Genetic algorithms

Martin Netolický

November 6, 2008

The outline

 \blacktriangleright Introduction: The interferometric observations of v Sgr

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- The description of the genetic algoriths
- The results
- Conclusion

Introduction

$\upsilon \,\, \mathrm{Sgr}$

- single-line spectroscopic binary
- peculiar spectrum with emission lines
- infrared excess, 2 BBs approximation of the SED
- \blacktriangleright \rightarrow presence of the dust shell
- VLTI/MIDI interferometric observations
 - summer 2007 + May 2008
 - 12 visibility measurements (UTs 2, ATs 10)

MC3D

The code

- continuum RT, based on the Monte-Carlo method
- emitting, scattering, absorbing and reemitting photons from the central source on the spherical dust grains

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- ▶ input: geometry, parameters of the model, dust catalogue
- output: model, SED, spatial & spectral brightness (polarization maps)

MC3D

The geometry

$$\varrho(r,z) = \varrho_{100} \left(\frac{100}{r}\right)^{\alpha} \exp\left[-\frac{1}{2} \left(\frac{z}{h(r)}\right)^{2}\right]$$
$$h(r) = h_{100} \left(\frac{r}{100}\right)^{\beta}$$

Input parameters

- ▶ the source: <u>d</u>, <u>T</u>, <u>L</u> (assuming BB approximation)
- ▶ the geometry of the disk: R_{in} , R_{out} , *i*, α , β , h_{100}
- the dust properties: chemical composition, size distribution, total mass of the dust

Parameter space

parameter	min	max	step	n(step)
α	1.80	2.50	0.10	8
eta	0.70	1.50	0.10	9
h	2.0	7.5	0.5	12
$R_{ m in}$	2.0	7.5	0.5	12
i	30	75	5	10
$\log M_d$	-7.0	-3.5	0.5	8
silicate / am. C.				6

The parameter space of the MC3D models:

- ▶ 5 · 10⁶ possible combinations of parameters
- $ightarrow \sim$ 800 years of computation on 3GHz 1CPU PC.

The scheme of the GA

▲□▶▲□▶▲□▶▲□▶ □ のへで

The first generation of the models

First generation of the models

- each generation has n models
- random selection of the $n \cdot k$ parameters that we want to find
- $\blacktriangleright \rightarrow n$ models of 1st generation

$$M_{1,j} = (p_{1,j,1}, \dots, p_{1,j,k}), j \in (1, n)$$

Evaluation

weight: the ability to survive (fitness function)

$$w_{1,j} = (\chi_{1,j}^2)^{-1}$$

Crossover

We have models and the corresponding weights now.

$$M_{i,j}$$
 $w_{i,j}$ $j \in (1, n)$

(*i* . . . the number of the generation) Selection of the *n* pairs of the models for the crossover

$$M_{i,a}, M_{i,b}$$
 $a, b \in (1, n)$

$$P(M_{i,(a,b)}=M_{i,j})=rac{w_{i,j}}{\sum\limits_{j}w_{i,j}}$$

Crossover probability $p_c \sim 0.95 - 0.99$

$$x_{i,j} \in (0,1)$$
 $j \in (1,n), P(x_{i,j} = 1) = p_c$

 $x_{i,i} = 1$: *j*-th pair of the models undergo the crossover $x_{i,j} = 0$: one of the models of the *j*-th pair pass directly to the mutation

Crossover

In the case of the crossover ...

M _{i,a} M _{i,b}	<i>р</i> і,а,1	<i>p</i> _{<i>i</i>,<i>a</i>,2}	<i>p</i> _{<i>i</i>,<i>a</i>,3}	<i>p</i> _{<i>i</i>,<i>a</i>,4}	•••	$p_{i,a,k}$
M _{i,b}	р і,ь,1	р і,ь,2	р і,ь,з	<i>p</i> _{<i>i</i>,<i>b</i>,4}	•••	$p_{i,b,k}$
C _{i,j}	1	1	2	1	•••	2
$M_{i+1,j}$	<i>p</i> _{<i>i</i>,<i>a</i>,1}	<i>p</i> _{<i>i</i>,<i>a</i>,2}	р _{i,b,3}	<i>p</i> _{<i>i</i>,<i>a</i>,4}	•••	p _{i,b,k}

 $M_{i,a}$, $M_{i,b}$ – the "parents", 2 models selected from the *i*-th generation

 $C = c_{i,j}$ – crossover matrix for the *i*-th generation, *j*-th pair of "parents"

 $M_{i+1,j}$ – the "child"; will become the member of i + 1-th generation after mutation

Mutation

From the previous steps we have:

• *n* models $M_{i+1,j}$ with *k* parameters $p_{i+1,j,l}$ Mutation

• probability of the mutation $p_m \sim 0.01 - 0.05$

$$m_{i+1,j,l} \in (0,1)$$
 $j \in (1,n), l \in (1,k), P(m_{i+1,j,l}=1) = p_m$

lf. . .

- $m_{i+1,j,l} = 1$ \rightarrow the parameter $p_{i+1,j,l}$ is replaced with new, random value
- $m_{i+1,j,l} = 0$ \rightarrow nothing happens

We have the new generation models now! $i + 1 \rightarrow i$

New generation

- computation of the new models
- evaluation of the new models $(w_{i,j})$
- A) do the models fit our criteria?
- B) do the models still evolve? (aren't the models degenerated?)
- ▶ A) & B) = NO \rightarrow proceed to the next loop of the scheme

The results

æ

≣⇒

(日)

The evolution of the mean and minimal χ^2 . n = 96, $p_c = 0.975$, $p_m = 0.05$

The result

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

The comparison of the results

parameter	new	old
<i>d</i> [pc]	595	513
R _{in} [AU]	$6.0^{+0.5}_{-1.5}$	$4.0^{+2.0}_{-1.0}$
i	$50^{\circ}^{+10^{\circ}}_{-20^{\circ}}$	$40^\circ\pm-15^\circ$
lpha	$2.0^{+0.5}_{-0.3}$	$2.4^{+0.1}_{-0.4}$
eta	$0.7^{+0.3}$	$0.95_{-0.3}^{+0.05}$
h ₁₀₀ [AU]	$3.5^{+2.0}_{-1.5}$	3.0 ± 2.0
$\log({\it M_{ m d}}/{\it M_{\odot}})$	$-3.5_{-3.0}$	-6.0
$M_{ m am.C}/M_{ m d}$	$0.6\substack{+0.2 \\ -0.4}$	0.6
χ^2	1.51	2.92

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Conclusion

GA works! But ...

- ... they are efficient just for searching in huge parameter space
- ... they have problems with searching the precise solution

... they need large number of evaluated models

However . . .

-they do not require much knowledge about the system
- you will find at least some solution
- ... it's unlikely to find just local minima
-their results are quite good for huge parameter spaces
- ... they can be adopted for large number of problems
- It can be shown that the number of models that are \ldots
 - ... better than average increases exponentially with time
 - ... worse than average decreases exponentially with time

Reference

 Šíma J., Neruda R.: Theoretical Issues of Neural Networks, 1996
 http://www2.cs.cas.cz/~sima/kniha.html (in Czech)

(ロ)、(型)、(E)、(E)、 E) のQの