Unraveling the complex nature of FS CMa stars

Nela Dvořáková
Seminář, Ondřejov
15.2.2024

B[e] phenomenon - discovery

first observed with emission line stars Fleming (1898) - prototype FS CMa (HD 45677)

Strong Ha emission
Merril (1925, 1928) - identified iron emission lines

1928 - $\mathrm{H} \beta$ and $\mathrm{H} \gamma$ - double peaked
explained by a rotating disk

$\mathrm{B}[e]$ phenomenon - discovery

first observed with emission line stars -
Fleming (1898) - prototype FS CMa (HD 45677)

Strong Ha emission
Merril (1925, 1928) - identified iron emission lines

1928 - $\mathrm{H} \beta$ and $\mathrm{H} \gamma$ - double peaked
explained by a rotating disk

Later in 1970s - IR observations
discovery of the IR excess
Allen \& Swings (1976) - survey of $\cong 700$ B
type stars -> $\cong 65-$ IR excess as well as
forbidden lines

$\mathrm{B}[e]$ phenomenon - discovery

first observed with emission line stars Fleming (1898) - prototype FS CMa (HD 45677)

Strong Ha emission
Merril (1925, 1928) - identified iron emission lines

1928 - $\mathrm{H} \beta$ and $\mathrm{H} \gamma$ - double peaked
explained by a rotating disk

Later in 1970s - IR observations
discovery of the IR excess
Allen \& Swings (1976) - survey of $\cong 700$ B
type stars -> $\cong 65-$ IR excess as well as forbidden lines
=> stars with the $\mathbf{B}[\mathbf{e}]$ phenomenon

B[e] phenomenon

Strong Balmer emissions

B[e] phenomenon

Strong Balmer emissions

$\mathrm{B}[\mathrm{e}]$ phenomenon
 Strong Balmer emissions

Forbidden emission lines

$\mathrm{B}[\mathrm{e}]$ phenomenon
 Strong Balmer emissions

Forbidden emission lines

Stars with B[e] phenomenon

Stars with $\mathrm{B}[\mathrm{e}]$ phenomenon

$\mathrm{B}[\mathrm{e}]$ supergiants

$$
\begin{aligned}
& \text { supergiant - } \\
& \log \left(\mathrm{L}_{*} / \mathrm{L}_{\odot}\right) \gtrsim 4.0
\end{aligned}
$$

indication of mass
loss
hybrid spectra
enhanced N
abundances

Stars with $\mathrm{B}[\mathrm{e}]$ phenomenon

$B[e]$ supergiants
supergiant -
$\log \left(\mathrm{L}_{*} / \mathrm{L}_{\odot}\right) \gtrsim 4.0$
indication of mass
loss
hybrid spectra
enhanced N
abundances

Pre-MS B[e] stars
near star-forming
regions, accretion disk
$\log \left(\mathrm{L}_{*} / \mathrm{L}_{\odot}\right) \lesssim 4.5$
photometric variations
SED - warm and cool
dust

Stars with $\mathrm{B}[\mathrm{e}]$ phenomenon

Lamers et al. (1998)

$B[e]$ supergiants

supergiant -

$\log \left(\mathrm{L}_{*} / \mathrm{L}_{\odot}\right) \gtrsim 4.0$
indication of mass loss
hybrid spectra
enhanced N abundances

Pre-MS B[e] stars
near star-forming regions, accretion disk
$\log \left(L_{*} / L_{\odot}\right) \lesssim 4.5$
photometric variations
SED - warm and cool dust

Compact PN B[e]

spectra show nebula, $\log \left(\mathrm{L}_{*} / \mathrm{L}_{\odot}\right) \geqq 4.0$
may show [O III], [S III], [Ne III], ...
may show N
enhancement
SED - cold dust (~100K)

Stars with $\mathrm{B}[\mathrm{e}]$ phenomenon

B[e] supergiants

supergiant -

$\log \left(\mathrm{L}_{*} / \mathrm{L}_{\odot}\right) \gtrsim 4.0$
indication of mass loss
hybrid spectra
enhanced N
abundances

Pre-MS B[e] stars
near star-forming regions, accretion disk
$\log \left(L_{*} / L_{\odot}\right) \lesssim 4.5$
photometric variations
SED - warm and cool dust

Compact PN B[e]

spectra show nebula, $\log \left(\mathrm{L}_{*} / \mathrm{L}_{\odot}\right) \geqq 4.0$
may show [O III], [S III], [Ne III], ...
may show N
enhancement
SED - cold dust (~100K)

Symbiotic B[e] stars
evidence of a cool companion in the spectrum (TiO band)
late-type spectrum in near IR

