Data reduction II Photometry with IRAF

Harry Dawson Research workshop on evolved stars August 2024

Introduction

• Text in yellow is for typing into IRAF terminal

In my slides IRAF terminals are black or papaya colour

Why data reduction?

 We need to subtract – or reduce – instrumental effects and background contamination.

Reducing instrumental effects:

- BIAS: image with 'zero' exposure time.
 (not possible with Perek! We will use the overscan region)
- FLAT: image of a uniformly illuminated surface.
 Estimate sensitivity difference throughout the CCD + dust grains, scratches etc.
- DARK: image with the same exposure time of the science image with the shutter closed.
 Estimate the level of background current.

More is more

- Each of the counts on the images has an associated uncertainty.
- If we take n images, each with an uncertainty σ_i , the uncertainty on the average will be σ_i/\sqrt{n} .
- Therefore, the first step in data reduction is to calculate the average for BIAS, FLAT, and DARK images.

More is more

- Each of the counts on the images has an associated uncertainty.
- If we take n images, each with an uncertainty σ_i , the uncertainty on the average will be σ_i/\sqrt{n} .
- Therefore, the first step in data reduction is to calculate the average for BIAS, FLAT, and DARK images.
 - **BIAS**: not available for the Perek telescope.
 - **FLAT**: master flat has already been created.
 - **DARK**: we need to calculate the median dark.

IRAF – Image Reduction and Analysis Facility

We'll use the package noao imred ccdred for the data reduction, and noao digiphot daophot for the photometry.

• Load each part of the packages by typing their name followed by enter.

C	pelisoli@octans:2/envs/iraf27/iraf												• ×
	ecl> ı	noao artdata. astcat. astrometry. astutil.	dig foc imr mtl	iphot. as. ed. ocal.		nobsol nproto observ obsuti	ete. atory 1.	oneds rv. surfp twods	pec. hot. pec.				
	noao>	imred argus. bias. ccdred.	cruti ctios dtoi.	l. lit.	ech gen hyd	elle. eric. ra.	iids. irred irs.		kpnoc kpnos quadr	oude. lit. ed.	specred vtel.		
	imred> ccdred badpiximage ccdgroups ccdhedit ccdinstrument ccdlist			ccdmask ccdproc ccdtest. combine darkcombine			flatc mkfri mkill mkill mksky	flatcombine mkfringecor mkillumcor mkillumflat mkskycor		mksky setin zeroc	∣flat strument combine		
	ccdre	d> []											

Preparing working directory

• Always have a copy of original raw data!

Imkdir reduction
 Imkdir reduction_copy

 All the files that we work with have to be in the same directory:

- science frames
- masterflats (same filters as your science frames!)
- darks

Check your data

epar display

	PACKAGE =	tv displau	image reduction and margars racinty
	mon -	dishida	
	image =		image to be displayed
	frame =	1	frame to be written into
	(bpmask =	BPM)	bad pixel mask
	(bpdispl=	none)	bad pixel display (noneloverlaylinterpolate)
	(bpcolor=	red)	bad pixel colors
	(overlay=)	overlay mask
	(ocolors=	green)	overlay colors
	(erase =	yes)	erase frame
	(border_=	no)	erase unfilled area of window
	(select_=	yes)	display frame being loaded
	(repeat =	no)	repeat previous display parameters
	(fill =	no)	scale image to fit display window
	(zscale =	yes)	display range of greylevels near median
	(contras=	0.25)	contrast adjustment for zscale algorithm
	(zrange =	yes)	display full image intensity range
	(zmask =		sample mask
	(nsample=	1000)	maximum number of sample pixels to use
	(xcenter=	0.5)	display window horizontal center
	(ycenter=	0.5)	display window vertical center
	(xsize =	1.)	display window horizontal size
	(ysize =	1.)	display window vertical size
	(xmag =	1.)	display window horizontal magnification
	(ymag =	1.)	display window vertical magnification
	(order =	0)	spatial interpolator order (O=replicate, 1=linear)
	(z1 =)	minimum greylevel to be displayed
1	(22 =		maximum greylevel to be displayed
	(ztrans =	log)	greylevel transformation (linearllogInoneluser)
	(lutfile=		file containing user defined look up table
	(mode =	q1)	

