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∗ the most important parameter: mass

∗ chemical composition

∗ rotation may also play a role
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The influence of rotation

∗ change of the surface temperature: star is
hotter at the poles

∗ meridional circulation: result of the
inhomogeneous surface temperature
distribution

∗ additional mixing: due to instabilities caused
by differential rotation

∗ change of the stellar shape
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∗ Roche model
⋆ gravitation force: point source

approximation
⋆ rigid body rotation

∗ potential

Φ = −
GM

r
−
1

2
s2Ω2

⋆ M is the stellar mass
⋆ Ω is the rotational frequency
⋆ s is the distance from the rotational axis



Influence of the rotation on the
stellar shape

∗ slow rotation, Req ≪ Rcr, Rcr =
(

GM
Ω2

)1/3
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Influence of the rotation on the
stellar shape

∗ faster rotation, Req < Rcr, Rcr =
(

GM
Ω2

)1/3
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Influence of the rotation on the
stellar shape

∗ near-critical rotation, Req ≈ Rcr
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Influence of the rotation on the
stellar shape

∗ critical rotation, Req = Rcr, Rcr =
(

GM
Ω2

)1/3
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Influence of the rotation on the
stellar shape

∗ supercritical rotation?
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∗ material in the equatorial plane rotates with
the critical speed

Vcrit = ReqΩcrit =

√

GM

Req

⇒ rotational velocity in the equatorial plane
lower than the escape velocity

Vcrit < Vesc =

√
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Influence of the rotation on the
stellar shape

∗ gravitational force in the equatorial plane
balanced by the centrifugal force

∗ material in the equatorial plane rotates with
the critical speed

⇒ rotational velocity in the equatorial plane
lower than the escape velocity

⇒ material cannot immediately escape to the
infinity

∗ star does not rotate as a rigid body anymore

⇒ creation of circumstellar disk in the equatorial
plane (due to a non-zero viscosity)



Stellar angular momentum

∗ the norm of the stellar angular momentum

J = IΩ

⋆ I is the stellar moment of inertia
⋆ Ω is the rotation angular frequency



Stellar angular momentum

∗ the norm of the stellar angular momentum

J = IΩ

∗ angular momentum change

J̇ = İΩ+ IΩ̇

⋆ J̇ is the angular momentum loss
(e.g., in HD 37776 due to the wind,
Mikulášek et al. 2008)



Stellar angular momentum

∗ the norm of the stellar angular momentum

J = IΩ

∗ angular momentum change

J̇ = İΩ+ IΩ̇

⋆ J̇ negligible, decline of I (İ < 0)
⇒ spin up of the star

Ω̇

Ω
= −
İ

I
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Stellar angular momentum

∗ the norm of the stellar angular momentum

J = IΩ

∗ angular momentum change

J̇ = İΩ+ IΩ̇

⋆ J̇ negligible, decline of I ⇒ spin up
⋆ once the star reaches the critical rotation

frequency (Ω = Ωcrit)⇒ spin up ends,
angular momentum loss

J̇ = İΩcrit

⋆ İ given by evolution⇒ also J̇



Can stars reach the critical rotation?

∗ fast rotating stars may reach the critical
rotation (Meynet et al. 2007)

∗ Ω/Ωcrit change during the main-sequence
evolution (Z = 0) (Ekström et al. 2008)
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∗ Rout is the outer disk radius
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J̇ ≡ J̇K(Rout) = ṀvK(Rout)Rout ∼ R
1/2
out

∗ J̇ given by the evolution⇒ to keep the critical
rotation the star has to shed the angular
momentum⇒ required mass-loss rate
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Angular momentum loss due to a
Keplerian disk

∗ material in the disk on Keplerian orbits

∗ orbital velocity
vK(r) =

√

GM

r

∗ angular momentum loss per unit of time

J̇ ≡ J̇K(Rout) = ṀvK(Rout)Rout ∼ R
1/2
out

∗ J̇ given by the evolution⇒ to keep the critical
rotation the star has to shed the angular
momentum⇒ required mass-loss rate

∗ Ṁ ∼ R
−1/2
out ⇒ lower mass loss for larger

disks
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Viscous decretion disks

∗ angular momentum of the material in the disk

j ∼ rvK(r) ∼ r
1/2

⇒ some process transfers angular momentum
from inner parts to outer ones

∗ analogy with accretion disks: artificial
viscosity (Shakura & Sunyaev 1973)

∗ artificial viscosity likely due to
magnetorotational instability
(Balbus & Hawley 1991)



Viscous decretion disk models

∗ disk described by hydrodynamic equations in
cylindrical coordinates

∗ introduction of artificial viscosity

∗ axial symmetry

∗ stationarity

(Lightman 1974, Umin et al. 1991, Okazaki 2001,
Jones et al. 2008)



Viscous decretion disk models

∗ continuity equation
1

r

d (rΣvr)
dr

= 0

∗ where
⋆ integrated disk density Σ =

∫

∞

−∞
ρdz

⋆ vr is the radial disk velocity



Viscous decretion disk models

∗ continuity equation
1

r

d (rΣvr)
dr

= 0

∗ r component of the momentum equation

vr
dvr
dr
=
v 2φ
r
+ g −

1

Σ

d(a2Σ)
dr

+
3

2

a2

r

∗ where
⋆ the gravity acceleration is g = −GM/r 2

⋆ a is the sound speed, a2 = kT/(µmH)

