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a b s t r a c t

We present AMADA, an interactive web application to analyze multidimensional datasets. The user up-
loads a simple ascii file and AMADA performs a number of exploratory analysis together with contem-
porary visualizations diagnostics. The package performs a hierarchical clustering in the parameter space,
and the user can choose among linear, monotonic or non-linear correlation analysis. AMADA provides
a number of clustering visualization diagnostics such as heatmaps, dendrograms, chord diagrams, and
graphs. In addition, AMADA has the option to run a standard or robust principal components analysis,
displaying the results as polar bar plots. The code is written in r and the web interface was created using
the shiny framework. AMADA source-code is freely available at https://goo.gl/KeSPue, and the shiny-app
at http://goo.gl/UTnU7I.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The emerging precision era of astronomy marks the transi-
tion from a data-deprived field to a data-driven science, in which
statistical methods play a central role. The need to handle these
ever-increasing datasets impacts all branches of modern sci-
ence, characterizing the so-called era of Big Data. As a conse-
quence, an efficient exploration of high-dimensional datasets is
becoming ubiquitous throughout all scientific fields, such as bi-
ology (e.g., Venter et al., 2004), social sciences (e.g. Patty and
Penn, 2015), geology (e.g., van Zyl, 2014) and astronomy (e.g., Ball
and Brunner, 2010; Graham et al., 2013; Martínez-Gómez et al.,
2014).

Upcoming surveys such as the Large Synoptic Survey Telescope
(e.g., LSST Science Collaboration et al., 2009), the Square Kilometre
Array (e.g., Carilli, 2015), and Euclid (e.g. Scaramella et al., 2015),
just to mention a few, will push the boundaries of our ability
to analyze sky catalogs, while the ever-increasing complexity of
cosmological simulations keeps lessening the distance between
observed and synthetic data (e.g., Overzier et al., 2013; de Souza
et al., 2013b, 2014b; Vogelsberger et al., 2014).

An optimal exploration of these catalogs, observed and/or
simulated, heavily relies on our ability to uncover hidden
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relationships among different quantities (e.g., Borne et al., 2008;
Ball and Brunner, 2010; Graham et al., 2013), such as fundamental
planes of galaxy properties (Tully and Fisher, 1977; Faber and
Jackson, 1976), as well as to identify the optimal set of variables to
describe andpredict a certain property of interest (e.g. the presence
of star formation activity in a halo; de Souza et al. (2015)).

A mainstay methodology for data exploration in astronomy
is the correlation analysis. Its goal is to describe the level of
association, usually linear, between a given pair of variables.
Its applicability virtually covers the entire astronomical domain,
such as gamma-ray bursts (e.g., Burgess et al., 2014), cosmic
voids (Hamaus et al., 2014), star formation activity (Lee et al.,
2013), dark matter halo properties (de Souza et al., 2013a, 2014a),
and baryonic galaxy properties (Yates et al., 2012), just to cite a few.

To facilitate the use of contemporary exploratory and visual-
ization techniques commonly used in other scientific fields but
not fully exploited in astronomy, we developed the AMADA pack-
age. The code allows the user to visualize subgroups of variables
with high association in a hierarchical tree structure through di-
verse visual tools, such as graphs, chord diagrams, dendrograms
and heatmaps. The goal is to deliver a user-friendly guide for a first
data screening. By providing a systematicmethodology for cluster-
ing detection in the space of object properties, the researcher can
make a statistically justified decision about the subset of features
to be studied in a given catalog.

It is worth noting that other interfaces for data exploration
in astronomy exist (e.g, Brescia et al., 2010; Burger et al., 2013;
Konstantopoulos, 2015). Particularly, VOStat (Chakraborty et al.,
2013) and AstroStat (Kembhavi et al., 2015) are two web-based
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Fig. 1. A screenshot of the AMADA portal showing properties of host galaxies of Type Ia supernovae. This portal is publicly available at http://goo.gl/UTnU7I.
services for statistical analysis using R under the hood. Both
projects are focused on providing a user-friendly environment
to perform a wide range of standard statistical analysis, such as
hypothesis testing, multivariate analysis, clustering and so forth.
However, AMADA is the first of its kind with a primary focus
on information visualization techniques for general correlation
analysis in multidimensional catalogs.

