Photometric variability of binaries

Research workshop on evolved stars

Prof. Stephan Geier & Harry Dawson

27.08.2024

Institute for Physics and Astronomy Email: sgeier@astro.physik.uni-potsdam.de hdawson@astro.physik.uni-potsdam.de

Introduction

Stars, whose brightness vary periodically, semi-periodically or irregularly as seen from earth

- extrinsic variables: variability is due to the eclipse of one star by another or the effect of stellar rotation
- intrinsic variables: variation is due to physical changes in the star or stellar system

Transiting planets/Eclipsing binaries

Rotating variables

Intrinsic variables

Pulsating variables **Example Example 19 Example 10**

Cataclysmic variables

1–4

Binary Stars: Overview

Binaries

50% – 80% of all stars in the solar neighbourhood belong to multiple systems.

2–2

Rough classification:

apparent binaries: stars are *not* physically associated, just happen to lie along same line of sight ("optical doubles").

visual binaries: bound system that can be resolved into multiple stars (e.g., Mizar); can image orbital motion, periods typically 1 year to several 1000 years.

spectroscopic binaries: bound systems, cannot resolve image into multiple stars, but see Doppler effect in stellar spectrum; often short periods (hours. . . months).

To determine stellar masses, use Kepler's 3rd law:

$$
\frac{a^3}{P^2}=\frac{G}{4\pi^2}(m_1+m_2)
$$

where

- $M_{1,2}$: masses
- *P*: period
- *a:* semimajor axis

Observational quantities:

- *P* directly measurable
- *a* measurable from image *if and only if* distance to binary and the inclination are known

2–5

Spectroscopic Binaries

Spectroscopic binaries: Components close together: orbital motion via periodic

Doppler shift of spectral lines.

- SB2 = both spectra are visible
- SB1 = only one spectrum visible

in **eclipsing** SB2 systems the inclination (close to i=90[∘]) and masses for both components can be determined.

2–6

Spectroscopic binaries

CD*−*30[∘] 11223 (Geier, ..., Schaffenroth et al. 2013, A&A 554, 10)

Motion of star visible through Doppler shift in stellar spectrum:

$$
\frac{\Delta\lambda}{\lambda} = \frac{v_r}{c} = \frac{v \sin i}{c} \sin \frac{2\pi}{P} t
$$

Double-lined spectra, case SB2

Assume circular orbit (*e* = 0)

 K_1 , K_2 velocity half amplitudes of components 1 & 2

P orbital period

2*πa*1*/* ² orbital radii of components 1 & 2

$$
K_{1/2} = \frac{2\pi a_{1/2}}{P} \sin i
$$

$$
\Rightarrow a_{1/2} \sin i = \frac{P}{2\pi} K_{1/2}
$$

again sin *i* remains undetermined

Centre of mass law:

$$
\frac{M_1}{M_2} = \frac{a_2}{a_1} = \frac{K_2}{K_1}
$$

Kepler's third law:

$$
M_1 + M_2 = \frac{4\pi^2}{G P^2} a^3,
$$

$$
a = a_1 + a_2 = \frac{P}{2\pi} (K_1 + \frac{P}{2\pi} K_2) / \sin i
$$

$$
\Rightarrow M_1 + M_2 = \frac{4\pi^2}{G P^2} \frac{P^3}{(2\pi)^3} \frac{(K_1 + K_2)^3}{(\sin i)^3} (\star)
$$

$$
=M_1 + M_2 = \frac{P}{2\pi G} \frac{(K_1 + K_2)^3}{(\sin i)^3}
$$

$$
(M_1 + M_2)(\sin i)^3 = \frac{P}{2\pi G}(K_1 + K_2)^3
$$

 \Rightarrow two equations for three unknowns ($M_1 + M_2$, sin*i*), sin *i* can only be determined for eclipsing binaries

2–9

Spectroscopic binaries

Single-lined spectra, case SB1

(only one spectrum visible):

 K_2 Unknown: $K_2 = K_1 \frac{M_1}{M_2}$ $M₂$

Insert in equation $(*)$:

$$
(M_1 + M_2)(\sin i)^3 = \frac{P}{2\pi G}(K_1 + K_1 \frac{M_1}{M_2})^3
$$

$$
\frac{M_2(1 + \frac{M_1}{M_2})(\sin i)^3}{(1 + \frac{M_1}{M_2})^3} = \frac{P K_1^3}{2\pi G}
$$

Mass function *f* (*M*):

$$
f(M) = \frac{M_2(\sin i)^3}{(1 + \frac{M_1}{M_2})^2} = \frac{P K_1^3}{2\pi G}
$$

Spectroscopic binaries: Radial velocity curve

Spectroscopic binaries: Radial velocity curve

Try out these interactive simulators!

