How to reduce Echelle spectra with IRAF to measure the RVs

What we want to do

IRAF package echelle

- The package that contains the necessary commands can be found in noao.imred.echelle
- We will now go through all steps necessary to get a 1D-spectrum out of the image that we observed, here are some <u>calibration files</u> for simplification
- To understand what the single steps do, do it by hand the first time!
- You can speed up the process by creating your own script file later containing the commands you use (you can use **mkscript** to do it) and using lists!
- Scripts are loaded using **cl < scriptname.cl &**
- (to go out of your window or to the next step type "q" in the window)
- You are always encouraged to use "help task"

Making the average bias frames

The bias frames

- The bias has two parts: ٠
- 1.) a structure that is always the ٠ same
- 2.) An offset that changes from ٠ frame to frame.
- It is thus not very smart to do it like ٠ that: science frame - bias = science frame corrected.
- Better do it like this: ٠
- Science_frame structure = dummy ٠
- Measure off-set using the overscan ٠ and then
- Dummy value_of_overscan = ٠ science frame corrected.
- The frame "structure" should be ٠ made in such a way that the value in the overscan is 0.0

First step: average all bias frames using a list:

echelle> ls *Bias.fits > bias.lis echelle>

And then combine it using incombine

PACKAGE = immatch TASK = imcombine

input output (heade

(stats (expnai

(lthre:

input = [@bias.lis utput = bias.fits (bemasks= (rrejmask= (rrejmask= (sigmas = (sigmas = (incmb = \$1] (logfile= STDOUT	List of images to combine List of output images) List of header files (optional)) List of bad pixel masks (optional)) List of rejection masks (optional)) List of number rejected masks (optional)) List of stypesure masks (optional)) List of stypes images (optional)) Keyword for IMCMB keywords) Log file
(combine= average) Type of combine operation
(reject = sigclip) Type of rejection
(project= nc) Project highest dimension of input images?
(outtype= real) Output image pixel datatype
(outtimi=) Output limits (x1 x2 y1 y2)
(offsets= none) Input image offsets
(masktyp= none) Mask type
(maskval= 0) Mask value
(blank = 0.) Value if there are no pixels
(scale = none) Image scaling
(zero = none) Image zero point offset
(weight = none) Image weights
(statsec=) Image section for computing statistics
(expname=) Image header exposure time keyword
(lthresh= INDEF (hthresh= INDEF (nhow = 1 (nhow = 0, (rdnoise = 0, (sigscal = 0, (grow = 0, (mode = q) Lower threshold) Upper threshold) minnax: Number of low pixels to reject) minnax: Number of high pixels to reject) Minimum to keep (pos) or maximum to reject (neg)) Use median in sigma clipping factor) Lower sigma clipping factor) upper sigma clipping factor) codclip: CCD gain (electrons/DN)) codclip: CCD gain (electrons/DN)) codclip: CCD gain (electrons/DN)) codclip: Sensitivity noise (fraction)) Tolerance for sigma clipping scaling corrections) pclip: Percentile clipping parameter) Radius (pixels) for neighbor rejection

Determine bias level

Most CCDs are so good that the bias does not have a small-scale structure. In this case, you can just ignore the structure and just subtract the average value in the bias frame

We can derive it using **imstat**, save the mean value and then just subtract this value from the science and the flat field frame later using **imarith**

echelle>	imstat bias.f:	its				
#	IMAGE	NPIX	MEAN	STDDEV	MIN	MAX
	bias.fits	1048576	735.	0.7174	730.3	737.

Making an flat for an Echelle spectrum

How to make a flat I?

- Problem: we can not simply divide by the flat, because the flat has a lot of flux in the orders but nothing outside the orders and dividing by zero does nor really give you great results. We thus need a flat that contains 1.0 between the orders and the relative pixel-to-pixel variations (values like 0.8...1.2) in the orders.
- The first step is to average all flats (make sure that you do not have cosmics) and subtract the bias.

```
echelle> ls *Flat.fits > flat.lis
echelle> imcombine @flat.lis flat.fits
Aug 21 15:54: IMCOMBINE
   combine = average, scale = none, zero = none, weight = none
   reject = sigclip, mclip = yes, nkeep = 1
   lsigma = 3., hsigma = 3.
   blank = 0.
```

echelle> imarith flat.fits - 735 flat_b.fits

How to make a flat II?