Play around with these default values to get an image you're happy with

display (image name)

Check (all) your data

All data is already in the same directory

lds9 &

Create a list with science frames.
 Is filename*.fits > list_science

 Display images in ds9 and <u>relocate</u> useless frames imexam @list_science 1 (n next frame p previous frame q quit)

 Remove useless science frames: clouds? Satellites? tracking problems? Etc.
 But avoid removing unnecessarily!!

Fixing the fits headers

Add the following to ALL fits headers (new camera) hedit *.fit BIASSEC '[1058:1062,2:1022]' add+ verhedit *.fit TRIMSEC '[1:1056,1:1026]' add+ verhedit *.fit datasec del+ ver-

Move the darks and flats into separate directories (if needed)

Change the image type in the science images to 'object' hedit *fit imagetyp 'object' add+ ver-

Creating a master dark

 What is the exposure time of the images we will analyse? Check the header! Single frame: imhead [image name] lo+ | page Multible frames: hsel Object*fits \$1,exptime yes ("exptime" is the fits header keword)

Which dark images should we use?
 imhead df-* lo+ | grep EXPTIME or hsel

 Create a list (text document) containing the names of the dark frames using the same exposure time as the science images.

Ls df* > df_60s_list

Creating a master dark – epar darkcombine

Creating a master dark -

```
Aug 30 16:01: IMCOMBINE
  combine = median, scale = exposure, zero = none, weight = none
  reject = sigclip, mclip = yes, nkeep = 1
  lsigma = 5., hsigma = 5.
  blank = 0.
                Images
       df60s__0001.fits
       df60s__0002.fits
       df60s__0003.fits
       df60s__0004.fits
       df60s__0005.fits
       df60s__0006.fits
       df60s__0007.fits
       df60s__0008.fits
       df60s__0009.fits
       df60s 0010.fits
```

Output image = Dark, ncombine = 10

Check what you got! display imstat

Master flat

	SAOImage ds9 _ 🗆 ×																	
File Edit Vie	e Edit View Frame Bin Zoom Scale Color Region WCS Analysis Help																	
File		masterflat-R	.fit														- II	
Object			Y I															
Value																	1	
WCS																	→ X	
Physical	X			Y [
Image	х			Y														
Frame 3	x	1			0		•]	
file		edit		vie	w	n	rame	bin	Z	oom	scale		color	region	wo	s	analysis	help
new		rgb		3	3d		delete	clear		single	tile		blink	first		prev	next	last

Remember to subtract your masterdark!

Reducing the science images

- We likely have images of different filters: e.g. R and V.
 You have to use the correct master flat for each of them.
- Make a list containing the R images, and another containing the V images, e.g.

Is Cyg2*R*.fit > Rimgs Is Cyg2*V*.fit > Vimgs

 Use the task codproc to divide the images by the flat and subtract the dark current. Do it separately for R and V images.

Reducing the science images 1 -

Check parameters!

Continues

Reducing the science images 2 epar codproc

🔤 pelisoli@	octans:2/envs/iraf27/iraf _ 🗆 🗙
	IRAF
Image Reduc	tion and Analysis Facility
PACKAGE = ccdred	
TASK = ccdproc	
More	
	Zero level calibration image
(dark = Dark.fits)	Dark count calibration image
(flat masterflat-v.flt)	Flat fleid images
(fringe =)	Eninge connection images
(minrenl= 1)	Minimum flat field value
(scantup= shortscan)	Scan tupe (shortscanllongscan)
(nscan = 1)	Number of short scan lines
(interac= no)	Fit overscan interactively?
(functio= legendre)	Fitting function
(order = 1)	Number of polynomial terms or spline pieces
(sample = *)	Sample points to fit
(naverag= 1)	Number of sample points to combine
(niterat= 1)	Number of rejection iterations
(low_rej= 3.)	Low sigma rejection factor
(high_re= 3.)	High sigma rejection factor
(grow = 0.)	Rejection growing radius
-> reduced fi	es will start with a 'c'

ESC-? for HELP

9

Now that the images have been reduced, we can perform photometry.