<http://astro.unl.edu/naap/esp/animations/radialVelocitySimulator.html> <https://astro-apps.org/BinaryStarSystem/index.html>

Light Curves of Eclipsing Binary Stars

R. Hynes

In a close binary system: Gravitational potential described by the Roche potential:

$$
\Phi_{R}(\mathbf{r}) = -\frac{GM_1}{|\mathbf{r} - \mathbf{r}_1|} - \frac{GM_2}{|\mathbf{r} - \mathbf{r}_2|} - \frac{1}{2} (\omega \times \mathbf{r})^2
$$

and where

$$
\omega = \left(\frac{GM}{a^3}\right)^{1/2}
$$

Stellar surfaces are isosurfaces of this potential

=[⇒] stars are non-spherical

=[⇒] Stellar magnitude changes with orbit. Roche radius:

$$
\frac{R_L}{a} = \frac{0.49q^{2/3}}{0.6q^{2/3} + \ln(1 + q^{1/3})}
$$
 (3.11)

Approximations:

- stellar potentials are point-like (most of the stellar mass is concentrated in its core)
- Orbits are circularised (quickly established by tidal forces)
- rotation axes are perpendicular to the orbital plane
- stellar rotation is synchronous (tidally locked to the orbit)

Detached Binaries

Contact Binaries

Overcontact Binaries

light curves of eclipsing binaries: detached, contact, overcontact (top to bottom)

Limb darkening

FIGURE 3.17. Center-to-limb variation. This figure shows the aspect angle γ (angle between normal vector n and radiation emission direction e) appearing in the mathematical formulation of the limb-darkening. The right part of the figure illustrates that the depth of the atmosphere region (and thus temperature) accessible to an observer varies with the aspect angle γ .

Kallrath & Milone (1999)

- intensity of the stellar disk decreases from the centre to the limb temperature is increaing with increasing photospheric depth
- can be measured for the sun
- can be measured by microlensing
- can be calculated from model atmospheres
- linear law: $I = I_0(1 \epsilon + \epsilon \cos \theta)$
	- ϵ = limb darkening factor,

wavelength dependent sun in the UV $(< 1600$ Å): limb brightening due to chromospheric temperature rise

Limb darkening

Claret & Bloemen (2011, A&A 529, A75)

Claret's law:

- limb darkening coefficient is temperature dependent
- other laws in use

$$
1/I_0 = 1 - a_1(1 - \mu^{1/2}) - a_2(1 - \mu) - a_3(1 - \mu^{3/2}) - a_4(1 - \mu^2)
$$
 (3.12)

 μ = cos Y

HD 209458b: the first transiting exoplanet discovered, HST light curve:

- Transit is not central
- transit depth is not constant
- caused by limb darkening

Brown et al. (2001, ApJ 552:699)

Gravity darkening

- non-spherical stars, surface gravity varies across the surface
- von Zeipel's Theorem: radiative atmospheres: black body: diffusion equation
- due to temperature gradient in star Flux $F_R \propto \nabla B \propto \frac{dB}{d\Phi}$ \propto g
- in the convective case $F \approx g^{0.32}$ (Lucy's law, 1967)
- derive numerically from appropriate model atmospheres
- $F \propto g^y$ (tables by Claret & Bloemen, 2011)

<u> Rloemen (201</u> חרם

Tidally-distorted, limb-darkened, eclipsing, with and without gravity darkening.

- non-spherical stars, surface gravity varies across the surface
- derive numerically from appropriate model atmospheres
- $F \propto g^y$ (tables by Claret & Bloemen, 2011)

Reflection effect

Heber et al. 2004, A&A 420, 251

- light variation by irradiated hemisphere of the companion
- companion has phases like the moon or Venus
- e.g. HS2333+3927: Hot star (33000K) & cool star (3000K)
- Albedo: percentage of light refelected from the irradiated surface.