Stars with $\mathrm{B}[\mathrm{e}]$ phenomenon

B[e] supergiants

supergiant -

$\log \left(\mathrm{L}_{*} / \mathrm{L}_{\odot}\right) \gtrsim 4.0$
indication of mass loss
hybrid spectra
enhanced N
abundances

Pre-MS B[e] stars
near star-forming regions, accretion disk
$\log \left(L_{*} / L_{\odot}\right) \lesssim 4.5$
photometric variations
SED - warm and cool
dust

Compact PN B[e]

spectra show nebula, $\log \left(\mathrm{L}_{*} / \mathrm{L}_{\odot}\right) \geqq 4.0$
may show [O III], [S III], [Ne III], ...
may show N
enhancement
SED - cold dust (~100K)

Symbiotic B[e] stars
evidence of a cool companion in the spectrum (TiO band)
late-type spectrum in near IR

Unclassified B[e] stars

-> do not fit
HD 45677, HD 50138 or HD 87643, ...

FS CMa stars

FS CMa stars - definition from Miroshnichenko 2007
Emission-line spectra contains: Balmer lines, Fe II, [O I], ([Fe II], weak [O III])
IR excess - peak at $10-30 \mu \mathrm{~m}$
Location outside of star-forming regions
If companion - fainter and cooler than primary (degenarate)
-> primary T = $9000-30000 \mathrm{~K}$
-> $\left(\mathrm{L}_{*} / \mathrm{L}_{\odot}\right)$ between 2.5 and 4.5

Observed properties

Photometry

- chaotic behavior (multiperiodicity)
- pulsations, co-rotating structures, dust occultations, material infall, material ejecta, wind, moving layers

Observed properties

Photometry

- chaotic behavior (multiperiodicity)
- pulsations, co-rotating structures, dust occultations, material infall, material ejecta, wind, moving layers

GG Car, 1.583 d period, Porter et al. (2012a)

Observed properties

Spectral variability

absorption lines - night to night emission lines - weeks to months

HD 50138, He I 6678 Å, Jěábková et al. (2016)

Observed properties

Spectral variability

absorption lines - night to night emission lines - weeks to months forbidden lines - months to years

IRAS 17449+2320, Korčáková (2022)

Observed properties

Spectral variability

absorption lines - night to night emission lines - weeks to months forbidden lines - months to years

Various features may be observed dusty clumps, material infall or ejecta

HD 50138, Jeřábková et al. (2016)

Observed properties

Observed properties

Systems with ongoing or finished dust formation

Strong mass loss in at least two cases (HD 87643, AS 78)

$$
10^{-6} \mathrm{M}_{\odot} / \mathrm{yr}
$$

Higher than can be explained by radiatively driven wind
-> Stellar evolution of a single star is not enough

Binary hypothesis

Miroshnichenko 2007
-> binaries with mass transfer

- K-type companion (MWC 623 and

V669 Cep)

- degenerate comp. (CI Cam)
- brightness variations attributed to orbital motion (AS 160 and MWC 342)
- spectro-astrometry (FS CMa, HD 50138, and HD 85567)

Binary hypothesis

Miroshnichenko 2007
-> binaries with mass transfer

- K-type companion (MWC 623 and V669 Cep)
- degenerate comp. (CI Cam)
- brightness variations attributed to orbital motion (AS 160 and MWC 342)
- spectro-astrometry (FS CMa, HD 50138, and HD 85567)

Korčáková et al. (2020)

Interferometric observations

Presence of dust - most likely in a disk around the star

Interplay of many processes

- puffed-up rim due to dust sublimation
- dusty halo, dusty wind
- near IR instruments

Interferometric observations

Presence of dust - most likely in a disk around the star

Interplay of many processes

- puffed-up rim due to dust sublimation
- dusty halo, dusty wind
- near IR instruments

Interferometric observations

HD 50138, Kluska et al. 2016

Magnetic field discovered!

Strong magnetic field found for the first time in a FS CMa
(Korčáková et al. 2022)
IRAS 17449+2320
$6.2 \pm 0.2 \mathrm{kG}$
Strong Zeeman split in many spectral lines

Magnetic field discovered!

