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What do we want to achieve?
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First-order spectroscopy
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Long slit spectrograph
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Figure: Schematic beam path in a long slit spectrograph.
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A simple spectrograph
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Slits

Why do we need a slit?

take spectrum of one object

slit width > PSF:
seeing-limited resolution

slit width < PSF:
slit-limited resolution
(also extended objects)

Typically: 10 to 1000 µm

Which slit width do we choose?
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Slits - light loss
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Figure: Image scale for a lens with focal length f and infinite object distance.

φ

2 ≈ tan φ

2 = B
2f → B = f · φ

Typical seeing → φ ≈ 2.5′′

fPerek = 63.5 m
Projected size on slit B ≈ 770 µm
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Slits - resolution

The slit used for OES is b = 600 µm < 770 µm! Why?
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Figure: Schematic beam path in a long slit spectrograph.
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b≪fcoll= b
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, nλ

interference= d · (sin α + sin β)



8/36

Slits - resolution

The slit used for OES is b = 600 µm < 770 µm! Why?

telescope

light beam

light beam

∆α/2 b

collimator slit in the
focal plane

of the telescope

bla
ze

gra
tin

g

lens

camera

CCD
det

ect
or

fcoll

fcam

Figure: Schematic beam path in a long slit spectrograph.

Reminder: ∆α
b≪fcoll= b

fcoll
→ ∆λ

lin.
≈ ∂λ

∂α ∆α = d
n cos α∆α

n=1= const.



8/36

Slits - resolution

The slit used for OES is b = 600 µm < 770 µm! Why?

telescope

light beam

light beam

∆α/2 b

collimator slit in the
focal plane

of the telescope

bla
ze

gra
tin

g

lens

camera

CCD
det

ect
or

fcoll

fcam

Figure: Schematic beam path in a long slit spectrograph.

Reminder: ∆α
b≪fcoll= b

fcoll
→ Rslit = λ

∆λ slit = nfcoll
db cos α λ



9/36

Blaze grating - interference condition
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Blaze grating - diffraction orders

nλ0
n = d · (sin α + sin(2ΘB − α)), λ0

n = blaze wavelength (max. intensity)

0th order 1st order 2nd order
useful range

sin(α − β)
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Blaze grating - blaze function

Figure: Dispersion and Blaze function (sin(x)/x)2 for a cross-dispersed échelle spectrograph.
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Échelle spectrograph

CCD detector

order n

order n+ 1

Incoming light

Echelle grating

cross-dispersion element

separate overlapping orders
by cross-dispersion element

optimized for high incidence
angles and high orders:
ΘB = 69◦ for OES

RÉchelle ≈ fcoll
b cos α [sin α + sin(2ΘB − α)] ≈ constant ≈ 50000
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Blaze grating - efficiency

Figure: Typical efficiency curves for blazed holographic gratings (edmundoptics).
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CCD detector - efficiency

Figure: Quantum efficiency = % incident photons detected (SBIG ST-8XME).
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Observation
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Raw images
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Raw images
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Raw data summary

To produce a calibrated, 1-d spectrum, we need:
Science frame

Flat-field frame
Calibration (arc) frame

For each of these:

Bias frame:
used to remove the CDD readout signals, including constant offset
taken with shortest exposure time and closed shutter
included in dark frame, required if texp,dark ̸= texp,science

Dark frame:
thermal excitation of electrons in the CCD leads to a constant
background noise
also: hot/cold pixels/columns
taken with the same exposure time and temperature as science frame
has to be subtracted from science frame
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Reduction steps
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Bias frame

Figure: Median of 10 bias frames (closed shutter, shortest texp, log scale).
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Bias frame

Figure: Median of 10 bias frames (closed shutter, shortest texp, log scale).
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Dark frame / Cosmics

Figure: Dark frame detail, 3600s exposure (log scale).
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Dark frame / Cosmics

Figure: Dark frame detail: median of five 3600s exposures (log scale).
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Average frames

