# Unraveling the complex nature of FS CMa stars

 $\bullet \bullet \bullet$ 

Nela Dvořáková Seminář, Ondřejov 15.2.2024

### B[e] phenomenon - discovery

first observed with emission line stars -Fleming (1898) - prototype **FS CMa** (HD 45677)

Strong Ha emission

Merril (1925, 1928) - identified **iron** emission lines

1928 - H $\beta$  and H $\gamma$  - double peaked

explained by a **rotating disk** 

### B[e] phenomenon - discovery

first observed with emission line stars -Fleming (1898) - prototype **FS CMa** (HD 45677)

Strong Ha emission

Merril (1925, 1928) - identified **iron** emission lines

1928 - H $\beta$  and H $\gamma$  - double peaked

explained by a **rotating disk** 

Later in 1970s - IR observations discovery of the **IR excess** Allen & Swings (1976) - survey of  $\cong$ 700 B type stars ->  $\cong$  65 - **IR excess as well as forbidden lines** 

### B[e] phenomenon - discovery

first observed with emission line stars -Fleming (1898) - prototype **FS CMa** (HD 45677)

Strong Ha emission

Merril (1925, 1928) - identified **iron** emission lines

1928 - H $\beta$  and H $\gamma$  - double peaked

explained by a **rotating disk** 

Later in 1970s - IR observations discovery of the **IR excess** Allen & Swings (1976) - survey of  $\cong$ 700 B type stars ->  $\cong$  65 - **IR excess as well as forbidden lines** 

=> stars with the **B[e] phenomenon** 

H alpha Relative intensity Wavelength [A]





#### Forbidden emission lines





#### Forbidden emission lines





#### Forbidden emission lines







Lamers et al. (1998)

Lamers et al. (1998)

B[e] supergiants

supergiant -  $\log (L_*/L_{\odot}) \gtrsim 4.0$ 

indication of mass loss

hybrid spectra

enhanced N abundances

#### Lamers et al. (1998)

**B[e]** supergiants supergiant - $\log (L_*/L_{\odot}) \ge 4.0$ 

indication of mass loss

hybrid spectra

enhanced N abundances Pre-MS B[e] stars

near star-forming regions, accretion disk

 $\log{(\rm L_*/L_{\odot})} \lessapprox 4.5$ 

photometric variations

SED - warm and cool dust

#### Lamers et al. (1998)

B[e] supergiants

supergiant log (L<sub>\*</sub>/L<sub>☉</sub>)  $\gtrsim$  4.0

indication of mass loss

hybrid spectra

enhanced N abundances Pre-MS B[e] stars

near star-forming regions, accretion disk

 $\log (L_*/L_{\odot}) \leq 4.5$ 

photometric variations

SED - warm and cool dust

#### Compact PN B[e]

spectra show nebula, log (L\_\*/L\_{\odot})  $\lessapprox$  4.0

may show [O III], [S III], [Ne III], ...

may show N enhancement

SED - cold dust (~100K)

#### Lamers et al. (1998)

B[e] supergiants

supergiant log (L<sub>\*</sub>/L<sub>☉</sub>)  $\gtrsim$  4.0

indication of mass loss

hybrid spectra

enhanced N abundances

#### Pre-MS B[e] stars

near star-forming regions, accretion disk  $\log (L_*/L_{\odot}) \leq 4.5$ 

photometric variations

SED - warm and cool dust

#### Compact PN B[e]

spectra show nebula, log  $(L_*/L_{\odot}) \leq 4.0$ may show [O III], [S III], [Ne III], ...

may show N enhancement

SED - cold dust (~100K)

#### Symbiotic B[e] stars

evidence of a cool companion in the spectrum (TiO band)

late-type spectrum in near IR

#### Lamers et al. (1998)

B[e] supergiants

supergiant log (L<sub>\*</sub>/L<sub>☉</sub>)  $\geq$  4.0

indication of mass loss

hybrid spectra

enhanced N abundances

#### Pre-MS B[e] stars

near star-forming regions, accretion disk  $\log (L_*/L_{\odot}) \leq 4.5$ 

photometric variations

SED - warm and cool dust

#### Compact PN B[e]

spectra show nebula, log  $(L_*/L_{\odot}) \leq 4.0$ may show [O III], [S III], [Ne III], ...

may show N enhancement

SED - cold dust (~100K)

#### Symbiotic B[e] stars

evidence of a cool companion in the spectrum (TiO band)

late-type spectrum in near IR

#### Unclassified B[e] stars

-> do not fit

HD 45677, HD 50138 or HD 87643, ...