- The first step is to run the task **daofind**, which will find the stars in our images.
- There are a few parameters we need to measure in our image to best setup daofind: the sky and the F(ull)W(idth)H(alf)M(aximum)
- For that, display an image at the beginning of the sequence, middle, and end:

display cCyg2R001.fit 1 display cCyg2R111.fit 2 display cCyg2R223.fit 3

Use the task imexamine – choose a relatively bright star near the centre of the image. Centre the cursor on this star.
 r → display the radial profile
 e → show contours
 a → write measurements to the screen

 Check the sky values in the three images. We will use this to set our initial guess for the background. The value of sigma is in turn the square-root of the background (assuming Poissonic noise).

If the values are very different, use the median; if they are similar, use the mean.

E. g.

sky = 415. sigma = 20.4

 Check the FWHM in the three images. We will use this to set the aperture and the sky region for the photometry.

epar DAOFIND (to find the stars coordinates)

	pelisoli@)octans:2/envs/iraf27/iraf _ □ ×
		IRAF
	Image Reduc	tion and Analysis Facility:
PACKAGE =	daophot	
TASK =	daofind	
image =	CUg2R001.fit,CUg2R2	23.fit Input image(s)
output =	default	Output coordinate file(s) (default: image.coo.?)
(starmap=)	Output density enhancement image(s)
(skymap =)	Output sky image(s)
(datapar=	:e)	Data dependent parameters
(findpar=	:e)	Object detection parameters
(boundar=	nearest)	Boundary extension (constant nearest reflect wra
(constan=	0.)	Constant for boundary extension
(interac=	no)	Interactive mode?
(icomman=)	Image cursor: [x y wcs] key [cmd]
(gcomman=)	Graphics cursor: [x y wcs] key [cmd]
(wcsout =)wcsout)	The output coordinate system (logical, tv, physica
(cache =)cache)	Cache the image pixels?
(verify =)verify)	Verify critical daofind parameters?
(update =)update)	Update critical daofind parameters?
(verbose=)verbose)	Print daofind messages?
(graphic=)graphics)	Graphics device
(displau=)displau)	Display device
(mode =	al)	

DAOFIND (datapars)

":q" to go back

		pelisoli@	octans:2/envs/iraf27/iraf	_ 🗆 🗙
			IRAF	
		Image Reduc [.]	tion and Analysis Facility	
PACKA	GE = daophot			
ТА	SK = datapars			
(scal	e =	1.)	Image scale in units per pixel	
(fwhm	psf=	2.5)	FWHM of the PSF in scale units	
(emis	sio=	yes)	Features are positive?	
(sigm	a =	20.)	Standard deviation of background in count	.S
(data	min=	INDEF)	Minimum good data value	
(data	max=	INDEF)	Maximum good data value	
(nois	e =	poisson)	Noise model	
(ccdr	ead=)	CCD readout noise image header keyword	
(gain	=	GAIN)	CCD gain image header keyword	
(read	noi=	0.)	CCD readout noise in electrons	
(epad	u =	1.3)	Gain in electrons per count	
(expo	sur=	EXPTIME)	Exposure time image header keyword	
(airm	ass=)	Airmass image header keyword	
(filt	er =	FILTER)	Filter image header keyword	
(obst	ime=	UT)	Time of observation image header keyword	
(itim	e =	1.)	Exposure time	
(xair	mas=	INDEF)	Airmass	
(ifil	ter=	INDEF)	Filter	
(otim	e =	INDEF)	Time of observation	
(mode	=	ql)		

DAOFIND (findpars)

