars to correct for atmospheric extinction and calibrate the sensitivity of the instrument

Atmospheric extinction

WAVELENGTH (Angstroms)

• $V = V_0 + \kappa(\lambda)X(z) \kappa(\lambda)$ is

the extinction coefficient *z* is the zenith distance *X* is the air mass $X(z) \approx \cos^{-1} z$

- extinction wavelengthdependent
- blue stars are getting weaker compared to red stars

Absolute photometry – SEDs

Absolute photometry refers to photometric measurements reported in a standard photometric system by means of a calibration process. This procedure permits to obtain the absolute flux of a given source.

 \Rightarrow spectral type, gravity, reddening, age, distance

Differential photometry – lightcurves

Differential photometry refers to photometric measurements of a given source with respect to one or more comparison sources which absolute flux is not necessarily known.

 \Rightarrow relative flux variations, lightcurves

Lightcurves

Lightcurve = brightness versus time

- time-series observations
- period *P*: time between successive minima / maxima, for binaries equal orbital period
- Amplitude *A*: difference between magnitude at minimum and maximum

Julian Date JD

- time in days and fractions of a day since:
	- 1. January -4712 BC, 12:00 UT
	- 21. May 2019, 04:47:30.62 UT \equiv 2458624.69966

Modified Julian Date MJD

• $MJD = JD - 2400000.5$

Heliocentric Julian Date HJD

• corrected for differences in the Earth's position with respect to the Sun (maximum correction ± 8.3 min)

Barycentric Julian Date BJD

- corrected for differences in the Earth's position with respect to the barycentre of the Solar System
- difference between HJD and BJD is up to ± 4 s

Spectroscopy

technique of splitting light (or more precisely electromagnetic radiation) into its constituent wavelengths (a spectrum)

Joseph von Fraunhofer saw 1814 almost 600 lines in the spectrum of the sun

essics and the set of th

Spectra provide a lot of information about an astronomical object:

- temperature
- surface gravity
- chemical composition
- stellar winds
- magnetic fields
- projected rotation
- radial velocity: Doppler effect $\frac{v}{c} = \frac{\Delta \lambda}{\lambda}$ λ

Formation of stellar spectra

Transitions responsible for the first two series in the hydrogen spectrum

Energy level population and ionization stage

Line strength: # of absorbers x line absorption cross-section σ_{ij}

$$
\sigma_{ij} = \frac{\pi e^2}{mc} f_{ij} \Phi_\nu
$$
 (3.1)

 f_{ii} is the oscillator strength, which is related to the transition probability, Φ_{ν} the absorption profile

Boltzmann-equation: population of the energy levels within an atom depends in a detailed way upon the mechanisms for populating and depopulating them: radiative, collisional & spontaneous

$$
\frac{N_j}{N_i} = \frac{g_j}{g_i} e^{-\frac{E_j - E_j}{kT}}
$$
(3.2)

gi/*g^j* are statistical weights that take into account degeneracy of energy states **Saha equation**: number of atoms in a given ionization stage

$$
\frac{N(X_{r+1})}{N(X_r)} = \frac{2kTg_{r+1}}{P_e g_r} \left(\frac{2\pi m_e kT}{h^2}\right)^{3/2} e^{-\chi_i/kT}
$$
(3.3)

Fundamental Astronomy: Karttunen et al.

Natural line broadening: from the uncertainty principle due to finite life time

$$
\Phi_{\nu}^{\text{rad}} = \frac{\gamma_{\text{rad}}/4\pi^2}{(\nu - \nu_{ij})^2 + (\gamma_{\text{rad}}/4\pi)^2}, \ \gamma_{\text{rad}} = \frac{1}{\tau_{\text{low}}} + \frac{1}{\tau_{\text{up}}}
$$
 (Lorentzian) (3.4)

Pressure broadening: due to collisions with other atoms, or charged particles in the plasma; linear Stark effect for Hydrogen lines, quadratic Stark effect for non-hydrogenic atoms and ions, Van der Waals broadening: non-hydrogenic atoms with neutral hydrogen

Thermal broadening: Doppler shift due to thermal movement of the atoms

$$
\Phi_{\nu}^{\text{Doppler}} = \frac{1}{\sqrt{\pi} \Delta \nu_{\text{D}}} \exp(-(v - \nu_{0})/\Delta \nu_{D})^{2}, \ \Delta \nu_{D} = \frac{\nu_{0}}{c} \sqrt{\frac{2kT}{m}}
$$
 (Gaussian) (3.5)

Rotational broadening: Doppler shift due to stellar rotation, we can observe the projection of the rotational velocity in line-of-sight

Instrumental profile: additional broadening depending from the spectral resolving power $R = \lambda/\Delta\lambda$

$$
FWHM = c/2\sqrt{\ln 2}R
$$
 (Gaussian) (3.6)

Total line Profile

$$
\Phi_{\nu} = \Phi_{\nu}^{\text{Gaussian}} \star \Phi_{\nu}^{\text{Lorentz}} \equiv \Phi_{\nu}^{\text{Voigt}} \tag{3.7}
$$

Other effects: Zeeman Splitting, stellar winds

Properties of Spectrographs

 $\Delta \lambda$ Power Sparrow 1,118 **Dawes** 0,941 Rayleigh $0,735$ • Spectral resolution λ **FWHM** $R =$ 0,500 $\Delta\lambda$ $\geq \lambda$

Properties of Spectrographs

• Spectral resolution

$$
R = \frac{\lambda}{\Delta \lambda}
$$

• wavelength range

Properties of Spectrographs

• Spectral resolution

$$
R = \frac{\lambda}{\Delta\lambda}
$$

- wavelength range
- wavelength calibration and stability

• Spectral resolution

 $R =$ λ $\Delta\lambda$

- wavelength range
- wavelength calibration and stability
- throughput for best efficiency
- efficiency in the blue/red
- limiting magnitude