2. Main features

AMADA is written in r 3.1.1 and developed using Rstudio1

and Shiny2 frameworks. RStudio is an open source interface for
development of r applications, and Shiny is a package that allows
to build interactive web applications directly from r. Instructions
on how to run the code locally, and a brief installation tutorial are
given in Appendix.

The package allows an interactive exploration and information
retrieval from high-dimensional datasets. The user can choose
among differentmethods for correlation analysis, whose outcomes
are displayed in a chosen graphical layout for visual inspection. In
the following, we briefly describe the main available features.

2.1. Datasets

The user can upload a dataset in a plain text ascii file as space
or comma separated values (CSV). The columns should be named,
and missing data should be marked as NA. An example of how
a typical dataset looks like, together with a screenshot from the
web portal, is displayed in Fig. 1. Alternatively, the user can use
the download data button to inspect on its own text editor how to
format thematrix. The current version of AMADAdoes not allow an
interactive selection of columns. Therefore, we show below how it
can be easily done in r command line using the c function:

1 data(iris)
2 colnames(iris)<-c("SL" ,"SW" ,"PL" ,"PW" ,"Species")
3 head(iris)
4 SL SW PL PW Species
5 5.1 3.5 1.4 0.2 setosa

1 www.rstudio.com.
2 shiny.rstudio.com.
6 4.9 3.0 1.4 0.2 setosa
7 iris2<-iris [ ,c("SL" ,"SW") ]
8 head(iris2)
9 SL SW

10 5.1 3.5
11 4.9 3.0

The original columnnames of the famous iris dataset (Fisher, 1936)
are shortened in the example (S = sepal, P= petal, L= length, W
=width) to save space.

In addition, some public catalogs are already made available on
the portal. In the followingwewill use two of them for explanatory
purposes. As an example of low-dimensional and relatively small
sample we use a catalog of galaxies experiencing supernova
(SN) explosions, while as an example of high-dimensional and
moderately large sample we use a mock galaxy catalog. More
specifically, we apply AMADA to investigate:

• Supernova host galaxy properties (Sako et al., 2014). In this
catalog the properties of Type Ia and II supernova host galaxies
are retrieved from the Sloan Digital Sky Survey multi-band
photometry. The available catalog represents a sub-sample of
the original one, after removal of non-supernova objects and
missing data. The final sample is composed of 443 (56) galaxies
hosting Type Ia (Type II) supernova, each of them described by
10 parameters, such as galaxy age, star formation rate, distance
from supernova to the host galaxy, and so forth.
• Galaxy properties (Guo et al., 2011). A mock galaxy catalog

built using semi-analytic galaxy formation models and the
N-body Millennium Simulations (Springel, 2005). The initial
dataset is composed of≈180,000 haloes at redshift 0. To avoid
numerical artifacts due to low resolution effects, we select only
those structures with at least 300 particles (e.g., Antonuccio-
Delogu et al., 2010). In addition, we consider only central
star forming galaxies (i.e., no satellite galaxies). The remaining
dataset is composed of 7079 haloes, and each halo is described
by approximately 30 parameters.

As here we adopt the original nomenclature for the various
quantities, we recommend the reader to refer to the original
articles or catalogs for a detailed description of each parameter.

2.2. Control options

Several control options are available on the portal to choose
among different methods of analysis and visualization. Once the
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desired combination is chosen, the user should click on the button
Make it so! to update the results. The following options are
available:

• Fraction of data to display: choose the percentage of data
displayed on the screen.
• Correlation method: choose among Pearson, Spearman or

Maximum Information Coefficient (MIC).
• Display numbers: choose if correlation coefficients should be

displayed in the heatmap.
• Dendrogram type: choose among phylogram, cladogram or fan

configurations.3
• Graph layout: choose between spring and circular configura-

tions.
• Chord diagram color: choose among different color schemes.
• Number of PCs: choose the number or Principal Components

(PCs) to display as Nightingale charts.
• PCA method: choose between standard or robust Principal

Components Analysis (PCA).

3. Methods

In this section we briefly discuss the different methods used by
AMADA to analyze the datasets.

