

Main Sequence Runaway Project

Universität Potsdam

Research Workshop on Evolved Stars

Athul

Maimouna

Sonia

Vishnu

Mentored by:

CHARLES

UNIVERSITY

Matti Dorsch and Aakash Bhat

Table of contents

Scientific background What are we looking for?
Observations with the Perek telescope
Reduction Procedure to reduce observed data
Analysis Spectra fitting and Analysis
Conclusions What did we find?

Scientific background

Binary evolution

60-80 % of stars are in multiple system

Credit: Wang et al. 2020

The supernova scenario

What are we looking

for? cluster

- Characterised by their ejection velocities

- Velocity vectors point away from the disk

• Vs > 30 km/s (Runaways)

- Vesc > Vs >> 30 km/s (Hyper-runaways)
- Vs > Vesc

(Hyper-velocity stars)

How are they generated?

Dynamical	Supernova	Hills
ejection	explosion	mechanism
•		
		• • • • • • • • • • • • • • • • • • • •

Credit: Andreas Irrgang

Why are we looking for them?

How are we studying them?

Study a cluster and study runaways from it

Study runaways and trace them back to their original cluster

How are we studying them?

Study a cluster and study runaways from it

Study runaways and trace them back to their original cluster

Observations

Target Selection: Gaia DR3 and Simbad Crossmatch

- (Hot) Main Sequence B stars (young stars)
- Relatively low magnitudes -Fainter stars (9 - 12 mag)
 - Tangential velocity sorting targets with higher v_tan given priority (fast stars)
 - Faintest stars observed at their peak and/ during best seeing (unknown stars)
 - Further constraints on parallax, bp_rp, rtc.

Γ		designation	main_type	ra	dec	main_id
	25	Gaia DR3 1297821542123473920	Star	249.39996	21.98763	TYC 1531-595-1
	57	Gaia DR3 1877121680126046592	Star	339.63429	24.66997	TYC 2224-1842-1
	60	Gaia DR3 2051435363079038976	Star	293.027	36.36118	TYC 2667-15-1
	66	Gaia DR3 2109349118713707136	Star	274.38082	39.80271	TYC 3107-1105-1
	67	Gaia DR3 4230376519786049024	Star	303.89078	-0.10058	TYC 5162-2358-1
	33	Gaia DR3 1088668278463098880	Star	117.7477	64.3071	TYC 4121-1312-1
	42	Gaia DR3 1942738816090384000	Star	350.01376	49.61111	TYC 3644-931-1
	44	Gaia DR3 2046447089297417344	Star	292.35472	33.77783	TYC 2662-18-1
	48	Gaia DR3 2234134067741889280	Star	298.58783	56.05935	TYC 3939-612-1
	50	Gaia DR3 1621614384923908736	Star	240.06747	55.63778	TYC 3880-1204-1
	64	Gaia DR3 1220093045066977408	Star	240.06663	25.73174	BD+26 2766
	36	Gaia DR3 1702141998067604096	HotSubdwarf	223.6672	76.88794	BD+77 564
	37	Gaia DR3 2072046778019185920	Star	297.5005	37.37644	HD 226054
	40	Gaia DR3 1078362968292342272	HotSubdwarf	156.91343	73.69872	BD+74 435
	32	Gaia DR3 125476717935463936	Star	49.05531	33.39643	HD 278483
	63	Gaia DR3 1804623250649405440	Star	307.03016	14.55096	TYC 1099-367-1
	65	Gaia DR3 2093534465017435776	Hsd_Candidate	283.13403	36.58004	LB 4237
	71	Gaia DR3 1843479781115432704	Star	309.76539	24.77386	HD 340883
	46	Gaia DR3 1134611822802497664	Star	176.78807	83.07573	BD+83 337
	68	Gaia DR3 4536070477785678336	Star	278.68449	24.72221	HD 336540
	59	Gaia DR3 1974040984426803968	Star	325.00327	45.04797	BD+44 3899

Sample Gaia DR3 data for selected sources (Topcat)

Target Selection: Visibility Charts

- Visibility checked using catserver.
- Target selection and order adjusted accordingly.
- ra and dec constraints based on location