Refection effect

Vuckovic et al. 2016

- The refelction effect is not simply reflected light
- the irradiated hemisphere is strongly heated
- e.g. AA Dor: A hot subdwarf (40000K) & brown dwarf (3000K)
- hemisphere is heated to more than 20000K
- redistribution of flux from one wavelengths range to the other
	- albedo can be larger than 1 (100%)
- synchronised rotation, no heat exchange expected

Reflection effect

[•] CoRoT 1b: Hot Jupiter: mass $M=1.03M_{Jup}$; radius: R=1.49 R_{Jup}

- CoRoT 1b: Reflection effect and eclipse of a transiting planet discovered for the first time (Snellen et al. 2009)
- Orbital period 1.509 d, light variation $0.01%$

$$
T_{2,\text{new}} = T_2 \left(1 + \alpha \left(\frac{T_1}{T_2} \right)^4 \left(\frac{R_1}{a} \right)^2 \right)^{0.25}
$$
\n(3.13)

Snellen et al., 2009, Nature 459,543

The search for new hot subdwarf binaries

Research workshop on evolved stars

Hot subdwarf = He-burning stripped star

Extreme mass-loss is difficult for single star evolution to explain!

Thin hydrogen envelope remaining $(\sim 0.01 \text{ M}_0)$

Mass ~0.47 M_{\odot} **Radius** ~0.1 - 0.3 R_o **Effective temperature** ~ 20 – 100 kK Hot subdwarfs in binaries with unseen companion discovered by RV method

CD-30°1122, $P = 0.0498$ d (Geier et al. 2013)

PHL 457, $P = 0.3131$ d (Schaffenroth et al. 2014)

$$
f(m) = \frac{M_2^3 \sin^3 i}{(M_1 + M_2)^2} = \frac{K_1^3 P}{2\pi G}
$$

more than 50% of sdBs in close binaries (*P* < 1 d)

Introduction

Formation of sdB binary

Han et al. (2002, 2003)

Introduction

Soker 1998 AJ

- Orbit of planet in envelope of evolved star
- fate of planet:
	- evaporation
	- merger with the core
	- survival for $\geq 10 M_{\text{Jupiter}}$ depending on separation
		- \rightarrow ejection of envelope

© Mark Garlick / HELAS

 \rightarrow studying the influence of planets on stellar evolution

Light variation of compact sdB binaries

Introduction

Ellipsoidal Variations

Ellipsoidal modulation and Doppler beaming (sdB+WD)

6

Eclipsing Reflection effect (sdB+dM/BD) systems

 \cdot 2

Different amplitudes in different bands

orbital phase

. 6

. 5

 $.7$

 4

. 3

Introduction

 $.7$

 $.6$

 $- . 3$

dunimidimini du

0

 \cdot 1

 -1

 $-.2$

Reflection effect-

Introduction

HW Vir systems

Reflection + eclipsing

 \Rightarrow Constrain inclination and radius \Rightarrow + radial velocities \rightarrow companion mass \Rightarrow ~ 200 known Eclipse duration $> 15-20$ minutes \Rightarrow Average period ~5 hours \Rightarrow

Eclipsing Reflection effect (HW Vir systems)

\blacksquare Minimum companion masses of hot subdwarfs with cool companions \blacksquare

Introduction

Ground-based lightcurve surveys

OGLE

Optical Gravitational Lensing Experiment

 \rightarrow observation of the lightcurve of many stars in different fields \rightarrow discovery of planetary transits, pulsators, eclipsing binaries

CRTS, PTF, ZTF, BlackGEM,

ATLAS

Asteroid Terrestrial-impact Last Alert System

 \rightarrow a robotic astronomical survey looking for near-earth objects

 \rightarrow located in Hawaii

200 HW Vir candidate systems: $P = 0.05 - 1.26$ d

The EREBOS project.

EREBOS (Eclipsing Reflection Effect Binaries from Optical Surveys)

- homogeneous data analysis of all newly discovered HW Vir systems
- photometric and spectroscopic follow-up of all targets to determine fundamental (M, R) , atmospheric $(T_{\text{eff}}$, log g) and system parameters (a, P)
- spectroscopic and photometric follow-up

Key questions:

- minimum mass of the companion necessary to eject the common envelope?
- fraction of close substellar companions to sdB stars
- better understanding of the CE phase and the reflection effect

FRFBOS God of darkness

The photometry project

Over to you!

$4 - 15$ Target selection - Gaia catalogue of hot subdwarf candidates

Photometric projects

$4 - 15$ Target selection - Gaia catalogue of hot subdwarf candidates-

Photometric projects

$4 - 15$ Target selection - Gaia catalogue of hot subdwarf candidates-

Photometric project

 \rightarrow We want to observe hot subdwarf stars with suspected variability.

- Crossmatch with photometric surveys search for, follow-up observation of \rightarrow and light curve analysis of HW Vir system candidates to derive fundamental parameters
- \rightarrow Max will show you how to obtain this catalogue

Photometric project

- \rightarrow Faintest we can go with the Perek telescope is ~18.5 mag
- \rightarrow We want to observe a complete orbital period
- \rightarrow At least 100 data points per orbit (don't go too faint!)
- \rightarrow Always prepare backup targets in case of poor weather!

