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Extrasolar planets

* Planets orbiting stars other than the Sun



What is a planet?

The definition of a planet adopted by the IAU says a planet must do three things:

2. It must be big enough to have enough gravity to force it into a spherical shape.

3. It must be big enough that its gravity has cleared away any other objects of a similar size near its orbit around the Sun.




What is an exoplanet?

* |AU working definition

The current working definition of an exoplanet is as follows:

1. Objects with true masses below the limiting mass for thermonuclear fusion of deuterium

(currently calculated to be 13 Jupiter masses for objects of solar metallicity) that orbit stars,
brown dwarfs or stellar remnants and that have a mass ratio with the central object below
the Ly /Ls instability (M / Mentral < 2/ (25 4 +/621) ~ 1/25) are “planets” (no matter
how they formed). The minimum mass/size required for an extrasolar object to be

considered a planet should be the same as that used in our Solar System.

. Substellar objects with true masses above the limiting mass for thermonuclear fusion of

deuterium are “brown dwarfs”, no matter how they formed nor where they are located.

. Free-floating objects in young star clusters with masses below the limiting mass for
thermonuclear fusion of deuterium are not “planets”, but are “sub-brown dwarfs” (or

whatever name is most appropriate).




What is an exoplanet?

* Planets: Mass below the deuterium fusion limit (~13 Jupiter
masses), distinguishing it from brown dwarfs

* Brown dwarfs: Below the mass of stars but above planets (~13 to
~ 75 Jupiter masses), cannot fuse hydrogen to helium but can fuse
deuterium and in some cases lithium
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Extrasolar planets

* Planets orbiting stars other than the Sun
* Early modern ideas in the 1950s by Otto Struve

ESO



Extrasolar planets

* Planets orbiting stars other than the Sun
* Early modern ideas in the 1950s by Otto Struve
* First firm detection by Wolszczan et al. (1992) around a pulsar

C. Liu




Extrasolar planets

* Planets orbiting stars other than the Sun

* Early modern ideas in the 1950s by Otto Struve

* First firm detection by Wolszczan et al. (1992) around a pulsar

* First planet around a main sequence star (Mayor & Queloz, 1995)

James Michel Didier
Peebles Mayor Queloz N. Elmehed



Extrasolar planets

* Planets orbiting stars other than the Sun

* Early modern ideas in the 1950s by Otto Struve

* First firm detection by Wolszczan et al. (1992) around a pulsar

* First planet around a main sequence star (Mayor & Queloz, 1995)

* Currently around 6000 confirmed planets and 1000 multi-
planetary systems with a large diversity
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Planet Mass or Mass*sin(i) vs Orbital Period
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Discovery Method

® Transit

B Radial Velocity

¢ Transit Timing Variations
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Microlensing
Pulsar Timing
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Key questions

* How do planets form and evolve?

* |s our own Solar System unique?

* What are exoplanets made of?

* What are the physical processes shaping them?



Discovery methods
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Discovery methods

* Transit

* Radial velocity
* Astrometry

* Microlensing

* Many others



Cumulative Counts vs Discovery Year

exoplanetarchive.ipac.caltech.edu, 2025-08-14
| ] | |

- Discovery Method

B Disk Kinematics

Pulsation Timing Variations
Astrometry

Pulsar Timing

Orbital Brightness Modulation
Eclipse Timing Variations
Transit Timing Variations
Imaging

Microlensing

Radial Velocity

Transit

HE B RO R EEEDNE

2000 2005 2010 2015 2020
Discovery Year




Transit method

star + planet nightside

transit

star — planet shadow



Transit method

* Most common
* HD 209458 b (Charbonneau and Henry) in 1999



Transit method

e Most common

* Bias towards large planets on short orbits p= 1t ﬁ_) (1)




Transit method

* Most common
* HD 209458 b (Charbonneau and Henry) in 1999
* Bias towards large planets on short orbits

* Kepler and TESS missions, soon PLATO
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Transit method

* Most common

* HD 209458 b (Charbonneau and Henry) 1999
* Bias towards large planets on short orbits

* Kepler and TESS missions, soon PLATO

* Only provides planetary radius, information on mass is missing



Radial velocity method



FINDING PLANETS
USING THE RADIAL
VELOCITY METHOD

The star moves as it is affected
by the gravity of its planet. Seen
from the Earth, the star wobbles
backwards and forwards in the
line of sight. The speed of this
movement, its radial velocity, can
be determined using the Doppler
effect, because the light from a
rmoving object changes colour.

STAR '.' EXOPLANET X CENTRE OF MASS

N A®

BLUESHIFT

Light from an object
moving towards us Is
bluer

THE STAR'S VELOCITY
TOWARDS THE EARTH [M/S]

ELUESHIFT
I

REDSHIFT

Light from an object

moving away from us is
redder

REDSHIFT

Periodic movement. The star’s velocity
varies as it moves to and from the Earth
when the planet orbits it




Astrometry

* Measure a star's position to find small, periodic wobbles caused
by an orbiting planet's gravitational pull.

1.0

¢ AStrometry missions: Gaia Vega 5-year motion with parallax
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Astrometry

* Measure a star's position to find small, periodic wobbles caused
by an orbiting planet's gravitational pull.

