Spectroscopic studies of white dwarf stars

Eva Arazimová

Adéla Kawka

& Stéphane Vennes

15. 1. 2009, seminar of Stellar Department of Astronomical Institute ASCR

Motivation

- to extend the number of known white dwarfs to the distance of \sim 20 pc from the Sun; nowadays complete sample to about 13 pc (Holberg et al., 2008)
- to determine properties of white dwarfs in the Solar neighborhood
- proposed plan of work:
 - choice of candidates from rNLTT (Revised New Luyten Two-Tenths) catalog
 - study of literature concerning these objects
 - determination of atmospheric parameters of unknown white dwarfs
 - acquisition of further properties of white dwarfs

History of discovery

- H.N. Russell (1914)
 40 Eridani B
- A. van Maanen (1917)
 van Maanen 2
- A. Clark (1862)
 Sirius B

Properties of white dwarfs

- 90% of stars will evolve into a white dwarf
- enormous densities in the range from 10⁶ g·cm⁻³ up to 10⁹ g·cm⁻³
- \checkmark small radii \sim 1% of radius of the Sun
- temperatures in the range from \sim 100 000 K up to about 3 000 K
- cooling age approximately 10¹⁰ years
- \blacksquare masses in the range from 0.4 M $_{\odot}$ up to 1.2 M $_{\odot}$
- rotational velocities less than 40 km⋅s⁻¹
- magnetic field have approximately 20% of white dwarfs in the Solar neighbourhood, the strength of the field ranges from \sim 1 kG up to 1000 MG

- spectral classification:
- **DA** Balmer lines
- DO He II lines
- **DB** He I lines
- DC continuous spectrum
- **DZ** metal lines (Ca, Na, Mg, Fe ...)
- DQ carbon features

White dwarfs in the Galaxy

Kawka & Vennes (2007) 0.001 white dwarfs help $\Phi(M_v)$ theoretical: $b_{Da} = 0.5 \times 10^{-12}$ pc⁻³ 2QZ/SDSS5 to determine the 2QZ/SDSS5/GR2 age of the Galactic AAT-UVX 10-4 ····· PG disk the luminosity •(M_v) (pc⁻³ mag⁻¹ function (i.e. the 10-5 number of stars per luminosity bin) can be used 10-6 to constrain the Galactic evolutionary models 10-7 12 8 10 M_v (mag)

- the motion of stars within the Galaxy can be described using:
 - $\boldsymbol{\mathsf{U}}$ toward the Galactic center
 - v in the direction of Galactic rotation
 - **w** toward the north Galactic pole
- kinematics of a sample of stars can be used to determine which group it belongs to:
 - thin disk most of white dwarfs
 - thick disk contribution to the local sample between 5% and 25%
 - halo the oldest white dwarfs

The sample of white dwarfs

Analysis of spectra

DA white dwarfs

- for fitting used program by S. Vennes and A. Kawka
- Balmer lines $H\alpha$ up to H9
- used models:
 - pure hydrogen LTE plane-parallel models
 - T_{eff} = 4 500 K up to 100 000 K for log(g) = 7.0 up to 9.5
 - radiative and convective (included by apllying the Schwartzschild stability criterion and by using the mixing length formalism) energy transport
 - broadening mechanisms of spectral lines: linear Stark, Doppler, resonance, natural
- used χ^2 minimization technique

DC and DZ WDs

- spectra compared to the spectra of black body
- relatively cool objects, over
 \sim 10 000 K we need He models
- possible to use also for DZs, because metal lines in their spectra are weak enough

DQ white dwarfs

- for estimation of effective temperature used paper Dufour et al. (2005)
- assumption of log(g) \sim 8.0
- temperature of white dwarf NLTT 27901 adopted from paper Koester & Knist (2006)

DB white dwarfs

- only two objects, both DBA white dwarfs
- effective temperatures and surface gravities adopted from paper Voss et al. (2007)

Interesting white dwarfs

- NLTT 43827 log(g) = 9.35, M = 1.31 M_☉
- NLTT 33108 ZZ Ceti star
- NLTT 5943 hot DQA white dwarf
- NLTT 21339 DZ with high abundance of heavy elements

Further properties of white dwarfs

- mass and cooling age determined using interpolating program by A. Kawka (Althaus & Benvenuto, 1998)
- used models:
 - white dwarfs with CO core and H envelope (DA)
 - white dwarfs with CO core and without H envelope (non-DA)
 - $\checkmark~0.45~M_{\odot}$ up to 1.2 M_{\odot}
 - $\frac{M_{H}}{M} = 10^{-4}$
 - solar metalicity
- absolute magnitude determined using already known effective temperature and mass
- distance gained from adaptation of Pogson equation