Strong magnetic field found for the first time in a FS CMa
(Korčáková et al. 2022)
IRAS 17449+2320
$6.2 \pm 0.2 \mathrm{kG}$
Strong Zeeman split in many spectral lines

Korčáková et al. 2022

New hypothesis

Strong magnetic field
Slow rotation
Appearance of young stellar objects, but far from star forming regions

Position on the HR diagram near TAMS

Large space velocities

New hypothesis

Schneider et al. 2020

New hypothesis

Schneider et al. 2020

Miroshnichenko et al. 2017

N-body simulations

NBODY6 code
Open clusters in galactic potential, 8.5 kpc from Galactic center

$\mathrm{M}[M \odot] \approx$	8000	4100	2040	1030	510	255	130	62
\# simulations	2	4	8	16	32	64	128	256
\# stars per cluster \approx	13680	7070	3590	1860	980	510	260	140

Sp.type	$\mathrm{M}\left[\mathrm{M}_{\odot}\right]$
\mathbf{O}	>16
\mathbf{B}	$2.1-16$
\mathbf{A}	$1.4-2.1$
\mathbf{F}	$1.04-1.4$
\mathbf{G}	$0.8-1.04$
\mathbf{K}	$0.45-0.8$
\mathbf{M}	$0.08-0.45$
$\mathbf{B r D w}$	<0.08

statistical study - focus on mergers - distribution of spectral types
Initial orbital period distribution with a threshold mass $2 \mathrm{M}_{\odot}$ and $5 \mathrm{M}_{\odot}$

N-body simulations

N-body simulations

N-body simulations

N-body simulations

N-body simulations - more than 50% of mergers are B stars

N-body simulations - around 15 \% of mergers - A stars

N-body simulations

N-body simulations

N-body simulations

Comparison with observations

Rv measurements for 32 FS CMa stars

- [O I] 6300.304, 6363.776 A

GAIA data
-> space velocities

Comparison with observations

Rv measurements for 32 FS CMa stars - [O I] 6300.304, 6363.776 A

GAIA data

-> space velocities

Current view of FS CMa stars

Conclusions

FS CMa stars - OVERLOOKED CHANNEL OF STELLAR MERGERS

Merger events are dominated by B-type stars

Possible progenitors of magnetic Ap stars among late B-type FS CMa stars

Current view of FS CMa stars

Evolutionary stages of the merger products

Dvozáková et al. (submitted)

$\mathbf{0}$	MS fully convective
$\mathbf{1}$	MS
$\mathbf{2}$	Hertzsprung Gap
$\mathbf{3}$	First Giant Branch
4	Core Helium Burning
$\mathbf{5}$	Early AGB
$\mathbf{6}$	Thermally Pulsing AGB
$\mathbf{7}$	Naked Helium Star MS
$\mathbf{8}$	Naked Helium Star Hertzsprung Gap
$\mathbf{9}$	Naked Helium Star Giant Branch
$\mathbf{1 0}$	Helium White Dwarf
$\mathbf{1 1}$	Carbon/Oxygen White Dwarf
$\mathbf{1 2}$	Oxygen/Neon White Dwarf
$\mathbf{1 3}$	Neutron Star
$\mathbf{1 4}$	Black Hole
$\mathbf{1 5}$	massless remnant

Additional figures and tables

Spectral type	Stars at 0 Myr [\%]		Stars involved in mergers [\%]		Merger products [\%]		Merger ratio [\%]	
$m_{\text {thr }}$	$2 \mathrm{M}_{\odot}$	$5 \mathrm{M}_{\odot}$						
O	0.11	0.12	2.23	3.32	2.47	3.46	30.99	26.22
\mathbf{B}	$\mathbf{3 . 3 7}$	$\mathbf{3 . 5 3}$	$\mathbf{5 0 . 1 1}$	$\mathbf{4 8 . 1 5}$	$\mathbf{5 4 . 4 4}$	$\mathbf{5 0 . 4 8}$	$\mathbf{2 3 . 2 4}$	$\mathbf{1 2 . 5 4}$
A	2.64	2.77	13.42	11.49	14.28	15.18	7.77	4.80
F	3.21	3.28	8.33	8.95	9.56	7.11	4.27	1.90
G	3.95	4.05	6.75	6.53	5.71	3.88	2.07	0.84
K	15.18	15.29	9.94	10.71	7.39	10.29	0.70	0.59
M	71.53	70.97	9.22	10.82	6.10	8.81	0.12	0.11
BrDw	0	0	0	0.02	0.06	0.78	0	0

Dvožáková et al. (submitted)

Additional figures and tables

Figure 1. Occurence of magnetic fields across the H-R diagram in pre-MS, MS, and post-MS stars. Percentage indicates the fraction of stars of a given type to have such fields. The dashed
line separates stars with convective (on the right) and radiative (on the left) envelops.

Additional figures and tables

Fig. 4. Overview of the binary evolution scenarios up to the first CC event. The branching ratios shown are from our fiducial simulation, and we highlight in red the disruption fraction \mathcal{D}. The errors on each fraction exclude the run without SN kicks $\left(\sigma_{\text {kick }}=0 \mathrm{~km} \mathrm{~s}^{-1}\right)$, which produces an