⋆ µmH is the mean molecular weight

⋆ temperature distribution T = T0
(

Req/r
)p



Viscous decretion disk models

∗ continuity equation
1

r

d (rΣvr)
dr

= 0

∗ r component of the momentum equation

vr
dvr
dr
=
v 2φ
r
+ g −

1

Σ

d(a2Σ)
dr

+
3

2

a2

r

∗ φ component of the momentum equation

vr
r

d (rvφ)
dr

+
α

r 2Σ

d
dr

(

a2r 2Σ
)

= 0

⋆ artificial viscosity parameterized via α
(Shakura & Sunyaev 1973)



Viscous decretion disk models

∗ continuity equation
1

r

d (rΣvr)
dr

= 0

∗ r component of the momentum equation

vr
dvr
dr
=
v 2φ
r
+ g −

1

Σ

d(a2Σ)
dr

+
3

2

a2

r

∗ φ component of the momentum equation

vr
r

d (rvφ)
dr

+
α

r 2Σ

d
dr

(

a2r 2Σ
)

= 0

∗ θ component of the momentum equation

ρ = ρ0 exp

(

−
1

2

z2

H2

)

, H =
a

vK
r



Viscous decretion disk models

∗ boundary conditions
⋆ sonic point vr = a at radius Rcrit
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Viscous decretion disk models

∗ boundary conditions
⋆ sonic point vr = a at radius Rcrit

v 2φ
Rcrit

−
GM

R2crit
+
5

2

a2

Rcrit
−

da2

dr

∣

∣

∣

∣

Rcrit

= 0

⋆ vφ, and Σ specified at the stellar surface

∗ numerical solution using the
Newton-Raphson method



Calculated disk models
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Calculated disk models
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∗ J̇ increases up to the critical point
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Radiative ablation

∗ hot stars have radiatively-driven stellar winds

⇒ radiative force may also ablate the disk

∗ radiative force in the Sobolev approximation
(Cranmer & Owocki 1995)

grad =
c−2α

1− α

(

κeQ̄

c

)1−α ∮

I(n)

(

n∇ (nv)

ρ

)α

ndΩ

∗ where
⋆ κe is Thomson scattering cross-section
⋆ α, Q̄ are force parameters (Gayley 1995)
⋆ I(n) is emergent intensity



Radiative ablation

∗ hot stars have radiatively-driven stellar winds

⇒ radiative force may also ablate the disk

∗ radiative force in the Sobolev approximation
(Cranmer & Owocki 1995)

grad =
c−2α

1− α

(

κeQ̄

c

)1−α ∮

I(n)

(

n∇ (nv)

ρ

)α

ndΩ

∗ the emergent intensity I(n) given by the
stellar radiative flux reflected by the star



Disk wind mass-loss rate:
an estimate

∗ classical CAK (Castor, Abbott & Klein 1975)
wind mass-loss rate estimate

ṀCAK =
α

1− α

L

c2
(

Γ Q̄
)1/α−1

∗ Q̄ and α are line force parameters
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∗ classical CAK (Castor, Abbott & Klein 1975)
wind mass-loss rate estimate

ṀCAK =
α

1− α

L
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∗ in the term of mass flux from a unit surface
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)1/α−1

∗ F̃ is the driving flux and g̃ is local
gravitational acceleration



Disk wind mass-loss rate:
an estimate

∗ classical CAK (Castor, Abbott & Klein 1975)
wind mass-loss rate estimate

ṀCAK =
α

1− α

L

c2
(

Γ Q̄
)1/α−1

∗ in the term of mass flux from a unit surface

ṁ =
α

1− α

F̃

c2

(

κeF̃ Q̄

cg̃

)1/α−1

∗ assuming (F is flux from the star)

F̃ =
R

r
F
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Disk wind mass-loss rate:
an estimate

∗ disk mass loss rate is given by

Ṁdw(Rout) = 2× 2π

∫ Rout

Req

ṁr dr

∗ after integration

Ṁdw(Rout) = P1

(

Rout

R

)

ṀCAK



Disk wind mass-loss rate: better
approximation

Ṁdw(Rout) = P1

(

Rout

R

)

ṀCAK

∗ ṀCAK is classical stellar wind mass-loss rate
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Disk wind mass-loss rate: better
approximation

Ṁdw(Rout) = P1

(

Rout

R

)

ṀCAK

∗ ṀCAK is classical stellar wind mass-loss rate

⇒ disk wind originates mainly from the regions
close to the star



Disk wind angular momentum loss

J̇dw(Rout) = P 1
2

(

Rout

R

)

R vK(R)ṀCAK

∗ RvK(R)ṀCAK stellar wind loss
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Open questions

∗ the source of the artificial viscosity

∗ precise calculation of disk ablation

∗ disk temperature distribution
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Conclusions

∗ critically rotating stars may lose mass via
decretion disk

∗ the mass-loss rate set by the angular
momentum loss needed to keep the stellar
rotation subcritical

∗ disk angular momentum loss rate depends
on the outer disk radius J̇ ∼ R1/2out

⇒ mass-loss due to the disk Ṁ ∼ R−1/2out

∗ disk wind mass-loss rate by order of
magnitude lower than the stellar wind
mass-loss rate
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