- In order to make a flat, IRAF has to know were the orders are. We also need this information later for the stellar spectra. I call the spectrum of the brightest star "find_orders.fits".
- Take a spectrum of a very bright star and use "apall" and switch on all interactive modes, except the width of the orders (measure them and define them), you can use the one given in the calibration files

Datei		find_orders.fi	ts					
Objekt		HD168009				+		
Wert								
WCS							x	
Physikalisch	Х		Y					
Bild	х		Y					
Rahmen 1	Zoom	0.125	Winkel	0.000				
datei) (bea	ırbeiten	ansicht	rahmen) (bir) (zoom) (s	kalierung) (farbe	region	wcs hilfe
-)+)a	npassen	zoom 1/8)(zoom 1/4) zoom 1/2) zoom 1) (zoor	n 2) (zoom	4) (zoom 8)
~								
				States of the States of the States				
				and the second party of th				
23		44 66	87	109	131	152	174	195

AUTOMATIC FINDING AND ORDERING PARAMETERS

nfind	=	48 Number of apertures to be found automatically
(minsep	=	5.) Minimum separation between spectra
(maxsep	=	100000.) Maximum separation between spectra
(order	=	increasing) Order of apertures

TRACING PARAMETERS

(t_nsum =	100)	Number of dispersion lines to sum
(t_step =	113)	Tracing step
(t_nlost=	3)	Number of consecutive times profile is lost before quitting
(t_funct=	legendre)	Trace fitting function
(t_order=	- 7)	Trace fitting function order
(t_sampl=	*)	Trace sample regions
(t_naver=	1)	Trace average or median
(t_niter=	0)	Trace rejection iterations
(t_low_r=	3.)	Trace lower rejection sigma
(t_high_=	3.)	Trace upper rejection sigma
(t. arnw =	0.)	Trace rejection growing radius

PACKAGE = TASK =	echelle apall	Image Reduc [.]	tion and Analysis Facility
input = (output = (apertur= (format = (referen= (profile=	find	Lordes.fits dummy.fits)) echelle)))	List of input images List of output spectra Apertures Extracted spectra format List of aperture reference images List of aperture profile images
<pre>(interac= (find == (recente= (resize = (edit == (trace = (fittrac= (extract= (extras =</pre>		yes) yes) no) yes) yes) yes) yes) no)	Run task interactively? Find apertures? Recenter apertures? Resize apertures? Edit apertures? Trace apertures? Fit the traced points interactively Extract spectra? Extract sky, sigma, etc.?

How to make a flat III?

- After the orders are defined using the "find_orders.fits" frame:
- Use "apflatten" to make flat. Make sure that you have the width of the orders defined and use the correct fitting function.

PACKAGE = echelle

TASK = aptrace	
input = (apertur= (referen= (interac= (find = (recente=	List of input images to trace) Apertures) List of reference images yes) Run task interactively? yes) Find apertures? no) Recenter apertures?
(resize =	no) Kesize apertures?
(edit = (two	no) Edit apertures?
(trace =	yes) Trace apertures?
(fittrac=	yes) fit the traced points interactively?
(line = (nsum = (step = (nlost =	INDEF) Starting dispersion line 10) Number of dispersion lines to sum 10) Tracing step 3) Number of consecutive times profile is lost before quitting
(functio= (order = (naverag= (niterat= (low_rej= (high_re= (grow = (mode = ∎	legendre) Trace fitting function 7) Trace fitting function order *) Trace sample regions 1) Trace average or median 0) Trace rejection iterations 3.) Trace lower rejection sigma 3.) Trace upper rejection sigma 0.) Trace rejection growing radius ql)