Kinematics

- program by S. Vennes (Johnson & Soderblom, 1987)
- data imput:
 - right ascension and declination to equinox 1950
 - proper motion μ and angle θ
 - distance
 - radial velocity
- output: velocity components U, V and W with regard to LSR

- 195 objects belong to the population of the thin disk
- 6 halo candidates, only NLTT 32057 (known) and NLTT 31473 (CTIO) cool enough

Main results

- analysis of 90 spectra of white dwarf selected from rNLTT catalog and determination of their effective temperature and surface gravity
- for 78 objects from this sample were not known any physical properties
- calculation of magnetic field for DAP white dwarfs
- temperature distribution of collection of 210 white dwarfs
- determination of mass, absolute magnitude, distance and cooling age for all 210 objects
- mass distribution, comparison with literature

- calculation of velocity components U, V and W with regard to LSR for all 210 objects
- estimation of fraction of white dwarfs in particular populations in Galaxy
- Iuminosity function for DA white dwarfs
- discussion of difficulties in determining age of the Galactic disk from our luminosity function
- discussion of fractions of particular spectral types of white dwarfs in our sample, comparison with literature
- contribution to the local sample of white dwarfs –
 6 objects within 20 pc from the Sun

Further work

to acquire spectra of larger sample of white dwarfs in the Solar neighborhood (e.g. ESO, Ondřejov)

- determine their atmospheric parameters
- already known data adopt from literature
- such a huge sample of objects could enable us:
 - to have better statistics of fractions of white dwarfs in particular populations in Galaxy
 - to plot luminosity function for higher magnuitudes
 - to determine age of the Galactic disk
- to dispose helium models for white dwarfs (the largest error in our work is in determination of effective temperature for non-DA white dwarfs)

- to analyze more interesting white dwarfs (e.g. magnetic field, abundance of heavy elements)
- to gain radial velocities (assumption $v_{rad} = 0 \longrightarrow$ underestimation of number of members of thick disk)
- to acquire trigonometric parallaxes to confirm distances of white dwarfs (astrometric satellite Gaia)

rNLTT Catalog

- **Salim** & Gould (2003)
- NLTT cross-correlated with 2MASS (Two Micron All Sky Survey) and USNO-A Catalogs
- **9** 36 085 objects
- \checkmark at bright magnitudes (V \lesssim 11 mag) complete for $|b|\gtrsim15^\circ$
- coverage of sky 38%, $\delta > -33^{\circ}$
- absolute magnitudes in the range from 10 mag up to 17.5 mag
- errors: position 130 mas, proper motion 5.5 mas·yr⁻¹, V – J color – 0.25 mag
- \blacksquare \longrightarrow ~ 400 white dwarf candidates

LSPM Catalog

- Lépine & Shara (2005)
- search for high proper motion stars in the Digitized Sky Surveys using SUPERBLINK software, incorporated Tycho-2 Catalog and ASCC-2.5 (All-Sky Compiled Catalog of 2.5 million stars)
- northern stars with annual proper motions larger than 0.15"
- 61 977 objects
- \checkmark complete for V < 19 mag stars at $|b| \gtrsim 15^{\circ}$
- Iimiting magnitude V = 21 mag
- errors: position 100 mas, proper motion 8 mas \cdot yr⁻¹
- \blacksquare \longrightarrow \sim 800 white dwarf candidates

non-DA white dwarfs

- \sim 25% of white dwarfs have helium-dominated atmosphere
- are born with H-deficient atmospheres or processes such as diffusion, accretion, convection, radiation pressure and stellar winds compete with gravitational settling as they cool off
- DB gap (T_{eff} between 45 000 K and 30 000 K) as DOs cool residual amount of hydrogen accumulates to the surface
- pure helium LTE plane-parallel models
- add opacity in models (for the coolest atmospheres dominated by He⁻ free-free absorption and Rayleigh scattering by neutral He)

Cool white dwarfs

- for white dwarfs with T_{eff} \lesssim 25 000 K, elements heavier than H and He start to sink down to the centre, under ~ 11 000 K becomes invisible also He
- explanation of presence of heavy elements in white dwarf atmospheres:
 - fallback of dusty debris following a merger event
 - accreation of interstellar matter
 - accretion of material from ancient planetary systems
- if there is present helium in white dwarf atmosphere, it can cause significant broadening of Balmer lines, which could be considered as high value of surface gravity