DAOFIND (findpars)

	pelisoli@octans:2/envs/iraf27/iraf _
PACKAGE = daophot	I R A F Image Reduction and Analysis Facility
TASK = findpars	
(thresho=	5.) Threshold in sigma for feature detection
(nsigma =	1.5) Width of convolution kernel in sigma
(ratio =	1.) Ratio of minor to major axis of Gaussian kernel
(theta =	0.) Position angle of major axis of Gaussian kernel
(sharplo=	0.2) Lower bound on sharpness for feature detection
(sharphi=	1.) Upper bound on sharpness for feature detection
(roundlo=	-1.) Lower bound on roundness for feature detection
(roundhi=	1.) Upper bound on roundness for feature detection
(mkdetec=	no) Mark detections on the image display?
(mode =	ql)

Output: *fits.coo.1

tdump cCyg2R001.fit.coo.1 columns=c1,c2,c7 > coordsR

ESC-? for HELP

DAOFIND (tvmark: to display the found stars) display cobject...

🗙 sa	🗙 SAOImage ds9											×
File	Edit	View	v Fran	e Bin	Zoon	Scale	Color	Region	WCS	Analysi	s Help	
File			cf2022	090200	0033.fi	t						
Object TIC467187065												
Value												
WCS												
Physic	al	X			Y							
Image		X			Y							
Frame	1	x	0.0	333		0.000	0					
file	edi	t	view	frame	bin	zoom	scale	e colo	r re	gion	WCS	help
ор	en		save		head	ler	page	setup		print	e	xit

109

131

152

174

epar tvmark :go

DAOFIND (tvmark: to display the found stars) display cobject...

X S.	X SAOImage ds9 — — X												
File	Edit	View	Frame	Bin	Zoom	Scale	Color	Region	WCS	Analysis	Help		
File			cf202209	02000	0033.fit					80			
Objec	t		TIC46718	37065									
Value	•												
wcs													
Physi	cal	х			Y								
Image	в	х			Y					2			
Frame	e 1	х	0.833	3		0.000	0						
file	edi	it 1	view fi	ame	bin	zoon	n sc	ale c	olor	region	WCS	help	
0	pen		save		head	er	pa	ge setup		print		exit	

epar tvmark :go

C	peliso	i@octans:2/envs/iraf27/iraf _ 🗆 🛛
	Image Red PACKAGE = tv TASK = tvmark	I R A F uction and Analysis Facility
	<pre>frame = coords = coords = coords = (logfile= (autolog= n (outimag= (deletio= (command= (mark = circl (radii = 2 (lengths= (font = raste (color = (label = ye (number = n (nxoffse= (nyoffse= (nyoffse= (nyoffse= (toleran= 1. (interac= n))))))))))))))))))))))))))))))))</pre>	 Default frame number for display Input coordinate list Output log file Automatically log each marking command Output snapped image Output coordinate deletions list Image cursor: [x y wcs] key [cmd] The mark type Radii in image pixels of concentric circles Default font Carget state coordinates Number the marked coordinates X offset in display pixels of number X offset in display pixels of number Size of mark type point in display pixels Size of text and numbers in font units Tolerance for deleting coordinates in image pixels
Γ	(mode = q	1)

tvmark is also useful to help us define the aperture, annulus, and dannulus

Aperture (<u>radii</u>): where the flux of the star will be measured. Usually ~2.5 x FWHM

Dannulus: width of the ring to count the background. ~5-10 pixels

* For a Gaussian distribution: FWHM = 2.35σ 99.99% of the light is contained within $4\sigma = 1.7FWHM$ Annulus (<u>radii</u>): distance at which to start counting the background. At least 2.5 x FWHM <u>~4 x FWHM in our example</u>

DAOPHOT – epar phot

DAOPHOT (centerpars)

PHOT (fitskypars)

Your data specific!