PACKAGE = echelle TASK = apflatten

(mode =

input =	flat_b.fits	List of images to flatten
output =	masterflat.fits	List of output flatten images
apertur=	· · ·)	Apertures
referen=	find_orders.fits)	List of reference images
(interac=	yes)	Run task interactively?
(find =	yes)	Find apertures?
(recente=	no)	Recenter apertures?
(resize =	no)	Resize apertures?
(edit =	yes)	Edit apertures?
(trace =	yes)	Trace apertures?
(fittrac=	yes)	Fit traced points interactively?
(flatten=	yes)	Flatten spectra?
(fitspec=	no)	Fit normalization spectra interactively?
(line =	INDEF)	Dispersion line
(nsum =	10)	Number of dispersion lines to sum or median
(thresho=	10.)	Threshold for flattening spectra
(pfit =	fit1d)	Profile fitting type (fit1d fit2d)
clean =	yes)	Detect and replace bad pixels?
(saturat=	INDEF)	Saturation level
(readnoi=	0.)	Read out noise sigma (photons)
(gain =	1.)	Photon gain (photons/data number)
(İsigma =	4.)	Lower rejection threshold
(usigma =	4.)	Upper rejection threshold
(functio=	legendre)	Fitting function for normalization spectra
(order =	20)	Fitting function order
(sample =	*)	Sample regions
(naverag=	1)	Average or median
niterat=	0)	Number of rejection iterations
(low_rej=	3.)	Lower rejection sigma
(high_re=	3.)	High upper rejection sigma
(grow =	0.)	Rejection growing radius
(mode =	(p	

Check with "imhist" that there no strange values, use "imreplace" if needed.

Preparing the science frames

First steps

- Subtract bias:
- Science_frame value_of_overscan = science_frame_corrected.
- Devide by flat
- Science_frame / Flat = Science_frame_corrected

echelle> imstat bias.fits # IMAGE NPIX MEAN STDDEV MIN MAX bias.fits 1048576 735. 0.7174 730.3 737.

echelle> imarith HD10700_2024-07-27T10_09.fits - 735 HD10700_2024-07-27T10_09a.fits echelle> imarith HD10700_2024-07-27T10_09a.fits / masterflat.fits HD10700_2024-07-27T10_09b.fits

• same needs to be done to the ThAr lamps later!!

Subtracting the scattered light

- Subtracting the scattered light
- The scattered light is created by the grating. The light is a kind of diffuse background that is distributed over the whole frame (brightest in the middle). It is subtracted using the tool "apscatter" which measures the flux between the orders.
- A fit is made in X and Y-direction using a tool that is very similar to fit1d.

PACKAGE = echelleTASK = apscat1(apertur=)apscatter.apertures) >apall.apertures (functio= spline3) Fitting function (order = 7) Order of fitting function *) Sample points to use in fit (sample = 📕 (naverag= 1) Number of points in sample averaging (low_re.i= Low rejection in sigma of fit 2.) High rejection in sigma of fit (high_re= (niterat= Number of rejection iterations (grow 0.) Rejection growing radius in pixels (mode q1) PACKAGE = echelleTASK = apscatter input = HD10700_2024-07-27T10_09b.fits List of input images to subtract scattered light output = HD10700_2024-07-27T10_09c.fits List of output corrected images (apertur=) Apertures (scatter=) List of scattered light images (optional) find_orders) List of aperture reference images (referen= (interac= yes) Run task interactively? (find = no) Find apertures? (recente= no) Recenter apertures? (resize = no) Resize apertures? (edit = no) Edit apertures? no) Trace apertures? (trace = (fittrac= no) Fit the traced points interactively? yes) Subtract scattered light? (subtrac= (smooth = yes) Smooth scattered light along the dispersion? (fitscat= yes) Fit scattered light interactively? (fitsmoo= yes) Smooth the scattered light interactively? (line – INDEF) Dispersion line (nsum 10) Number of dispersion lines to sum or median (buffer = 1.) Buffer distance from apertures (apscat1=) Fitting parameters across the dispersion (apscat2= Fitting parameters along the dispersion (mode q1)

Extracting the spectra

Extracting the spectra is quick, because we have already identified were the orders are. If you want to fine-adjust it, set "find" and "recenter" to yes.

Now we have extracted spectra were each order is one line.

PACKAGE = echelle

TASK = apall

input = (output = (apertur= (format = (referen= (profile=	D10700_2024-07-27T10 HD10700_2024-07-27T10) echelle) find_orders))	_09c.fits List of input images _09d.fits) List of output spectra Apertures Extracted spectra format List of aperture reference images List of aperture profile images
<pre>(interac= (find = (recente= (resize = (edit = (trace = (fittrac= (extract= (extras = (review =</pre>	yes) yes) no) yes) no) no) yes) no) yes) yes)	Run task interactively? Find apertures? Recenter apertures? Resize apertures? Edit apertures? Trace apertures? Fit the traced points interactively? Extract spectra? Extract sky, sigma, etc.? Review extractions?
(line = (nsum =	INDEF) 10)	Dispersion line Number of dispersion lines to sum or me # DEFAULT APERTURE PARAMETERS
(lower = (upper = (apidtab=	-5.) 5.)	Lower aperture limit relative to center Upper aperture limit relative to center Aperture ID table (optional)
(h. C	-h-h	# DEFAULT BACKGROUND PARAMETERS
(D_funct=	chebushev)	Background function

