
Astronomy and Computing 13 (2015) 50–57
Contents lists available at ScienceDirect

Astronomy and Computing

journal homepage: www.elsevier.com/locate/ascom

Full length article

Toyz: A framework for scientific analysis of large datasets and
astronomical images✩

F. Moolekamp ∗, E. Mamajek
Department of Physics & Astronomy, University of Rochester, Rochester, NY, 14627-0171, USA

a r t i c l e i n f o

Article history:
Received 30 June 2015
Accepted 1 October 2015

Keywords:
Big data
Visualization
Python
HTML5
Web application

a b s t r a c t

As the size of images and data products derived from astronomical data continues to increase, new
tools are needed to visualize and interact with that data in a meaningful way. Motivated by our own
astronomical images takenwith theDark Energy Camera (DECam)wepresent Toyz, an open source Python
package for viewing and analyzing images and data stored on a remote server or cluster. Users connect
to the Toyz web application via a web browser, making it a convenient tool for students to visualize
and interact with astronomical data without having to install any software on their local machines. In
addition it provides researchers with an easy-to-use tool that allows them to browse the files on a server
and quickly view very large images (>2 Gb) taken with DECam and other cameras with a large FOV and
create their own visualization tools that can be added on as extensions to the default Toyz framework.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

In the past, large scientific datasets were used mainly by large
collaborations while independent researchers worked with much
moremanageable volumes of data. Over the past fewyearswehave
been entering a new paradigm where very large sets of data are
available to (and at times even generated by)much smaller groups.
This abundance of data has highlighted a shortage of scientific tools
to store, organize, analyze, and visualize that data. Fortunately
this problem overlaps with the needs of the industrial community
at large and in the past decade there has been a lot of work by
traditional scientists, data scientists, and software engineers to
develop software to aid researchers in dealing with this new (and
rewarding) problem.

Unfortunately much of the current work in astronomy is often
on the fringe ofwhat is possible andhas been done before,meaning
the types of dataweworkwith poses newchallenges,which in turn
create a need for new tools (Merenyi, 2014; Gopu et al., 2014; Lins
et al., 2013; Loebman et al., 2014; Federl et al., 2012, 2011). Ideally
these new tools should be built on existing frameworks that are
under active development by software engineers to minimize the
effort from research scientists while taking advantage of the latest
technologies and updates to existing codes. The Python language

✩ This code is registered at the ASCL with the code entry ascl:1507.006.
∗ Corresponding author.

E-mail address: fmooleka@pas.rochester.edu (F. Moolekamp).

http://dx.doi.org/10.1016/j.ascom.2015.10.001
2213-1337/© 2015 Elsevier B.V. All rights reserved.
has become a fertile ground for rapid software development and
with the creation of a vast array of modules for scientific image
and data processing like numpy (van der Walt et al., 2011), scipy
(Jones et al., 2001), pandas (McKinney, 2010) and scikit-image
(van der Walt et al., 2014); machine learning modules like scikit-
learn (Pedregosa et al., 2011); statistics and modeling packages
like scikits-statsmodels, pymc and emcee (Foreman-Mackey et al.,
2013), and what has become the de facto astronomy python
project astropy (Astropy Collaboration et al., 2013) and its affiliated
packages.

Whilemany of the tools listed above are useful for astronomers,
data scientists, and software engineers; there is a great divergence
when it comes to tools for visualization. Much of the interactivity
and visualization work done in the realm of data science and
software development tends to be focused on web frameworks
like jQuery Ui, Highcharts, D3.js and even more advanced libraries
using webGL like PhiloGL, pathGL and many others; or R libraries
like ggplot2 (Wickham, 2009). Contrast this with astronomywhere
programs like ds9 (Joye and Mandel, 2003) that are used primarily
by astronomers with few updates and changes over the past
decade. Several recent python packages have been created to help
bridge the gap between professional visualization tools and those
available in astronomy: GLUE (Beaumont et al., 2014) provides a
rich GUI for interacting with datasets and images and Ginga is one
of themost advanced frameworks for viewing and interactingwith
FITS images.

The disadvantage of using any of the visualization tools in
astronomy mentioned above is that to run efficiently all of them

http://dx.doi.org/10.1016/j.ascom.2015.10.001
http://www.elsevier.com/locate/ascom
http://www.elsevier.com/locate/ascom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ascom.2015.10.001&domain=pdf
http://www.ascl.net/1507.006
mailto:fmooleka@pas.rochester.edu
http://dx.doi.org/10.1016/j.ascom.2015.10.001