Figure: Science frame detail: 3600s exposure of BD+53 2790 (log scale).
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Average frames

Figure: Science frame detail: dark frame subtracted.
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Average frames

Figure: Science frame detail: dark frame subtracted, median of six exposures.
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Sky background

Even the night sky is not completely black! Relevant for dark targets:

air glow (emission lines due to chemical reactions in Earth’s
atmosphere, mainly at low altitudes < 10◦)

scattered sunlight (astronomical twilight if Sun < 18◦ below horizon)

moonlight

light pollution (Potsdam, Berlin)

in case of bad luck: planes (Tegel, Schönefeld)
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Sky background
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Figure: Potsdam sky background seen by DADOS (3h exposure average).
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Dispersion relation

Figure: NeAr calibration frame.
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Find dispersion relation

Figure: Semi-automatic emission line identification (NeXe lamp).
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Find dispersion relation

Figure: Dispersion relation as deviation from a linear relation between pixel and
wavelength (NeXe lamp).
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Find dispersion relation

Figure: Deviations from the fitted dispersion relation (NeXe lamp).
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Step-by-step summary
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Figure: DADOS spectrum of Alcyone: dark, averaged.
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Figure: DADOS spectrum of Alcyone: dark, averaged, flat.
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Figure: DADOS spectrum of Alcyone: dark, averaged, flat, calibrated.
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Optional: (relative) flux calibration

Spectral shape is still affected by the flatfield shape, etc ...

+

We still don’t have physical units
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Optional: (relative) flux calibration

To fix this, create a standard star:
take spectrum of a laboratory source with known flux distribution L(λ):

Rlab(λ)

then, the calibration factor is:

C(λ) = L(λ)/Rlab(λ)

take spectrum of a standard star (correct for atm. extinction!):

Rstd(λ)

then, the flux of the std. star in physical units (erg cm−2 s−1 Å−1) is:

fstd(λ) = C(λ)Rstd(λ) = Rstd(λ)
Rlab(λ)L(λ)
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Optional: (relative) flux calibration

If flux distribution of a standard (comparison) star fstd(λ) is known:
take high S/N spectrum of standard star:

Rstd(λ)

then, the "calibration" factor is:

c(λ) = fstd(λ)/Rstd(λ)

take spectrum of target star R∗(λ), then:

f∗(λ) = c(λ)R∗(λ) = R∗(λ)
Rstd(λ) fstd(λ)

the best calibrated star is Vega (no atm. extinction):

fVega(5556 Å) = 3.44 ± 0.05 erg cm−2 s−1 Å−1
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Optional: (relative) flux calibration
Here, relative flux calibration using excellent synthetic spectra:
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Why not absolute flux calibration?

Absolute flux calibration would be even better!
Fit synthetic spectra to get:

angular diameter (solid angle) Θ = 2R/D
temperature Teff

color excess (interstellar reddening) EB−V

using parallax ϖ → stellar radius R = Θ/(2ϖ)

Problems:

airmass changes with distance to horizon
→ wavelength dependent extinction
star may leave the slit during the observation
clouds
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Optional: determine resolution with calibration lamp

We need to know the spectral resolution to fit spectra!

Arc lines are intrinsically sharp → fit Gaussian: R = λline/FWHMline.
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Example reduction using python scripts

In three steps (adjust file names, run scripts with -h for help):

# stack hgar images and flat images for star
~/ scripts / evolved /0 _average_images .py hgar/ -o

star_hgar_stacked .fit

# identify calibration lines
~/ scripts / evolved /1 _findcaliblines .py -arc

star_hgar_stacked .fit -rsc 500 570

# apply calibration and extract spectra
~/ scripts / evolved /2 _extractspectrum .py -sc

star_1200s_stacked .fit -df ~/ data /20190903/ dark
/1200s/ -ff flats/ -fd ~/ data /20190903/ dark /1s/

-rsc 500 570
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Questions?
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