pelisoli@	octans:2/envs/iraf27/iraf _ 🗆 🗙
	IRAF
Image Reduc	tion and Analysis Facility
PACKAGE = daophot	
TASK = fitskypars	
(salgori=mode)	Sky fitting algorithm
(annulus= 15.)	Inner radius of sky annulus in scale units
(dannulu= 10.)	Width of sky annulus in scale units
(skyvalu= 415.)	User sky value
(smaxite= 20)	Maximum number of sky fitting iterations
(sloclip= 0.)	Lower clipping factor in percent
(shiclip= 0.)	Upper clipping factor in percent
(snrejec= 50)	Maximum number of sky fitting rejection iteratio
(sloreje= 3.)	Lower K-sigma rejection limit in sky sigma
(shireje= 3.)	Upper K-sigma rejection limit in sky sigma
(khist = 3.)	Half width of histogram in sky sigma
(binsize= 0.1)	Binsize of histogram in sky sigma
(smooth = no)	Boxcar smooth the histogram
(rgrow = 0.)	Region growing radius in scale units
(mksky = no)	Mark sky annuli on the display
(mode = ql)	

ΡΗΟΤ

PHOT (outputs)

 Text files:
 *.fits.coo.1.mag.1 or *mag.2 if done twice

IMPORTANT COLUMNS c4 = star ID c5 = x coordinate c6 = y coordinate c29 = magnitude c30 = magnitude error c28= flux.

# #N #U #F	IMAGE imagename %-23s	2	XINIT pixels %-10.3f	YINIT pixels %-10.3f	ID ## %-6d	COORD filer %-23s	IS name		LID ## %-6d
#N	YCENTER	YCENTER	YSHTET	YSHTET	YEDD	YEDD		CTED	CEDDUD
#11	nivala	nivala	nivala	nivele	nivolo	nivol	-	##	CERROR
#U	9_14 2f	9_11 2F	aro ot bryere	a-0 3t hryere	aro ot bryere	9_15	.5 2f	%_5d	%_0c
#1	& 14.0I	& 11.5T	& 0.3T	A 0.01	& 0.0I	& IJ.	51	‰ Ju	& JS
#N	MSKY	STDEV	,	SSKEW		NSKY	NSREJ	SIER	SERROR
#U	counts	count	s	counts		npix	npix	##	serrors
#F	%-18.7g	%-15.	.7g	%-15.7g		%-7d	%-9d	%-5d	%-9s
#	0		0	0					
#N	ITIME	XAIRM	IASS	IFILTER			OTIME		
#U	timeunit	numbe	er	name			timeuni	t	
#F	%-18.7g	%-15.	.7g	%-23s			%-23s		
#	0		0						
#N	RAPERT	SUM	AREA	FLU	Х	MAG	MERR	PIER	PERROR
#U	scale	counts	pixels	cou	nts	mag	mag	##	perrors
#F	%-12.2f	%-14.7g	%-11.7	g %-1	4.7g	%-7	.3f %-6.3	°%−5d	%-9s
#									
c0ł	oject_3R	2_0001.fits	873.889	2.343	1	c0bje	ct_3R_0	001.fi	ts.1
	873.612	2.269	-0.277	-0.074	0.011	0.012	2	102	EdgeImage
	1672.762	42.76	5828	11.5639	9	216	10	0	NoError
	1.	INDEF		R			00:41:07	7.186	
	6.80	0.	٥.	0.		IND	EF INDEF	301	OffImage
c0l	oject_3R	2_0001.fits	479.859	4.346	2	c0b je	ct_3R_0	001.fi	ts.2
	479.975	4.400	0.116	0.054	0.011	0.017		0	NoError
	1664.66	45.23	3207	25.3954	3	216	33	0	NoError
	1.	TNDEE		R			00-41-0	7.186	

Make a list of photometry files: Is *R*mag.1 > Rmag_files

txdump @Vmag_files fields=ID,XCENTER,YCENTER,FLUX,MAG,MERR > R_mags

 Check the ID of your star and of a few comparison stars with tvmark.
 https://aladin.u-strasbg.fr/Al adinLite/ might be useful to help identify your star.
 Comparison stars are needed to remove background variations from the light curve.