* Astrometry missions: Gaia

* Biases towards nearby star hosting massive planets at large
separations
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Extrasolar planet detected by gravitational microlensing
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Demography
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Gas Giants
The size of Saturn or Jupiter, or much

larger. They include "hot Jupiters”- scorching

planets in close orbits around their stars.

Exoplanet Types

Terrestrial

Earth-sized or smaller, mostly
made of rock and metal. Some
could possess oceans or
atmospheres and perhaps
other signs of habitability.

Neptune-Like

Similar in size to our own

Neptune and Uranus, with hydrogen
or helium-dominated atmospheres.
“Mini-Neptunes,” not found in our

solar system, are smaller than Neptune
but larger than Earth.

Super-Earth

Typically “terrestrial,” or
rocky, and more massive
than Earth but lighter than
Neptune. They might or
might not have atmospheres.
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Planetary temperature

* Depends on the orbital distance, radius and temperature of the
star

* Albedo: a fraction of the light that is diffusely reflected by a body.

* Atmosphere, tidal heating etc.



NASA

Planet Temperature & Size
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Planet formation

Andrews+




NASA

primordial disk of gas and dust
orbits a young star (protoplanetary disk)

structure forms

core accretion forms planetesimals,
the building blocks of exoplanets
(“bottom up”)

gravitational instability
directly forms exoplanets
(“top down”)

disk and exoplanets interact

exoplanets accrete remaining gas, migrate through disk, scatter.

' - 1.

exoplanetary system




Evolutionary pathways of exoplanets

i) Disc migration
Planet forms in outer disc, Planet completes migration through disc. Orbit remains
undergoes partial migration.

ii) Disc-free (high-eccentricity) migration
. Planet completes migration after disc dispersal via
Kirk24+ perturbation onto eccentric orbit. Orbit is misaligned.



How to study fully formed exoplanets?

* Exoplanetary atmospheres
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Transmission spectroscopy

ESO



Wavelength
1.8 microns
2.1 microns
2.3 microns

NASA



Atmospheric properties and detactability

* Scale height: increase in altitude for which the atmospheric
pressure decreases by a factor of e
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OBSERVATION INTERPRETATION
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Figure 4. lllustrative schematic of the atmospheric data analysis and interpretation process, from observations through

interpretation of an exoplanet's nature. The pathway involves four main steps: [1] taking observations; [2] processing the data
from pixels to a spectrum; [3] interpreting the resulting spectrum with model fits to infer planetary properties such as gas
abundances; and [4] drawing conclusions about the planet properties. The top row is inspired by WASP-107b (39) a relatively
straightforward case, and the bottom row is motivated by TOI 270d ((29)), a disputed planetary nature. All panels are
llustrative only. See text for details. Credit: Seager, Welbanks, Tilke.




How to study fully formed exoplanets?

* Exoplanetary atmosphere

* Orbital dynamics
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Rossiter-MclLaughlin effect

* Spectroscopy phenomenon during transit



Rossiter-MclLaughlin effect

* Spectroscopy phenomenon during transit

* Predicted by Holt in 1893

Infact, during the progress of the partial eclipse, there should be a shift in posi-
tion of the lines: and 11L11rmp:h this shift is probably very Small it ought to be de-

tected by a powerful instrument. J- R. HOLT.




Rossiter-MclLaughlin effect

* Spectroscopy phenomenon during transit
* Binaries and exoplanets since 2000

508.3 508.35
JDB-2451000 (days)

D. Queloz



Rossiter-MclLaughlin effect

* Spectroscopy phenomenon during transit
* Binaries and exoplanets since 2000
* RV anomaly with an amplitude:

bR..EEGFCOS1
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P. Wilson



Rossiter-MclLaughlin effect

* Spectroscopy phenomenon during transit
* Binaries and exoplanets since 2000
* RV anomaly with an amplitude:

Ky o v sin(i) (

D. Queloz

508.3 508.35
JDB-2451000 (days)




Rossiter-McLaughlin effect . Welsch

D
o et

exact balance by symmetry occultation breaks the symmetry
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Rossiter-MclLaughlin effect

Spin and orbit aligned




Rossiter-MclLaughlin effect

Spin and orbit aligned

Winn (2010)

* Allows for determination of the projected angle between the
stellar spin axis and the orbital plane



Types of orbits

Well-aligned

Misaligned

Retrograde
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Misaligned orbits

* High eccentricity migration
e Stellar or planetary companion

Petrovich

initial: a>1 AU




Misaligned orbits

* High eccentricity migration
e Stellar or planetary companion
« Stellar fly-by

Li et al. (2019)



Misaligned orbits

* High eccentricity migration
e Stellar or planetary companion

e Stellar fly-by . | | |
D>

* Primordial misalignment

NASA



Formation mechanism

* R-M effect can be used to study the history of the system

Disk Eccentricity

Ex situ formation b o bl
disappears excitation

Disk disappears

R. Dawson



Stellar variability

e Rotational modulation to derive stellar rotation
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Stellar variability

e Rotational modulation to derive stellar rotation and inclination
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Stellar variability

e Rotational modulation to derive stellar rotation and inclination

] . [ vsini
— sin — |.
2nR/P

* This allows us to compute W - True obliquity

COS 1 = COSICOSi, + SIni sini, COS A,
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Spalding+22
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HD 3167
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Transmission spectra

__ WASP-131b
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Questions?
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