45 spectra of 44 targets

http://catserver.ing.iac.es/

erek Telesco ograph	Credit: Shen et		Grating m-1 m m-1 m m m m m m m m m m m m m m m	Dector mt (b	Y Low Order
Instrument	2018 Wavelength coverage	Order length	Resolution power in Hα region	Advantages	
OES (Ondřejov Echelle Spectrograph)	3753-9195Å	70 Å (in UV) 145 Å (in IR)	32000	Resolution Spectral orders	×

Reduction

Reduction - Requirements and Procedure

- Bias = Camera readout noise
- Flat frames = variations in pixels sensitivity
- Wavelength calibration using Comp lamps
- Science Frames = The observed spectra

- Bias correction (Zero correction)
- Flat field correction and modelling
- Wavelength calibration
- Trimming of the object
- Cosmic rays removal
- JD and heliocentric correction
- Normalization and Merging

IRA	F display: B	ias, Flats and Comparison	
		Parameters	
	Image Reduct	tion and Analysis Facility	
PACKAGE = cl TASK = oe			
(output =	HD336540)	Spectrum target to reduce(.fit) Output filename	
(idtarge= (napertu=		Target name on header Number of apertures to be found	
		# CALIBRATION PARAMETERS	
(orgfile=	no)	do you want organize files?	
(zerocom=		Combine zero level images?	
(trimcal=		Trim flat and comp?	
(iftrimc=		Use trim flat & comp?	
(zerocor=		Apply zero level correction to flat & comp?	
(compcom=		Combine comparison lamp images?	
(flatcom=		Combine flat field images?	
(flatapa=		Extract flat apertures?	
(compapa=		Extract comparison apertures?	
(iddatab=	no)	Use database folder for identification?	
More		ESC-? for HELP	

The Bias (Zero) Frame

- Shortest possible exposure
- Camera readout noise
- Bias correction
- ADC charge to digital value
- Later applied to flat, calibration and science frames.

The Flat Frames

- Uniform (mostly) illuminated source
- Detector response to uniform light, including pixel-to-pixel variations
- Used for CCD sensitivity correction

The Calibration Frame

- Iodine/ThAr Lamp
- To identify wavelengths in the spectrum.
- Used to compare with science frames
- Identification of wavelengths.

Object Parameters

	Turana Daduar		
PACKAGE = clpackage	μ, μ	tion and Analysis Facility	
TASK = oesred			
<mark>More</mark> (idfolde=	idcomp 2307)	folder name with identification database	
(idencom=		Identify features in spectrum for dispersion sol	
		# OBJECT PARAMETERS	
		* ODJECT PHRHMETERS	
(trimob =	no)	Trim object?	
(iftrimo=	no)	Use trim object?	
(zerocor=	yes)	Apply zero level correction to object?	
(crays =	no)	Remove cosmic rays?	
(ifcrays=	no)	Use object with cosmic rays extraction?	
(objecta=	no)	Extract object apertures?	
(flatcor=	no)	Apply flat correction to object?	
(helioco=	no)	calculate JD + RV-helio?	
(idref =	no)	refer database identification to images?	
(combine=	no)	combine NON-normalized spectra?	
(rvcorr =	no)	Apply heliocentric correction to NON-normalized	
(norm =	yes)	normalize spectra?	
More			

The Science Frame

- Raw spectrum of source
- Absorption lines can be seen
- B stars presence of Balmer H lines and He lines

H-alpha and H-delta Balmer lines

Merged after normalisation

Normalisation of spectra

Analysis

2 methods

Photometr

Spectral Energy Distribution fitting

Spectroscopy

Spectral line fitting

Spectral Energy Distribution (SED)

- SED = Energy flux density depending on the frequency (or wavelength)
- To study the physical properties:
 - Temperature
 - Composition
 - Luminosity

What is the relation between color(wavelength) and temperature?