### FS CMa stars

FS CMa stars - definition from Miroshnichenko 2007

Emission-line spectra contains: Balmer lines, Fe II, [O I], ([Fe II], weak [O III])

- IR excess peak at 10 30 μm
- Location outside of star-forming regions

If companion - fainter and cooler than primary (degenarate)

-> primary T = 9 000 - 30 000 K

-> ( $L_*/L_{\odot}$ ) between 2.5 and 4.5

Photometry

- chaotic behavior (multiperiodicity)
- pulsations, co-rotating structures, dust occultations, material infall, material ejecta, wind, moving layers



Photometry

- chaotic behavior (multiperiodicity)
- pulsations, co-rotating structures, dust occultations, material infall, material ejecta, wind, moving layers



GG Car, 1.583 d period, Porter et al. (2012a)



Spectral variability

absorption lines - night to night emission lines - weeks to months forbidden lines - months to years



HD 50138, He I 6678 Å, Jeřábková et al. (2016)

Spectral variability

absorption lines - night to night emission lines - weeks to months forbidden lines - months to years



IRAS 17449+2320, Korčáková (2022)

Spectral variability

absorption lines - night to night emission lines - weeks to months forbidden lines - months to years

Various features may be observed dusty clumps, material infall or ejecta



HD 50138, Jeřábková et al. (2016)



Systems with ongoing or finished dust formation

Strong mass loss in at least two cases (HD 87643, AS 78)

 $10^{-6} \mathrm{M}_{\odot}/\mathrm{yr}$ 

Higher than can be explained by radiatively driven wind

-> Stellar evolution of a single star is not enough



### **Binary hypothesis**

Miroshnichenko 2007

-> binaries with mass transfer

- K-type companion (MWC 623 and V669 Cep)
- degenerate comp. (**CI Cam**)
- brightness variations attributed to orbital motion (AS 160 and MWC 342)
- spectro-astrometry (**FS CMa**, **HD 50138**, and **HD 85567**)

### **Binary hypothesis**

Miroshnichenko 2007

-> binaries with mass transfer

- K-type companion (MWC 623 and V669 Cep)
- degenerate comp. (**CI Cam**)
- brightness variations attributed to orbital motion (AS 160 and MWC 342)
- spectro-astrometry (FS CMa, HD 50138, and HD 85567)



Korčáková et al. (2020)

#### Interferometric observations

Presence of dust - most likely in a disk around the star

Interplay of many processes

- puffed-up rim due to dust sublimation
- dusty halo, dusty wind
- near IR instruments

### Interferometric observations

Presence of dust - most likely in a disk around the star

Interplay of many processes

- puffed-up rim due to dust sublimation
- dusty halo, dusty wind
- near IR instruments





Hofmann et al. (2022), FS CMa

#### Interferometric observations



HD 50138, Kluska et al. 2016

#### Magnetic field discovered!

Strong magnetic field found for the first time in a FS CMa

(Korčáková et al. 2022)

IRAS 17449+2320

 $6.2\pm0.2~\mathrm{kG}$ 

Strong Zeeman split in many spectral lines



#### Magnetic field discovered!

Strong magnetic field found for the first time in a FS CMa

(Korčáková et al. 2022)

IRAS 17449+2320

 $6.2 \pm 0.2 \text{ kG}$ 

Strong Zeeman split in many spectral lines



Korčáková et al. 2022

### New hypothesis

Strong magnetic field

Slow rotation

Appearance of young stellar objects, but far from star forming regions

Position on the HR diagram near TAMS

Large space velocities



#### New hypothesis



Schneider et al. 2020



#### New hypothesis



Schneider et al. 2020

Miroshnichenko et al. 2017

NBODY6 code

Open clusters in galactic potential, 8.5 kpc from Galactic center

| M[ <i>M</i> ⊙] ≈              | 8000   | 4100 | 2040 | 1030 | 510 | 255 | 130 | 62  |
|-------------------------------|--------|------|------|------|-----|-----|-----|-----|
| # simulations                 | 2      | 4    | 8    | 16   | 32  | 64  | 128 | 256 |
| # stars per cluster $\approx$ | 13 680 | 7070 | 3590 | 1860 | 980 | 510 | 260 | 140 |

| Sp.type | M $[M_{\odot}]$ |
|---------|-----------------|
| 0       | > 16            |
| В       | 2.1 - 16        |
| Α       | 1.4 - 2.1       |
| F       | 1.04 - 1.4      |
| G       | 0.8 - 1.04      |
| K       | 0.45 - 0.8      |
| Μ       | 0.08 - 0.45     |
| BrDw    | < 0.08          |

statistical study - focus on mergers - distribution of spectral types

Initial orbital period distribution with a threshold mass 2  ${\rm M}_{\odot}$  and 5  ${\rm M}_{\odot}$ 