3.1. Correlation methods

The correlation analysis quantifies the strength of the associa-
tion between a pair of variables, through a correlation coefficient.
Its absolute value varies between 0 (uncorrelated variables) and
1 (perfect association). Currently, AMADA offers three options of
correlationmeasurements: linear (Pearson; Pearson, 1895), mono-
tonic (Spearman; Spearman, 1904) and non-linear (MIC; Reshef
et al., 2011). We briefly present them in the following, and refer
the reader to the original papers for more details.

Pearson. This is widely employed in statistics to measure the
degree of the relationship between linearly related variables. The
following formula is used to estimate the Pearson coefficient, rp,
between two variables Xi and Yi:

rp =

n
i=1

(Xi − X)(Yi − Y )
n

i=1
(Xi − X

2
)


n

i=1
(Yi − Y )2

, (1)

where X and Y represent the sample mean, and n the total number
of objects in the dataset.

Spearman rank correlation. This is a non-parametric method
to measure the degree of monotonic association between two
variables, and does not rely on any distributional assumption. For a
dataset of size n, the variables Xi and Yi are converted to ranks,4 and
the following formula is used to calculate the Spearman coefficient,
ρ:

ρ = 1−
6

n
i=1

d2i

n(n2 − 1)
, (2)

where di = RXi − RYi is the difference between ranks.

3 Visualizations inspired by phylogenetic tools (e.g., Paradis et al., 2004).
4 In statistics, ranking refers to the data transformation in which numerical or

ordinal values are replaced by their rank when the data are sorted. For example,
if the numerical data 3.8, 5.4, 2.1, 10.3 are observed, the ranks of these data items
would be 2, 3, 1 and 4 respectively.
Maximal information coefficient. MIC (Reshef et al., 2011) is
founded under concepts of information theory (e.g., Li, 1990). In
this context, the Shannon entropy, H , can be understood as a
measure of uncertainty of a random variable. For a single discrete
distribution it can be written as

H(A) = −

a∈A

p(a) log p(a), (3)

while the joint entropy for a pair of discrete randomvariables (A, B)
with a joint distribution p(a, b) is defined as

H(A, B) = −

a∈A


b∈B

p(a, b) log p(a, b), (4)

where p(a) and p(b) are the marginal probability mass functions
(PMFs) of A and B, and p(a, b) is the joint PMF. Hence, the mutual
information (MI) measures the amount of information that one
random variable contains about another random variable,

MI(A, B) =

a∈A


b∈B

p(a, b) log


p(a, b)
p(a)p(b)


,

≡ H(A)−H(A, B). (5)

Consider D as a finite set of ordered pairs, {(ai, bi), i = 1,
. . . , n}, partitioned into a x-by-y grid of variable size, G, such that
there are x-bins spanning a and y-bins covering b, respectively. The
PMF of a particular grid cell is proportional to the number of data
points inside that cell. We can define a characteristic matrix M(D)
of a set D as

M(D)x,y =
max(MI)

logmin{x, y}
, (6)

representing the highest normalized MI of D. The MIC of a set D is
then defined as

MIC(D) = max
0<xy<B(n)


M(D)x,y


, (7)

representing the maximum value of M subject to 0 < xy <
B(n), where the function B(n) ≡ n0.6 was empirically determined
by Reshef et al. (2011).

3.2. Principal components analysis

The ultimate goal of PCA is to reduce the dimensionality of
a multivariate dataset, while explaining the data variance with
as few PCs as possible. Given its versatility, it has been applied
to a broad range of astronomical studies, such as stellar, galaxy
and quasar spectra (e.g., Chen et al., 2009; McGurk et al., 2010),
galaxy properties (Conselice, 2006; Scarlata et al., 2007), Hubble
parameter and cosmic star formation reconstruction (e.g., Ishida
et al., 2011; Ishida andde Souza, 2011), and supernova photometric
classification (Ishida and de Souza, 2013).