The wavelength calibration

- The wavelength calibration has several steps.
- The first one is to extract the thar-spectrum with apall in the same way as the science frame (bias, flat and scattered light- correction also has to be done first the same way as for the science frames)

PACKAGE = echelle TASK = apallinput = 2024-07-26T22_42_43.601769-Comp.c.fits List of input images (output = 2024-07-26T22_42_43.601769-Comp.d.fits) List of output spectra (apertur=) Apertures (format = echelle) Extracted spectra format (referen= find_orders) List of aperture reference images (profile=) List of aperture profile images (interac= no) Run task interactively? (find = no) Find apertures? (recente= no) Recenter apertures? (resize = no) Resize apertures? (edit = no) Edit apertures? (trace = no) Trace apertures? (fittrac= no) Fit the traced points interactively? (extract= yes) Extract spectra? no) Extract sky, sigma, etc.? (extras = ues) Review extractions? (review = (line = INDEF) Dispersion line (nsum = 10) Number of dispersion lines to sum or median # DEFAULT APERTURE PARAMETERS (lower = -5.) Lower aperture limit relative to center (upper = 5.) Upper aperture limit relative to center (apidtab=) Aperture ID table (optional)

The second step is to identify the lines using ecidentify. A good fit has a scatter of 0.03 AA

In our case we have already done that!

So you can use **ecreidentify** for your comparison lamps and use the solution given in the calibration files (database/ecThAr)

PACKAGE = echelle TASK = ecreidentify

images =	2024-07-26T22_42_43.6	01769-Comp.d.fits Spectra to be reidentified
referenc=	ThAr	Reference spectrum
(shift =	0.)	Shift to add to reference features
(cradius=	5.)	Centering radius
(thresho=	10.)	Feature threshold for centering
(refit =	yes)	Refit coordinate function?
(databas=	database)	Database
(logfile=	STDOUT,logfile)	List of log files
(mode =	q1)	

ECREIDENTIFY: NOAO/IRAF V2.7 seaman@puppis Mon 09:15:21 27-Jun-88 Reference image = f033.ec, Refit = no Found Pix Shift User Shift Z Shift Image f043.ec 561/561 0.11 -1.07 -1.9E-6 0.0131

RMS

Now assign the ThAr you obtained during the observing night to the science frame using **refspectra**, and do the wavelength-calibration with **dispcor**.