F. Moolekamp, E. Mamajek / Astronomy and Computing 13 (2015) 50–57 51
(a) Server architecture. (b) Client architecture.

Fig. 1. Basic architecture of the python web application (server) and HTML5 client. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
must be run on a local machine with data stored locally. With
new instruments like the Dark Energy Camera (DECam) that create
2 Gb images (0.5 Gb compressed) and over 1Tb of data products
per night (Valdes and Gruendl, 2014; Flaugher et al., 2012), it
is no longer feasible to store an entire observing run (or even
a single night) on a laptop or PC. Recognizing the need for a
server side image viewer several groups have been independently
developing web applications to serve images from a remote server
to a client with only a web browser installed including VisiOmatic
(Bertin et al., 2015), Data Labs (Fitzpatrick et al., 2014), and now
Toyz. VisiOmatic is an open source web application running on
an Apache web server with an IIPImage (Pillay, 2014) server to
display large images in a browser using a so called ‘‘slippy map’’
implementation (similar to Google maps). In addition to viewing
images, the VisiOmatic client also enables users to interact with the
image including marking point sources and plotting slices of the
data. One of the few drawbacks to VisiOmatic is its dependency on
libraries and applications not usually run by astronomers including
a web server (that must be configured). It also provides no native
support for a file dialog (as web browsers do not include a tool
to browse a remote file directory), causing users to write one
themselves or create a webpage on the server for each image they
want to view.

When we first began to analyze our own DECam images, which
took up over 1 Tb of disk space on our server, we realized that in
order to view the images and analyze the catalogs we created with
them that wewould need a new tool, preferably one that could run
on the server storing the data and allow a platform independent
way for users to connect to the data and interact with it. This
was our initial motivation for creating a new python package
called Toyz, which seeks to combine the best of all of the software
discussed so far: the remote image viewing of VisiOmatic, the
interactivity of GLUE and Ginga, the astronomical tools of astropy,
and the convenience of doing it all in a single framework built
on existing Python and HTML5 software maintained by computer
scientists. Because Toyz is a framework, not an application, it
is designed to be easily customized by end users for their
specific scientific needs but easy enough to use that a class of
undergraduates could use it for analyzing their data without
having to install any software on their home computers. One of the
guiding principles of Toyz is that an undergraduate student should
be able to install Toyz and begin analyzing data on his/her first day!

In this paper we highlight the various functions of Toyz.
Section 2 describes the core Toyz package that allows users to view
images and interactive plots in their browsers, Section 3 describes
the affiliated package Astro-Toyz that incorporates astronomy
specific tools including WCS and interactive tools for the image
viewer, and Section 4 describes future plans for integrating Toyz
with other software packages.

2. Toyz

Toyz can be thought of as a platform-independent tool for
visualizing and interacting with large images or catalogs of data.
Instead of trying to create a one-size-fits-all application, Toyz is
designed to be an open source framework that scientists can
customize to fit their own research needs.

A graphical representation of the server is shown in Fig. 1(a).
The web application at the heart of Toyz is built on the Tornado
web framework (Darnell, 2015), a python library originally written
by FriendFeed as the backend for their social media website. User
authentication is done via HTML handlers built into Tornado while
most other communications between the server and client are
done via WebSockets (Hickson, 2011): a bi-directional protocol
that uses an HTML handshake to setup an open communication
between the server and the client without the need for constant
polling by the client to get the status of a job. Similar technology
is used for a variety of websites and web applications including
Jupyter (formerly iPython) notebooks (Ragan-Kelley et al., 2014). A
separatemodule handling file I/O provides an API to load data from
a variety of formats (see Section 2.2). The file I/Omodule is written
to allow users to create affiliated packages or extensions that allow
users to create custom classes for loading additional data types not
currently supported by Toyz with minimal coding.

Each time a new connection ismade to the server a newprocess
called a session is spawnedusing python’smultiprocessingmodule.
All of the variables and methods defined in a session will be stored
until the user closes the browser and disconnects from the server.
This environment is completely separate from the web applica-
tion (which handles connections to and from the server) where the
state of a user’s variables are stored for the duration of the connec-
tion. Because each session is a separate process, Toyz is able to take
advantage of all of the processing cores on a server, meaning that if
the number of processors scales with the number of simultaneous
users, large classes and groups should be able to access the same
Toyz server with little reduction in performance. To communicate
with an associated client each session has a single websocket that
connects to a single browser window on remote client, which can
send jobs to be run on the server in the form of a JSON object spec-
ifying the pythonmodule, function and function parameters. All of
the jobs sent from a client to the server are verified for authen-
ticity and put in a queue to be run for the correct session. Once a
job is completed, a response in the form of a JSON object is sent to
the browser that at a minimum contains a status key (indicating
whether or not the job completed successfully or encountered an
error) and often additional keyword arguments generated by the
function.