16

Photometric project

 \rightarrow To identify candidate variables, we will use the ATLAS catalogue \rightarrow Find 'ATLAS_cat.fits' in the virtual box (300MB).

-> Find information about this here: https://archive.stsci.edu/prepds/atlas-var/

 \rightarrow We will also check ZTF (different passbands)

 \rightarrow Find 'table_paper_publication_simplified.csv' in the virtual box.

Tool for OPerations on Catalogues And Tables

Does what you want with tables

Max will show you how to use TOPCAT after lunch!

 \ldots after lunch:

Step 1: import all three tables into TOPCAT

Step 2: select only relevant columns from the ATLAS table \rightarrow

 \rightarrow There are 197 (!) columns in the full table – they describe many parameters in the variability search algorithm run by ATLAS.

 \rightarrow Using the column metadata shortcut, all columns but the following are deselected:

- ATO_ID
- ra and dec (we need those to do a crossmatch)
- fp_period
- fp_fitrms
- fp_fitchi

We are interested in short period binaries. These parameters describe the fitted period, root-mean-square, and chi-square of the short-period algorithm in ATLAS. However periods given by ATLAS are not always correct!!!.

CLASS (this is the type of variation ATLAS identified)

Step 3: cross-match ATLAS with the catalogue of hot subdwarf candidates. \rightarrow The resulting table tells us the list of hot subdwarf candidates that show some sort of variability in ATLAS. They may not actually be hot subdwarfs!

Step 4: Now we need to select good candidates that are actually observable right now from Ondrejov.

 \rightarrow Create a subset (or subsets) of observable candidates.

 \rightarrow Consider the right ascension, declination and 'fb period' from ATLAS (this the fitted from ATLAS, we should set it to fb period > 0 .

→ To do this you will inspect the light curves and do a period search (Lomb-Scargle periodogram).

Two python scripts have been created for you to check ATLAS and ZTF

ATLAS_auto.py and ZTF_interactive.ipynb

Automatic!

Save a csv .txt file of all you candidates In TOPCAT to create all ATLAS LCs

→ To do this you will inspect the light curves and do a period search (Lomb-Scargle periodogram).

Two python scripts have been created for you to check ATLAS and ZTF

ATLAS_auto.py and ZTF_interactive.ipynb

Automatic!

Save a csv .txt file of all you candidates In TOPCAT to create all ATLAS LCs

Successfully found J333.0713+52.0217 Period is 3.8445591503968948 hours from c filter and 3.8445001834344397 from o filter. Successfully found J316.0059+34.6100 Period is 2.8451963667191524 hours from c filter and 2.8684006505576365 from o filter. ### The following files were not found: ### $['ATOID']$ ### The following files caused errors: ###

Step 5: We want to find the best targets from $\frac{1}{2}$

 \rightarrow To do this you will inspect the light curves (Lomb-Scargle periodogram). Two python scripts have been created for y_0

ATLAS_auto.py and ZTF_interactive

Automatic!

Save a csv .txt file of all you candidates In TOPCAT to create all ATLAS LCs

An interactive script is also provided ATLAS_interactive.ipynb

→ To do this you will inspect the light curves and do a period search (Lomb-Scargle periodogram).

Two python scripts have been created for you to check ATLAS and ZTF

ATLAS_auto.py and ZTF_interactive.ipynb

Interactive! Sources need to be downloaded and inspected one-by-one...

ra=296**.**1785753341851 dec=54.8285736956544 radius=5 target=2138663782338254464

First create a directory called 'ZTF' **mkdir ZTF** Where the data will be saved

→ To do this you will inspect the light curves and do a period search (Lomb-Scargle periodogram).

Two python scripts have been created for you to check ATLAS and ZTF

ATLAS_auto.py and ZTF_interactive.ipynb

Interactive! Sources need to be downloaded and inspected one-by-one...

a=296.1785753341851[.] dec=54.8285736956544 adius=5[.] target=2138663782338254464

First create a directory called 'ZTF' **mkdir ZTF** Where the data will be saved

→ To do this you will inspect the light curves and do a period search (Lomb-Scargle periodogram).

Two python scripts have been created for you to check ATLAS and ZTF

ATLAS_auto.py and ZTF_interactive.ipynb

Interactive! Sources need to be downloaded and inspected one-by-one...

a=296.1785753341851[.] dec=54.8285736956544 adius**=**5~ target=2138663782338254464

First create a directory called 'ZTF' **mkdir ZTF** Where the data will be saved

Observe!