Photometry results from

Object: HD226054	68% confidence interval
Color excess $E(B - V)$ from SFD (1998)	$0.430\pm0.029mag$
Color excess $E(B - V)$ from S&F (2011)	$0.370\pm0.025\mathrm{mag}$
Color excess $E(B - V)$ from Stilism (Capitanio+ 2017)	$0.166\pm0.026mag$
Color excess $E(44 - 55)$	$0.088^{+0.014}_{-0.019}$ mag
Extinction parameter $R(55)$ (fixed)	3.02
Angular diameter $\log(\Theta(rad))$	$-10.025^{+0.018}_{-0.013}$
Parallax ϖ (<i>Gaia</i> , RUWE = 0.83, ZPO = -0.013 mas)	$0.674 \pm 0.026 mas$
Distance d (Gaia, mode)	$(1.48 \pm 0.06) \times 10^3 \text{ pc}$
Distance d (Gaia, median)	$(1.48 \pm 0.06) \times 10^3 \text{ pc}$
Effective temperature $T_{\rm eff}$	18000 ⁺¹⁰⁰⁰ ₋₁₅₀₀ K
Surface gravity $\log(g (\text{cm s}^{-2}))$	$4.2^{+0.4}_{-0.5}$
Microturbulence ξ (fixed)	$0 \rm km s^{-1}$
Metallicity z (fixed)	0 dex
Helium abundance $log(n(He))$ (fixed)	-1.05
Radius $R = \Theta/(2\varpi)$ (mode)	$3.09^{+0.17}_{-0.15} R_{\odot}$
(median)	$3.11^{+0.18}_{-0.16} R_{\odot}$
Mass $M = gR^2/G$ (mode)	$2.1^{+7.3}_{-1.6} M_{\odot}$
(median)	$6^{+9}_{-4}M_{\odot}$
Luminosity $L/L_{\odot} = (R/R_{\odot})^2 (T_{\rm eff}/T_{\rm eff,\odot})^4$ (mode)	930 ⁺²²⁰ -310
(median)	910^{+270}_{-260}
Gravitational redshift $v_{\text{grav}} = GM/(Rc)$	$0.4^{+1.5}_{-0.4}$ km s ⁻¹
Generic excess noise δ_{excess}	0.000 mag
Reduced χ^2 at the best fit	0.44

Fitting the spectra using SPAS

X

Fitting the spectra using SPAS

Log g

V_rad v rot Teff

Log y

Orbit calculation using ISIS

The example of LB 4237

 Trajectory of the star in the galactic plane

Kinematics results :

	х	у	z	r	v_x	v_y	v_z	VGrf	$v_{\rm Grf} - v_{\rm esc}$	P_{b}	$x_{\rm d}$	y _d	Z_{d}	r _d	$v_{x,d}$	$v_{y,d}$	$v_{z,d}$	VGrf,d	vej	$ au_{\mathrm{flight}}$
		(kŗ)				(km s	s ⁻¹)		(%)		(kp	c)			((km s ⁻	1)		(Myr)
Model I:																				
LB4237	-6.47	4.4	1.34	7.90	218	240	30.9	326	-294	100	-9.8	-2.0	0.0	10.1	68	266	71	286	140	24.4
Stat.	+0.41 -0.30	$^{+1.0}_{-0.7}$	+0.29 -0.20	+0.30 -0.13	+39 -26	+14 -17	+1.9 -1.9	+17 -10	+21 -11		$^{+0.6}_{-1.1}$	+0.6 -0.5	$^{+0.1}_{-0.2}$	+1.0 -0.6	+35	+7	+5	+11	+21 -14	+3.8 -2.9
	0.00	0.7	0.20	0.10	20	.,	1.5	10				0.0	0.2	0.0	-22	0	-	0	14	~

Exceptional Cases

Star with Rotational Disc:

ど wo	orkshop [Runn	ing] - Ora	acle VM V	'irtualBox									-	D	×
File	Machine	View	Input	Devices	Help										
8								FIT window							$\vee \diamond$
Star:	oscopy/analy	sis30/TYC1	531-595-	1/DCN-TYC1	531-595-1_20240830.txt					Fit	Err				
V _{rad} =						V _{rad}	0								
T _{eff} =	= 0 g) = 0.00					$T_{\rm eff}$	20000					Add Models:	home/workshop/isis_grids/TLUSTY_BSTAR2006_norm_Z0.00_I		
log(y	/) = +0.00					log(g)	3.5			10		woders.			
v _{rot} = zeta							[Check			
						V _{rot}	50					Models:			
						zeta	0					T _{eff}	00 21000 22000 23000 24000 25000 26000 27000 28	00 290	00 3000
						2000						log(g)	3.0 3.25 3.5 3.75 4.0 4.25 4.5 4.75	250	00 5000
					J	6									
	c₀= 6562.80		R= 4500	Ha	v _{rad} 🗸 Atmo		x) 8 8 x ₀ = 4340.46	Hg R= 45000	V _{rad} 🗸 Atm			x ≤ ≥ ≥ ≤x₀= 4861.	Hb 32 R= 45000 V _{rad} V	tmo	
€ S×0			R= 4500	50	V _{rad} V Atmo		S ⊴X0- 4340.46	K- 45000	V _{rad} 💌 Aum			≥ ⊴x₀- 4601.	32 K− 45000 V _{rad} V A		
3.00 2.00 1.00	Y				A company of the second		1.00 Wheeler the start of the s	\bigvee	an and a second s	pitron-	4 ~~~ \$		where the second s		
	6545 65	50 655	5 656	6565	6570 6575 65	80	4335	4340	4345		4350		4855 4860 4865	48	70