GD 362 (WD 1729+371)

- Gianninas et al. (2004), Kawka et al. (2005) most massive (1.2 M_☉) DAZ (Ca I, Ca II, Mg I and Fe I) white dwarf ever found, T_{eff} = 9 740 K, log(g) = 9.1, d \simeq 24 pc
- Kilic et al. (2005), Becklin et al. (2005) IR excess \rightarrow circumstellar disk
- García-Berro et al. (2007) proposed explanation by merger of two white dwarfs
- Zuckerman et al. (2007) presence of significant amount of He (log[He/H] = 1.14), T_{eff} = 10 540 K, log(g) = 8.24, d \simeq 50 pc
- ✓ Kilic et al. (2008) π = 19.9 ± 1.3 mas → d = 50.3 ± 3.3 pc, confirmation of He dominated atmosphere, M ≈ 0.71 M_☉, R ≈ 0.0106 R_☉

Zuckerman et al. (2007)

Luminosity function for DAs

- informs about star formation history and the local mass density in the galactic disk
- to built theoretical white dwarf luminosity function we must consider:

• initial mass function (
$$\phi(M) = \left(\frac{M}{M_{\odot}}\right)^{-2.35}$$
,
Salpeter, 1955)

- star formation rate $(0.5 1.0 \cdot 10^{-12} \text{pc}^{-3} \cdot \text{yr}^{-1})$
- pre-white dwarf lifetime ($\tau_{MS} = 10 \left(\frac{M}{M_{\odot}}\right)^{-2.5}$ Gyrs)
- initial-to-final mass relationship
- white dwarf cooling age

- Iuminosity function could be built on the basis of absolute magnitude limit or volume limit
- Green (1980): set limitting magnitude, let V_m be volume defined by the maximum distance at which given object will still appear in the sample, define

 $dV' = \exp(-z/z_0) dV$, where z_0 is the scale heigh \rightarrow

each star contribute to the local space density as $1/V_m'$

- Galactic disk scale height of the white dwarf population ranges from \sim 220 pc up to 300 pc
- if we have a complete sample of white dwarfs up to 20 pc from the Sun, we would be able to construct volume-limitted luminosity function

First results

- 417 objects selected from rNLTT catalog
- apparent magnitudes in the range from 12.06 mag up to 18.72 mag
- spectral types: 56% DA, 12% DC, 4% DQ, 3% DB, 3% DZ and 22% unknown (Kawka & Vennes (2006): 67% DA, 13% DC, 8% DQ, 7% DB, 5% DZ)
- effective temperature: arithmetic average 9163 K, median 7750 K, mode 5500 K, the highest value $T_{\rm eff}$ = 39910 \pm 200 K for NLTT 32398, the lowest value $T_{\rm eff}$ = 3950 \pm 70 K for NLTT 32057
- Iogarithm of surface gravity: arithmetic average 8.08, median 8.05, mode 8.0

- mass: arithmetic average 0.64 M_{\odot}, median 0.61 M_{\odot}, mode 0.58 M_{\odot}, the highest value 1.31 ± 0.01 M_{\odot} for NLTT 43827, the lowest value 0.18 M_{\odot} for NLTT 53996
- 22% objects have measured parallax

References

[1] Althaus L.G., Benvenuto O.G. (1998): Evolution of DA white dwarfs in the context of a new theory of convection. *MNRAS* 296, 206-216.
[2] Dufour P., Bergeron, P., Fontaine G. (2005): Detailed Spectroscopic and Photometric Analysis of DQ White Dwarfs. *ApJ* 627, 404-417.
[3] Holberg J.B., Sion E.M., Oswalt T., McCook G.P., Foran S., Subasavage J.P. (2008): A new look at the local white dwarf population. *AJ* 135, 1225-1239.

[4] Johnson D.R.H., Soderblom D.R. (1987): Calculating galactic space velocities and their uncertainties, with an application to the Ursa Major group. *AJ* **93**, 864-867.

[5] Kawka A., Vennes S. (2006): Spectroscopic Identification of Cool White Dwarfs in the Solar Neighborhood. *ApJ* 643, 402-415.

[6] Voss B., Koester D., Napiwotzki R., Christlieb N., Reimers D. (2007): High-resolution UVES/VLT spectra of white dwarfs observed for the ESO SN Ia progenitor survey. II. DB and DBA stars. A&A **470**, 1079-1088.