X SAOImage ds	9			—	
File Edit View	Frame Bin	Zoom Scale	Color Region	WCS Analysis	Help
File cf20220902000033.fit					
Object	TIC467187065				
Value					
WCS					
Physical X		Y			
Image X		Y		100	
Frame 1 x	0.833	0.000	0		
file edit y	view frame	bin zoor	n scale col	or region	wcs help
open	save	header	page setup	print	exit

109

131

Photometry (more *massaging* of text <u>fil</u>es)

Copy the photometry of the star and each comparison into separate files.

! awk '{if (\$1==41) print;}' R_mags > R_star
! awk '{if (\$1==43) print;}' R_mags > R_comp1
! awk '{if (\$1==55) print;}' R_mags > R_comp2
! awk '{if (\$1==29) print;}' R_mags > R_comp3
! awk '{if (\$1==32) print;}' R_mags > R_comp4

(Replace with correct Ids)

Plot these files using the provided code: 'plot_mag_files.py'

Photometry – shifting images

Photometry - magnitudes

Building the light curve

RA and DEC in a format 279.8767083356 (18h:39m:30.4s) -5.902749998734 (-5d:54m:09.8s)

- To turn our measurements into a light curve, we need the times for each observation. We will use the task setid to obtain that.
- The headers of our images are missing one important information: coordinates (RA, DEC, Epoch). Use the task hedit to add those to all images.

E			pelisoli@c	octans:2/envs/iraf27/iraf	_ = ×
				IRAF	
			Image Reduct	ion and Analysis Facility.	
	PACKAGE	= imutil			
	TASK	= hedit			
		_			
	images	=	@Rimgs	images to be edited	
	fields	=	EPOCH	fields to be edited	
	value	=	2000	value expression	
	(add	=	yes)	add rather than edit fields	
	(addonly	J=	no)	add only if field does not exist	
	(delete	=	no)	delete rather than edit fields	
	(verify	=	no)	verify each edit operation	
	(show	=	yes)	print record of each edit operation	
	(update	=	yes)	enable updating of the image header	
	(mode	=	q1)		
П					

Building the light curve

 We also need to set the observatory parameters to be used for setjd. We do that with the task observatory:

xgcerm			
I R A F uction and Analysis Fa	Image Reduc bao bservatory	IRAF Image Reduction and Analysis Facility noao observatory	
t Command (set list i	set	set Command (set list images)	
Observatory to set,		Observatory to set, list, or image default	
List of images		List of images	
o) Verbose output?	no)	no) ¥erbose output?	
 v) Observatory identif) Observatory name 4) Observatory longitu 6) Observatory latitud .) Observatory altitud .) Observatory time zo Observatory identif 	ondrejov)) 14.78364) 49.910556) 528.) -1.) ql)	ondrejov) Observatory identification) Observatory name 14.78364) Observatory longitude (degrees) 49.910556) Observatory latitude (degrees) 528.) Observatory altitude (meters) -1.) Observatory time zone Observatory identification ql)	
 t Command (set]listli Observatory to set, List of images o) Verbose output? v) Observatory identif Observatory name 4) Observatory longitu 6) Observatory latitud .) Observatory altitud .) Observatory time zo Observatory identif 	pao pservatory set no) ondrejov)) 14.78364) 49.910556) 528.) -1.) ql)	noao observatory set Command (set list images) Observatory to set, list, or image default List of images no) Verbose output? ondrejov) Observatory identification) Observatory name 14.78364) Observatory longitude (degrees) 49.910556) Observatory latitude (degrees) 528.) Observatory altitude (meters) -1.) Observatory time zone Observatory identification ql)	

Exit "ctrl+d" or ":go"

Building the light curve (setjd)

het: McDonald Observatory - Hobby-Eberly Telescope jcdo: Jack C. Davis Observatory, Western Nevada College lno: Langkawi National Observatory obspars: Use parameters from OBSERVATORY task