PCA belongs to a class of Projection-Pursuit (PP; e.g., Croux et al.,
2007) methods, whose aim is to detect structures in multidimen-
sional data by projecting them onto a lower dimensional subspace
(LDS). The LDS is selected by maximizing a projection index (PI),
where PI represents a given feature in the data (trends, clusters,
hyper-surfaces, anomalies, etc.). The particular case where vari-
ance (S2) is taken as a PI leads to the classical version of PCA.5 The

5 The PCs are computed by diagonalization of the data covariance matrix (Σ2),
with the resulting eigenvectors corresponding to PCs and the resulting eigenvalues
to the variance explained by the PCs. The eigenvector corresponding to the largest
eigenvalue gives the direction of greatest variance (PC1), the second largest
eigenvalue gives the direction of the next highest variance (PC2), and so on.
Since covariance matrices are symmetric positive semidefinite, the eigenbasis is
orthonormal (spectral theorem).



R.S. de Souza, B. Ciardi / Astronomy and Computing 12 (2015) 100–108 103
PCA scheme employed here falls into the category of filter meth-
ods of feature selection. Their aim is to determine how relevant is
a feature in representing a class in a high-dimensional space, but
there exist other approaches, i.e. the wrapper methods, that can
be tailored to determine how relevant a feature is against a given
classification task (see e.g., Donalek et al., 2013, for a discussion of
feature selection methods in astronomy).

Given n parameters x1, . . . , xn, all of them column vectors of
dimension Γ , the first PC is obtained by finding a unit vector a
which maximizes the variance of the data projected onto it:

a1 = arg max
∥a∥=1

S2(atx1, . . . , atxn), (8)

where t is the transpose operation and a1 is the direction of the
first PC.6 Once we have computed the (k − 1)th PC, the direction
of the kth component, for 1 < k 6 Γ , is given by

ak = arg max
∥a∥=1,a⊥a1,...,a⊥ak−1

S2(atx1, . . . , atxn), (9)

where the condition of each PC to be orthogonal to all previous
ones ensures a new uncorrelated basis. Despite of these attractive
properties, the classical version of PCAhas some critical drawbacks,
as the sensitivity to outliers (e.g., Hampel et al., 2005). In order to
overcome this limitation, several robust versions were created. For
instance, instead of taking the variance as a PI in Eq. (8), a robust
measure of variance (Hoaglin et al., 2000) is taken, i.e. the median
absolute deviation (MAD; e.g., Howell, 2005) of an ordered set κ is
given by

MAD(κ1, . . . , κn) = 1.48med
j
|(κj −med

i
(κi)|), (10)

wheremed represents themedian of the sample, and the square of
MAD gives the robust variance. The value of 1.48 represents Q−10.75,
where Q0.75 is the 0.75 quantile of a normal distribution. AMADA
allows the user to run a robust PCA based on the grid search based
algorithm from Croux et al. (2007).

3.3. Hierarchical clustering

A cluster analysis can be understood as a descriptive statistics
to determine if a given dataset should be divided into different
groups. The method aims to identify which groups of objects are
similar to each other but different (or distant) from objects in other
groups. There are several ways to define dissimilarity (or distance),
according to each particular goal. Sincewe are interested in finding
groups of variables highly correlated, it is natural to define the
dissimilarity, D , between properties as

D(Xi, Yi) = 1− |Corr(Xi, Yi)| , (11)

where Corr stands for correlation measurement. Thus, D(Xi, Yi) =
0 represents perfect correlation, while the value of D(Xi, Yi) = 1
indicates uncorrelated variables.

One of the main advantages of hierarchical clustering methods
is that a prior specification of the number of clusters to be searched
is not needed. Instead, the method requires a measurement of
dissimilarity between groups of variables, which is based on the
pairwise dissimilarities among the observations within each of
two groups. We employ an agglomerative approach, where each
variable is initially assigned to its own cluster, then the method
recursively merges a selected pair of clusters into a single one,
where each new pair is composed bymerging the two groups with
the smallest D in the immediately lower level of the hierarchy.

6 argmaxx f (x) is the set of values of x for which the function f (x) attains its
largest value.
The lowest level represents each single variable, while the highest
level is a single cluster containing all variables. The final outcome
is a hierarchical representations in which the clusters at each level
of the hierarchy are created by merging clusters at the next lower
level. To guide the user in the task of selecting a certain sub-group
of interest, we provide an optimal number of clusters estimated
via the Caliński and Harabasz index (Caliński and Harabasz, 1974).
The tree-like final structure can be graphically portrayed by
e.g., dendrograms, graphs and chord diagrams, as discussed in
Section 4.