	HD10700_2024-07-27T10_09d.fits: REFSPEC1 = '2024-07-26T22_42_43.601769-Comp.d 1.'
	HD10700_2024-07-27T10_09e.fits: ap = 1, w1 = 4005.401, w2 = 4082.349, dw = 0.075218, nw = 1024
	HD10700_2024-07-27T10_09e.fits: ap = 2, w1 = 4044.209, w2 = 4121.937, dw = 0.075981, nw = 1024
	HD10700_2024-07-27T10_09e.fits: ap = 3, w1 = 4083.781, w2 = 4162.305, dw = 0.076758, nw = 1024
	HD10700 2024-07-27T10 09e.fits: ap = 4, w1 = 4124.141, w2 = 4203.476, dw = 0.077551, nw = 1024
PACKAGE = echelle	HT10700 2024-07-27T10 09e fits: ap = 5, μ 1 = 4165.312, μ 2 = 4245.473, $d\mu$ = 0.078359, $n\mu$ = 1024
TASK = refspectra	HI10700 2024-07-27T10 09e fits: ap = 6, μ 1 = 4207.317, μ 2 = 4288.322, $d\mu$ = 0.079183, $\mu\mu$ = 1024
	H110700 2024-07-27110 09e fits: ap = 7, μ 1 = 4250.183, μ 2 = 4332 047, $d\mu$ = 0.080024, $\mu\mu$ = 1024
input = HD10700_2024-07-27T10_09d.fits List of input spectra	HD10700 2024-07-2710 09e fits; ap = 8 w1 = 4293 934 w2 = 4376 676 dw = 0.080881 pw = 1024
(referen= 2024-07-26T22_42_43.601769-Comp.d.fits) List of reference spectra	$HD10700_{2024} - 07_{2071} - 0.000, i12_{202} - 0, will = 4238, 599, will = 4232, 236, dw = 0.081756, pw = 1024$
(apertur=) Input aperture selection list	$HD(700, 2024-07-97110, 090 fitst ap = 10, \mu 1 = 4384, 207, \mu 2 = 4468, 756, d\mu = 0, 0.029649, \mu\mu = 1024$
(refaps =) Reference aperture selection list	HD(7702 - 2024 - 07 - 27110 - 000 + 11 + 0 - 10, 001 - 4304, 207, 002 - 4404, 207, 000 - 0, 002043, 100 - 1024 -
(ignorea= yes) Ignore input and reference apertures?	H_{10}^{10} 700^{-2} 710^{-2} 710^{-0} 65^{-1} 12^{-1} 11^{-1} 11^{-1} 1430^{-1} 700^{-1} 10^{-1} $10^{$
(select =average) Selection method for reference spectra	1020700 - 2024 - 07 - 27110 - 000 + 7110 + 12, with - 4470 + 3050, with - 4500 + 002, with - 0.000000 + 1024 + 1
(sort =) Sort key	$HID(7)O_{2}(2)24 - (7 - 27)IO_{2}(3) - (7 + 3) + (7 + $
(group =) broup key	HD10700_2024-07-27110_098.f1ts; ap = 14, ω I = 4576.676, ω Z = 4665.073, d ω = 0.066403, $n\omega$ = 1024
(time = no) is sort key a time?	HD10700_2024-07-27110_09e, http://april.post.com/a
(chewra- 17.) The wrap point for the sorting	HD10/00_2024-07-27110_096.fits; ap = 16, w1 = 4679.407, w2 = 4769.891, dw = 0.088411, nw = 1024
(confirm - yes) Confirm reference spectrum assignments?	HIU//00_2024-07-27110_99e.fits; ap = 17, w1 = 4732.526, w2 = 4824.027, dw = 0.089444, nw = 1024
(assign =) ges/ contrain the reference spectrum assignments:	H110/00_2024-07-27110_09e.fits: ap = 18, w1 = 4786.867, w2 = 4879.448, dw = 0.0905, nw = 1024
(logi) = STDUIT.logi) histori de relation spectra de relative spectra de la seconda de seconda de seconda de seconda de la seconda de	HD10700_2024-07-27110_09e. Fits: ap = 19, ω 1 = 4842.473, ω 2 = 4936.159, d ω = 0.09158, n ω = 1024
(verbose= yes) Verbose log output?	HD10700_2024-07-27110_09e.fits: ap = 20, w1 = 4899.388, w2 = 4994.203, dw = 0.092583, nw = 1024
answer = yes Accept assignment?	HD10700_2024-07-27T10_09e.fits: ap = 21, w1 = 4957.661, w2 = _5053.63, dw = 0.093811, nw = 1024
(mode = q1)	HD10700_2024-07-27T10_09e.fits: ap = 22, w1 = 5017.339, w2 = 5114.488, dw = 0.094965, nw = 1024
	HD10700_2024-07-27T10_09e.fits: ap = 23, w1 = 5078.474, w2 = 5176.831, dw = 0.096146, nw = 1024
	HD10700_2024-07-27T10_09e.fits: ap = 24, w1 = 5141.12, w2 = 5240.713, dw = 0.097354, nw = 1024