•••

Dvořáková N., Korčáková D., Dinnbier F. and Kroupa P. (submitted)









### N-body simulations - more than 50% of mergers are B stars



#### N-body simulations - around 15 % of mergers - A stars















#### **Comparison with observations**

Rv measurements for 32 FS CMa stars - [O I] 6300.304, 6363.776 Å

GAIA data

-> space velocities



#### Comparison with observations

Rv measurements for 32 FS CMa stars - [O I] 6300.304, 6363.776 Å

GAIA data

-> space velocities



W component [km/s]

#### **Current view of FS CMa stars**



### Conclusions

FS CMa stars - OVERLOOKED CHANNEL OF STELLAR MERGERS

Merger events are dominated by B-type stars



Possible progenitors of magnetic Ap stars among late B-type FS CMa stars

#### **Current view of FS CMa stars**



### **Evolutionary stages of the merger products**



Dvořáková et al. (submitted)

Hurley et al. (2000)

| 0  | MS fully convective               |  |  |  |  |
|----|-----------------------------------|--|--|--|--|
| 1  | MS                                |  |  |  |  |
| 2  | Hertzsprung Gap                   |  |  |  |  |
| 3  | First Giant Branch                |  |  |  |  |
| 4  | Core Helium Burning               |  |  |  |  |
| 5  | Early AGB                         |  |  |  |  |
| 6  | Thermally Pulsing AGB             |  |  |  |  |
| 7  | Naked Helium Star MS              |  |  |  |  |
| 8  | Naked Helium Star Hertzsprung Gap |  |  |  |  |
| 9  | Naked Helium Star Giant Branch    |  |  |  |  |
| 10 | Helium White Dwarf                |  |  |  |  |
| 11 | Carbon/Oxygen White Dwarf         |  |  |  |  |
| 12 | Oxygen/Neon White Dwarf           |  |  |  |  |
| 13 | Neutron Star                      |  |  |  |  |
| 14 | Black Hole                        |  |  |  |  |
| 15 | massless remnant                  |  |  |  |  |

#### Additional figures and tables

| Spectral         | Stars         |               | Stars involved |               | Merger        |               | Merger          |               |
|------------------|---------------|---------------|----------------|---------------|---------------|---------------|-----------------|---------------|
| type             | at 0 Myr [%]  |               | in mergers [%] |               | products [%]  |               | ratio [%]       |               |
| m <sub>thr</sub> | $2 M_{\odot}$ | $5 M_{\odot}$ | $2 M_{\odot}$  | $5 M_{\odot}$ | $2 M_{\odot}$ | $5 M_{\odot}$ | $2 \ M_{\odot}$ | $5 M_{\odot}$ |
|                  |               |               |                |               |               |               |                 |               |
| 0                | 0.11          | 0.12          | 2.23           | 3.32          | 2.47          | 3.46          | 30.99           | 26.22         |
| В                | 3.37          | 3.53          | 50.11          | 48.15         | 54.44         | 50.48         | 23.24           | 12.54         |
| А                | 2.64          | 2.77          | 13.42          | 11.49         | 14.28         | 15.18         | 7.77            | 4.80          |
| F                | 3.21          | 3.28          | 8.33           | 8.95          | 9.56          | 7.11          | 4.27            | 1.90          |
| G                | 3.95          | 4.05          | 6.75           | 6.53          | 5.71          | 3.88          | 2.07            | 0.84          |
| Κ                | 15.18         | 15.29         | 9.94           | 10.71         | 7.39          | 10.29         | 0.70            | 0.59          |
| Μ                | 71.53         | 70.97         | 9.22           | 10.82         | 6.10          | 8.81          | 0.12            | 0.11          |
| BrDw             | 0             | 0             | 0              | 0.02          | 0.06          | 0.78          | 0               | 0             |

Dvořáková et al. (submitted)

#### Additional figures and tables



**Figure 1.** Occurrence of magnetic fields across the H-R diagram in pre-MS, MS, and post-MS stars. Percentage indicates the fraction of stars of a given type to have such fields. The dashed line separates stars with convective (on the right) and radiative (on the left) envelops.

Berdyugina (2009)

### Additional figures and tables



Fig. 4. Overview of the binary evolution scenarios up to the first CC event. The branching ratios shown are from our fiducial simulation, and we highlight in red the disruption fraction  $\mathcal{D}$ . The errors on each fraction exclude the run without SN kicks ( $\sigma_{\text{kick}} = 0 \text{ km s}^{-1}$ ), which produces an unrealistically low disruption fraction (cf. Table 1 and Sect. 6).

Renzo et al. (2019)