4. Visualization tools

When dealing with a large amount of complex information, vi-
sualizing it in an intelligible way becomes a challenge. In this case,
the aim of a visualization method is to optimize the intuitive in-
sight of the data structure in order to exploit the perceptual capa-
bilities of the human eye.Whilst the role of visualization belongs to
the groundwork of astronomical analysis, new paradigms for mul-
tidimensional data visualization are not fully exploited,when com-
pared to other fields. Patterns, trends and correlations that might
go undetected in tabular-based data, can be revealed andmore eas-
ily communicated with interactive visualization tools. AMADA in-
corporates contemporary methods to visualize multidimensional
data properties and their intrinsic correlations. This is particularly
relevant if one aims to have a physical intuition of possible sub-
populations of highly correlated quantities, which are not nec-
essarily the dominant components of the whole sample. In the
following, we describe the main visual capabilities of the package
with a brief introduction of each methodology.

4.1. Heatmap

The cluster heatmap is a rectangular grid representation of a
matrix with cluster trees appended to its margins. Its aim is to
facilitate inspection of cluster structures in large matrices within
a compact displayed area. The method is broadly used in the
biological sciences (Wilkinson and Friendly, 2009), and it is worth
to cite its recent application to solar data mining (Fig. 10 of Schuh
et al., 2015).

In case of a correlation matrix, the color assigned to a point
in the heatmap grid indicates how much each pair of variables
correlates, as can be seen in the typical heatmap shown in Fig. 2. For
visualization purposes, the arrangement of the rows and columns
is made following a hierarchical clustering with a dendrogram
drawn at the edges of the matrix. The figure portrays the heatmap
of the mock galaxy catalog from Guo et al. (2011). Note the red
square in the bottom right corner of the panel, automatically
highlighting the trivial association between the magnitudes in the
u, g, r, i, and z bands. Less trivial associations can be identified
more easily using for instance a dendrogram visualization, as
discussed in the following section.

4.2. Dendrogram

A dendrogram provides a comprehensive description of the
hierarchical structures in a visual format. Among the applications
in astronomical research are the hierarchical structural analysis
of interstellar properties (Houlahan and Scalo, 1992), molecular
clouds (Rosolowsky et al., 2008), and explanatory classification of
galaxies (Fraix-Burnet et al., 2012). The individual variables are
arranged along the bottom of the dendrogram and referred to as
leaf nodes. Clusters are formed by joining individual variables or
existing clusters, with the joint point referred to as a node. At
each dendrogram node we have a right and left sub-branch of
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Fig. 2. Heatmap visualization of the correlationmatrix (using a Pearson correlationmeasure) of some galaxy properties from themock galaxy catalog byGuo et al. (2011). Red
indicates strong positive correlation and blue indicates strong negative correlation. Yellows are associated to correlations close to zero. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
clustered variables. The height of the node can be understood as
the dissimilarity D between the right and left sub-branch clusters.

Fig. 3 displays a dendrogram of the galaxy properties from
theGuo et al. (2011) catalog, divided in 10major clusters (indicated
by different colors) using the Caliński and Harabasz (1974) index.
Themethod automatically suggests interesting associations among
the galaxy properties, such as the u-band as an indicator of the star
formation rate (SFR; see e.g. Gilbank et al., 2010).

4.3. Graphs

Graphs are powerful tools to represent multivariate data and
their relationships. Examples of scientific applications are the
analysis of cellular networks (Aittokallio and Schwikowski, 2006),
protein interactions (e.g., Fig. 1 from Aragues et al., 2006), and
brain disorders (Fig.2 from Fornito et al., 2015). A graph is defined
by a set of vertices representing the objects of study, and a set
of edges representing the relationships between them. There are
many criteria for judging an optimally drawn graph such as:

• edge crossings should be minimized;
• the vertices should be evenly distributed in the plane;
• the graph should reflect intrinsic symmetries;
• the edges should not cross nodes.