 \times

Binary system (TYC 3252-206-1):

 \times

-V (km/s)

Kinematics of Stars

Where do these runaway stars come from?

Tracing back the stars to their possible open cluster(s)

15	
16	
17	ra=5.7405
18	dec=39.6510417
19	rv= 7
20	name="TYC2787-1539-1"
21	*****
22	
23	<pre>ts= np.linspace(0,-100.,100000)*units.Myr</pre>
24	orbits=[]
25	star_data= {
26	'parallax': [],
27	'pmra': [],
28	'pmdec': [],
29	'ra': [],
30	'dec': [],
31	'rv': []

	А	В	С	D	E	F
1	recno	Name	ID	AllNames	Туре	CST
2	1	ADS_16795	1	ADS_1679	http://vizie	6.832199
3	2	AH03_J0748-26.9	2	AH03_J074	http://vizie	11.58552
4	3	ASCC_5	3	ASCC_5,M	http://vizie	8.316422
5	4	ASCC_6	4	ASCC_6,M	http://vizie	19.25857
6	5	ASCC_9	5	ASCC_9,Th	http://vizie	17.56655
7	6	ASCC_11	6	ASCC_11,N	http://vizie	27.89349
8	7	ASCC_12	7	ASCC_12,N	http://vizie	19.41707
9	8	ASCC_13	8	ASCC_13,N	http://vizie	11.41564
10	9	ASCC_14	9	ASCC_14,N	http://vizie	3.353328
11	10	ASCC_18	10	ASCC_18,N	http://vizie	5.076724
12	11	ASCC_19	11	ASCC_19	http://vizie	9.307117
13	12	ASCC_20	12	ASCC_20,C	http://vizie	8.64395
14	13	ASCC_21	13	ASCC_21	http://vizie	11.05617
15	14	ASCC_23	14	ASCC_23,F	http://vizie	21.33467
16	15	ASCC_24	15	ASCC_24,A	http://vizie	5.833571
17	16	ASCC_27	16	ASCC_27,N	http://vizie	8.285251
18	17	ASCC_28	17	ASCC_28,N	http://vizie	3.510938
19	18	ASCC_29	18	ASCC_29,N	http://vizie	14.47895

Where do these runaway stars come from?

- Here: HD226054 \rightarrow 2 possible clusters:

ToF Age Berkeley_87: -3.092 Myr 2.89e+06 UBC_584: -3.030 Myr 4.97e+06

HR diagram

- Most on the MS
- Most T between 25000 K and 15000

- Most L between 100 L \odot and 10000
 - L⊙

K

None on the Horizontal Branch

Evolution of the ejection velocity depending on the rotational velocity

 Ejection velocity does not influences the rotational velocity for our sources

→ B-type stars
→ Not strongly bound systems

Evolution of the ejection velocity depending on v_grf

V_grf = the velocity in the ref frame of the galaxy with the galactic center as origin when it crosses the disk

Star is in the galactic disk if v_eject > v_grf_d

Conclusions

4

- Observed 45 stars in 4 nights
- Identified at least 10 runaway stars
- Determined the main parameters of the stars: Teff, L, log g, v_ejc, v_rot...
- Identified at least 3 binaries and a disk around a star
- Found parent open cluster candidates for some stars
- Traced back the most probable trajectory of our star sample
- NO trend observed between the ejecting velocity and rotational velocity
- Our star's sample are still in the galactic disk \rightarrow not ejected from the disk

Thank you for your attention !