	HD10700_2024-07-27T10_09e.fits: ap = 25, w1 = 5205.335, w2 = 5306.193, dw = 0.098591, nw = 1024
	HD10700_2024-07-27T10_09e.fits: ap = 26, w1 = 5271.176, w2 = 5373.33, dw = 0.099857, nw = 1024
PACKAGE = echelle	HD10700_2024-07-27T10_09e.fits: ap = 27, w1 = 5338.708, w2 = 5442.189, dw = 0.101154, nw = 1024
TASK = dispeor	HD10700_2024-07-27T10_09e.fits: ap = 28, w1 = 5407.996, w2 = 5512.836, dw = 0.102483, nw = 1024
	HD10700_2024-07-27T10_09e.fits: ap = 29, w1 = 5479.11, w2 = 5585.343, dw = 0.103845, nw = 1024
input = HD10700_2024-07-27T10_09d.fits List of input spectra	HD10700_2024-07-27T10_09e.fits: ap = 30, w1 = 5552.121, w2 = 5659.784, dw = 0.105242, nw = 1024
output = HD10700_2024-07-27T10_09e.fits List of output spectra	HD10700_2024-07-27T10_09e.fits: ap = 31, w1 = 5627.108, w2 = 5736.236, dw = 0.106674, nw = 1024
(lineari= 📕 yes) Linearize (interpolate) spectra?	HD10700_2024-07-27T10_09e.fits: ap = 32, w1 = 5704.152, w2 = 5814.784, dw = 0.108145, nw = 1024
(databas= database) Dispersion solution database	HD10700 2024-07-27T10 09e fits: ap = 33. w1 = 5783.337. w2 = 5895.514. dw = 0.109655. nw = 1024
(table =) Wavelength table for apertures	HD10700 2024-07-27T10 09e fits: ap = 34. w1 = 5864.755. w2 = 5978.518. dw = 0.111206. nw = 1024
(w1 = INDEF) Starting wavelength	HID10700 2024-07-27I10 09e fits: ap = 35. ω 1 = 5948.5. ω 2 = 6063.895. d ω = 0.1128. ω = 1024
(w2 = INDEF) Ending wavelength	HT10700 2024-07-27T10 09e fits: ap = 36, w1 = 6034.674, w2 = 6151.746, dw = 0.11444, nw = 1024
(dw = INDEF) Wavelength interval per pixel	EHM10700 2024-07-27T10 09e fits: ap = 37, w1 = 6123.383, w2 = 6242.182, dw = 0.116127, nw = 1024
(nw = INDEF) Number of output pixels	H110700 2024-07-27110 09e fitst ap = 38, μ 1 = 6214 742, μ 2 = 6335 317, $d\mu$ = 0.117865, $\mu\mu$ = 1024
(log = no) Logarithmic wavelength scale?	HI10700 2024-07-27110 09e fits: $ap = 39$ w1 = 6308 868 w2 = 6431 275 dw = 0.119655 pw = 1024
(flux = yes) Conserve total flux?	$H_{10700} 2024 - 07 - 27110 090 fits; ap = 40 \mu 1 = 6405 891 \mu 2 = 6530 186 d\mu = 0.1215 \mu = 1024$
(blank = 0.) Output value of points not in input	HD(700, 2024, 07, 07110, 090, fitst, ap = 40, w1 = 6505, 944, w2 = 6532, 197, dw = 0.12213, hw = 1024
'(samedis= yes) Same dispersion in all apertures?	$ \mathbf{U} _{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,$
(global = no) Apply global defaults?	$1010700_{-}2024_{-}07_{-}27110_{-}036_{+}7103_{+}102_{+}000_{-}112_{+}000_{-}112_{+}000_{-}013_{+}420_{+}000_{-}012_{+}030_{+}000_{-}0102_{+}000_{-$
(ignorea= yes) Ignore apertures?	$ 110700_{-2}024^{-}07^{-}27110_{-}036_{*}^{-}110s; aP = 43, wi = 0715_{*}720, wz = 0646_{*}06, uw = 0.127402, rw = 1024$
(confirm= no) Confirm dispersion coordinates?	$-nutorov_2oc4+vr_2(110_v)=0.000, nu=1000, nu=1$
(listonl= no) List the dispersion coordinates only?	$100002024 - 0727110_038, t105; ap = 45, w1 = 6535,462, w2 = 7074,166, dW = 0,151677, HW = 1024$
(verbose= yes) Print linear dispersion assignments?	$-1010700_{-2}024+07+27110_{-}099+115s; ap = 45, wi = 7057,04, wz = 7134,043, dw = 0.133323, nw = 1024$
(logfile=) Log file	$-\mu_{10}(y_{10}) = (y_{10}) + (y$
(mode = al)	<pre>HU10700_2024-07-27110_09e.Fits: ap = 48, w1 = 7304.505, w2 = 7446.383, dw = 0.1386888, nw = 1024</pre>