Each item above can be understood as an optimization problem,
which is the subject of interest of a research field known as graph
drawing (e.g., Tamassia, 2007). There are severalmethods for graph
Fig. 3. Dendrogram of the galaxy properties from the Guo et al. (2011) catalog. The
different sub-groups of galaxy properties, assigned using the Caliński and Harabasz
(1974) index, are colored according to the cluster assignment. (For interpretation of
the references to color in this figure legend, the reader is referred to theweb version
of this article.)

representations. In this work we use the so-called spring-embedder
algorithm (Eades, 1984; Fruchterman and Reingold, 1991). The
underlying idea is to allow the vertices to behave like particles
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Fig. 4. Graph representation of the host galaxy properties from Sako et al. (2014). The thickness of the edges are weighted by the degree of correlation between each pair
of variables. The width and color correspond to the degree of association: the higher the correlation, the thicker and more color saturated the edge is. The left (right) side
represents the properties of Type Ia (Type II) supernova host galaxies. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
moving under the influence of repulsive and attractive forces until
the system reaches equilibrium. This graph-drawing algorithm is
particularly useful for graphs where the directions of the edges
are not important, which is the case of a correlation matrix
representation. Fig. 4 displays the correlations among properties
of galaxies hosting Type Ia (left) and Type II (right) supernova.
Each vertex represents a galaxy property, while the thickness of
the edges are weighted by the degree of correlation between each
pair of variables (Epskamp et al., 2012). More specifically, the
width and color of the edges correspond to the absolute value of
the correlations: the higher the correlation, the thicker and more
saturated the edge is. Highly correlated parameters appear closer
in the graph.

4.4. Chord diagram

Chord diagram is a flexible and popular tool that has been
used in many different applications, such as identification of
relevant signatures in cancer genome (Fig. 1 from Bunting and
Nussenzweig, 2013), or study of the relation between foragers
and farmers in Central Europe during the Stone Age (Fig. S5
from Bollongino et al., 2013).

In the case studied here, the chord diagram represents another
visualization of the correlationmatrix, likewise the graph, heatmap
and dendrogram. This tool illustrates relationships between
distinct parameters. The columns and rows are represented by
segments around the circle. Individual cells are shown as ribbons,
which connect the corresponding row and column segments (Gu
et al., 2014). The thickness of the ribbons is weighted by the degree
of correlation between each pair of variables. Fig. 5 portrays the
correlations among supernova Type Ia/II host galaxyproperties. For
a given choice of color palette, the color intensity ranges from fully
anti-correlated to correlated values.

4.5. Nightingale chart

The last plot is inspiredby the originalNightingale chart (e.g., Co-
hen, 1984;McDonald, 2001). This is one of themost influential sta-
tistical visualizations of all time, used by Florence Nightingale to
convince Queen Victoria about improving hygiene in military hos-
pitals (see also Draper et al., 2009, for a review of radial methods
in information visualization).
We show it as a polar bar plot, where the length of each
slice represents the relative contribution of each variable to the
ith Principal Component. Fig. 6 displays the contributions of the
supernova Type Ia/II host galaxy properties for the first and second
principal components.7

5. Summary

We have presented the AMADA package, a web application
for interactive exploration and information retrieval of high-
dimensional datasets. This is designed for high-dimensional
catalogs,with awide range of applications. There are, though, some
limitations in terms of data-size and performance. In particular,
shiny allows to upload in the application only up to 1 GB of
data. Thus, the shiny server should be mostly used for a quick
exploration of the package features, so that the user can skip the
installation step to familiarizewith the code,whilewe recommend
to run AMADA locally (as explained in Appendix) when applied
to a real scientific problem. In addition, the speed performance of
some methods, such as the hierarchical clustering, may not scale
well with very large datasets. As a reference, the processing time
to produce a dendrogram from a matrix with 100,000 objects and
100 columns was∼1.5 s on an iMac featuring a 3.5 GHz Intel Core
i7 and 32GB of rammemory. An example of the script to reproduce
this test is given below,

1 require(AMADA)
2 N = 100000#Number of rows
3 M= 100# Number of columns
4 M1<-matrix(rnorm(N*M ,mean=0 ,sd=1) , N , M)
5 ptm <- proc .time ( )
6 corr<-Corr_MIC(M1 ,"pearson")
7 Fig1<-plotdendrogram(corr ,"fan")
8 proc .time ( ) − ptm

Therefore, despite some limitations, we expect the current version
of the package to be suitable for a wide variety of astronomical
catalogs.