Observatory identification (ondrejov):

		penson@		
		Image Reduc	I R A F tion and Analusis Facility	
	PACKAGE = onedspec			
	TASK = setjd			
	imadae -	O Pimae	Imadae	Hold down the enter
	images -	ekimgs	Images Obernustanus of obernustica	
	(observa=	opspars)	upservatory of opservation	key until all images
	(date =	date-obs/	Date of observation keyword	itey antii air intages
	(time =	ut)	lime of observation keyword	have been done.
	(exposur=	exptime)	Exposure time keyword	
	(ra =	ra)	Right ascension (hours) keyword	
	(dec =	dec)	Declination (degrees) keyword	
	(epoch =	epoch)	Epoch (years) keyword	
	(jd =	jd)	Output Julian date keyword	
	(hjd =	hjd)	Output Helocentric Julian date keyword	
	(ljd =	ljd)	Output local Julian date keyword	
	(utdate =	yes)	Is observation date UT?	
	(uttime =	yes)	Is observation time UT?	
	(listonl=	no)	List only without modifying images?	
	(mode =	ql)		
Ir				

ESC-? for HELP

setjd > R_jd (R_jd is an output file. Check it!)

Building the light curve Check your column numbers! Might be different.

To do differential photometry, we need to normalise the magnitudes of the star and of the comparison stars. First, check what is the average magnitude (6th column):

All the following commands have been compiled in 'process_lightcurve.sh'!

(5: mag column, 6: mag error column)

Repeat that for all the comparison stars, and combine them into one file:

! paste mag_comp1 mag_comp2 mag_comp3 mag_comp4 > all_comp

 Average the comparison stars:
 ! awk '{printf "%7.4f %6.4f\n", (\$1+\$3+\$5+\$7)/4.0, sqrt(\$2*\$2+\$4*\$4+ \$6*\$6+\$8*\$8)}' all_comp > mag_comp

Building the light curve Check your column numbers! Might be different.

 To do differential photometry, we need to normalise the magnitudes of the star and of the comparison stars. First, check what is the average magnitude (6th column):

! awk '{sum+=\$5;n++} END {print sum/n;}' R_star

Then subtract it from each value:	replace with calculated		
average	→		
l awk '{printf "%7.4f %6.4f\n", \$5-18.75	29, \$6}'		
(5 : mag column, 6 : mag e	rror column)		

 Repeat that for all the comparison stars, and combine them into one file:

! paste mag_comp1 mag_comp2 mag_comp3 mag_comp4 > all_comp

 Average the comparison stars:
 ! awk '{printf "%7.4f %6.4f\n", (\$1+\$3+\$5+\$7)/4.0, sqrt(\$2*\$2+\$4*\$4+ \$6*\$6+\$8*\$8)}' all_comp > mag_comp

Building the light curve

Combine the magnitudes of the star and the comparison magnitude:
 l paste mag_star mag_comp > comb_mag

Subtract the comparison from the star to remove background variations:
 awk '{printf "%7.4f %6.4f\n", (\$1-\$3), sqrt(\$2*\$2+\$4*\$4)}' comb_mag
 > diff_mag

 Select the column containing the Heliocentric Julian Date from the file created with setjd:

_awk '!/#/ {print \$3}' R_jd > R_hjd

(Type this in a regular terminal. Does not work in IRAF)

Combine that with the magnitude to obtain the lightcurve:
 l paste R_hjd diff_mag > R_lightcurve

Voilà! Now you have a light curve.

Repeat the same for the other filter.

Light curve – ta da!

Photometry – summary

- Create master files for bias, flat, and dark (zerocombine, — flatcombine, darkcombine).
 - Reduce the science images using ccdproc.
 - Measure sky and FWHM with imexamine.
 - Use the dask daofind to find the stars; do not forget to change the datapars according to your measurements, and set the threshold in findpars.
 - Use the task phot to do the photometry; do not forget to update centerpars, fitskypars and photpars.
 - Check ID for your star and comparison stars using display and tymark.
 - Inspect the coordinates for the star and comparison stars to guarantee there was no misidentification.
 - Inspect the magnitudes of the comparison stars; they should be fairly constant.
 - Use observatory and setjd to obtain the times of observation.
 - Paste the times and differential magnitude (star averaged comparison) into one file to obtain the light curve.