Hbetha

to look at the reduced spectra: use **splot**; you can change orders using ")" and "("

Halpha

to look at the reduced spectra: use **splot**; you can change orders using ")" and "("

Measuring the RV using the cross-correlation function

(we want to use viper to do that, but this could also be done for comparison, if time allows)

The header has to be corrected

PACKAGE = rv	I R A F
TASK = keywpars	Image Reduction and Analysis Facility
(ra = [POSTN-RA) Right Ascension keyword
(dec =	POSTN-DE) Declination keyword
(ut =	UT) UT of observation keyword
(utmiddl=	UTMID) UT of mid-point of observation keyword
(exptime=	EXP-TIME) Exposure time keyword
(epoch =	EPOCH) Epoch of observation keyword

Use fxcor to calculate the RV

PACKAGE = rv TASK = fxcor	Image Reduction and Analysis Facility
objects = [D168009-2017-Jun-027: template= G4V_template.fits (apertur= *) (cursor =)	2.merged.fits List of object spectra List of template spectra Apertures to be used Graphics input cursor
(continue both) (filter = none) (rebin = object) (pixcorn= no) (csample= *) (rsample= *) (apodize= 0.1)	Continuum subtract spectra? Fourier filter the spectra? Rebin to which dispersion? Do a pixel-only correlation? Object regions to be correlated ('*' => all) Template regions to be correlated Apodize end percentage
(function sinc) (width 15.) (height = 0.) (peak no) (minuidt= 3.) (maxwidt= 15.) (backgros 0.) (windth= 20.) (window = 200.) (wincent= 0.)	Function to fit correlation Width of fitting region in pixels Starting height of fit Is height relative to ccf peak? Minimum width for fit Maximum width for fit Power defining fitting weights Background level for fit Size of window in the correlation plot Center of peak search window
(output = fxcor) (verbose= long) (imupdat= no) (graphic= stdgraph)	Root spool filename for output Verbose output to spool file? Update the image header? Graphics output device
(interac= ues)	Interactive graphics?

PACKAGE = rv	Image Reduction and Analysis Facility
TASK = fxcor	
autowri= na autodra= yea ccftype= imaga) Automatically record results?) Automatically redraw fit results?) Output type of ccf
observa= tl: continp= filtpar= keywpar=) Observation location database) Continuum processing parameters) Filter parameters pset) Header keyword translation pset
mode = a)

TRAE

Description of Fit to CCF Peak and Cross-Correlation NDAD/IRAF V2.15.1a guenther@miranda.tls-tautenburg.de Wed 17:54:20 23-Aug-2017

Fit Parameters: Function = `sinc' Height = 0. Peak = no Weights = YES Wincenter = 0.

Width = 15. Minwidth = 3. Maxwidth = 15. Background = 0. Window = 200

Number of points fit = 0

Nean Residual = 0.0000000 Sigma of Residuals = 0.0000000 Maximum of cross-correlation is in bin = 0. Variance of cross-correlation = 0. HJD of observation = 2457023.51292 MJD = 57923.01081 Object sample used in correlation = `*' Template sample used in correlation = `*' Template Sample R value = INDEF

Velocity Results: Shift of peak = -60.6965 pixels Correlation height = 0.000 FWHM of peak = INDEF Km/sec (=INDEF pixels)

> Velocity computed from shift = -122.8061 Km/sec Observed velocity = -66.6518 Km/sec Heliocentric velocity = -64.7227 +/- INDEF Km/sec

Computing the instrumental shift

RV = Rvstar - RVtelu

Description of Fit to CCF Peak and Cross-Correlation NOAO/IRAF V2.15.1a guenther@miranda.tls-tautenburg.de Wed 18:00:26 23-Aug-2017

Obj = `HD168009-2017-Jun-0272.merged.fits[2]'star = `HD168009'
Temp = ` telu_lines_6900.fits[2]' star = `'
Deltav = 2.024 Km/sec

Fit Parameters:

```
Function = `sinc'
Height = 0.
Peak = no
Weights = YES
Wincenter = 0.
```

Width = 15. Minwidth = 3. Maxwidth = 15. Background = 0. Window = 200

Number of points fit = 15

Mean Residual = 0.0000000 Sigma of Residuals = 0.0000000 Maximum of cross-correlation is in bin = 0. Variance of cross-correlation = 0.06143044 HJD of observation = INDEF MJD = INDEF Object sample used in correlation = `*' Template sample used in correlation = `*' Tonry&Davis R value = 4.208615

Velocity Results: Shift of peak = 0.2520 pixels Correlation height = 0.366 FWHM of peak = 19.48829 Km/sec (=9.630037 pixels)

> Velocity computed from shift = 0.5100 Km/sec Observed velocity = INDEF Km/sec Heliocentric velocity = INDEF +/- 2.939 Km/sec