7 We should warn the reader that currently the shiny interface does not work
well with more than 4 PCs simultaneously displayed on the screen. This limitation
can be potentially fixed by tweaking the figure dimensions, if e.g. a pdf file is
produced using the r command line (see Appendix).



106 R.S. de Souza, B. Ciardi / Astronomy and Computing 12 (2015) 100–108
Fig. 5. A chord diagram representing the Pearson correlations among the galaxy properties hosting Type Ia (left panel), and Type II supernovae (right panel).
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Fig. 6. A Nightingale diagram representing the contributions of the galaxy properties hosting Type Ia (left panel) and Type II (right panel) supernovae.
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Since this is a software release paper, we avoided a detailed
scientific discussion on the available datasets, which here have
been used merely as a proof of concept. However, it is worth
mentioning that AMADA automatically recovers and displays
trivial and non-trivial correlations. An example of the former is the
correlation between the u, g, r, z and i magnitudes of supernova
host galaxies as seen in Fig. 4, while an example of the latter
is the association between the star formation rate and u-band
magnitude in the galaxy mock catalog as shown in Fig. 3. It is
important to mention that few methods herein implemented are
a later development of a previous work from the authors making
use of MIC statistics and robust PCA to understand the redshift
dependence of halo baryonic properties in the early Universe (de
Souza et al., 2014a). We therefore refer the reader to this work as
an example of application in a cosmological context of themethods
discussed here.

The code is freely available on github and can be run both
online and locally. This work is part of a larger enterprise
known as Cosmostatistics Initiative (COIN),8 whose philosophy is
to enable astronomers to easily introduce novel techniques into
their daily research. This is an open-source project, and we expect
to continuously add extra features. Therefore, we encourage the
users to contact the authors with suggestions, while potential
contributors and developers can fork the AMADA repository on
github.9
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Appendix. Running AMADA locally

A.1. From shiny

To install and run the interface, the first step is to have r in
your computer.11 Thereafter, you have to install the following r
packages:

1 install .packages(c("ape" ,"circlize" ,"corrplot" ,"←↪

devtools" ,"fpc" ,"ggplot2" ,"ggthemes" ,"MASS" ,"←↪

markdown" ,"mclust" ,"minerva" ,"mvtnorm" ,"pcaPP" ,"←↪

pheatmap" ,"phytools" ,"qgraph" ,"RColorBrewer" ,"←↪

RCurl" ,"squash" ,"stats" ,"shiny") ,dependencies=←↪

TRUE)

We are now ready to install AMADA from GitHub repository:

1 require(devtools)
2 install_github("RafaelSdeSouza/AMADA")

An alternative simpler option is to type the following command

1 require(devtools)
2 install_github("COINtoolbox/AMADA" ,dependencies=TRUE)

8 http://goo.gl/rQZSAB.
9 https://github.com/COINtoolbox/AMADA.

10 https://asaip.psu.edu/organizations/iaa/iaa-working-group-of-cosmostatistics.
11 http://www.r-project.org.
and rwill automatically install the necessary dependencies to run
AMADA. After installing the AMADA package, the user can run the
visual interface with the following command:

1 require(shiny)
2 runUrl("https://github.com/COINtoolbox/AMADA_shiny/←↪

archive/master.zip")

AMADA can also be used directly via the web. This option
requires no local installation, but the actual processing may be
slower. Thisweb interface is hosted by the shinyapps.io platform,12
and can be accessed directly at http://goo.gl/UTnU7I.

A.2. From R command line

If the user prefer to run AMADA on its own data without relying
on the shiny interface, it can be done directly from r command
line. An example of how to produce a dendrogram of the Type Ia
supernova dataset and saving it as a pdf file is presented below:

1 require(AMADA) #Load the package
2 data("SNIa") #Load the SNIa data
3 corr<-Corr_MIC(SNIa ,"pearson")
4 Fig1<-plotdendrogram(corr ,"phylogram")

To save the figure as pdf file, with a customized height and width,
just type the following:

1 pdf("phylogram.pdf" ,height = 8 ,width=8)
2 Fig1
3 dev .off ( )

Examples of how the use the other functions inside r can be found
in the description file, which can be accessed via the command13

1 help(package="AMADA")

In the current package version, the layout of the figures is mostly
hardcoded, but it can be easily changed inside the source code. We
expect to add more flexibility in future versions.
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