On the client side all communications are pushed through a
single function that maintains information about the current ses-
sion (a graphical representation of the client is shown in Fig. 1(b)).
When initialized the user can choose how errors andwarnings that
might occurwhile running a job are handled aswell aswhat actions
to take when various types of responses are returned. A file dialog
is also initialized that allows users to browse the directory tree on
the server, functionality that is not incorporated intoweb browsers
for obvious security reasons. The default homepage when a user
logs onto the server is a management console that allows one to



52 F. Moolekamp, E. Mamajek / Astronomy and Computing 13 (2015) 50–57
Fig. 2. Workspace with two different color–magnitude plots loaded from the same data source. When points are selected in one of the plots Toyz will automatically select
the same points in every additional plot generated from the same data source on the server. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
set shortcut paths and allows administrators to set user and group
permissions (see Section 2.4).

To assist users in developing their own custom tools a GUImod-
ule parses JSON objects (or python dictionaries) to build interac-
tive tools like drop boxes, sliders, and buttons without the need
for javascript or css code. All of the menus and controls in Toyz
have been generated using the sameGUI framework,which is thor-
oughly documented on thewebsite at http://fred3m.github.io/toyz
along with several examples.

The remainder of this section discusses additional built-in
features of Toyz.

2.1. Workspace environment

The main working environment in Toyz is referred to as a
workspace. Graphically a workspace is a blank webpage that
allows users to add a collection of customizable tiles. Each tile is
associated with some functionality, such as displaying an image or
plot, and can be moved and resized in the browser window. The
workplace itself is just a JSON object that stores the state of the
current users session including the size and location of each tile,
links to data sources that the server session and client tiles are
connected to, and any other metadata specified by the creator of
the tile.

While Toyz comes with two default tile types: Highcharts plots
(see Section 2.2) and image viewers (see Section 2.3), a template is
included with the source code to allow users to create their own
custom tiles with access to all of the variables of the workspace
on the server and the client. In addition, users are able to save the
workspace by generating a url that will load a saved workspace for
the user and any collaborators with whom the url and permissions
are shared. Multiple users can load the same workspace at the
same time however they currently cannot share the same session,
meaning that if one of themmodifies theworkspace and saves their
changes to the server, all of the other users would have to refresh
the page in their browsers to see the changes. See Section 4 for
planned upgrades for workspace sharing.

2.2. Data connectivity and interactive plots

The gold standard open source package for data visualization
in python is GLUE, a python package which allows users to load
a series of datasets into memory and provides a GUI for plotting
connected datasets and images in tiles on the viewing window.
The only current drawback to GLUE is that the data sources must
be stored locally, which is not always practical for the reasons
mentioned earlier.While a future version of Toyz seeks to integrate
with GLUE and extend all of its functionality to the browser, the
current incarnation ports some of the most important features,
including the ability to create linked plots.
Users are provided an interface to load a variety of data sources
onto the server. By default Toyz will load any format that is
integrated with pandas including SQL databases, HDF5, and text
files as well as numpy binary files and text files that can be opened
using standard python I/O functions. Until the user tries to do
something with the data (like plot it in the browser) it remains
solely on the server, saving time and bandwidth. It is also possible
to extend the available file types by adding a custom module, for
example the Astro-Toyz package extends the available file types to
FITS tables, VOTables, and all of the other file formats that can be
read from astropy Tables.

To interact with the data Toyz provides a GUI to Highcharts,
an open source javascript library that allows users to display
interactive plots in a web browser and is free for academic
and personal use (and reasonably priced for commercial use).
Highcharts includes functionality to select data points as well as
drill down, zoom into subsets of a plot, and display information
about a highlighted point.

Toyz includes an interface to choose columns from a data source
loaded on the server and create a plot using a subset of the
HighchartsAPI. The user can choose the title, axis labels, tickmarks,
grids, line styles, marker colors and shapes, and various other
features to make plots easier to view without any programming
necessary. Each plot is created in a new tile in theworkspace and all
of the plots connected to the same data source are linked together
so that selecting a point (or collection of points) in one of the
plots will select the same point(s) in all of the other plots, making
it easier to view high dimensional or ‘‘wide’’ data (see Fig. 2).
Consistent with the Highcharts API, multiple datasets can also be
plotted on the same chart. While Toyz lacks some of the more
advanced features of GLUE at the moment, like merging data sets
and linking table columns to image axes, it provides a previously
unavailable method to quickly explore data stored remotely.

The data source API is modular so that while Highcharts
is currently the only supported plotting library it would be
straightforward to add an interface for other packages like D3.js or
webGL support. Any changes made to the data by the Highcharts
API or a custom API can be saved to the server using the data
source GUI. This tool allows users to save the data as any file type
supported by pandas or any affiliated packages (for example FITS
binary tables with astro-toyz and astropy).

The processes of loading a single dataset froma server to a client
can be divided into three steps:

1. Loading a dataset from a supported file type into memory.
2. Transmitting the data from the server to the client.
3. Plotting the data in the browser using Highcharts.

Of course these steps depend on the speed of the server, the
network connection, and the clients processor speed respectively.
We performed a set of benchmarks using a server with 8×3.0 GHz
Intel Xeon processors running Ubuntu 14.04 and a 1.8 GHz Intel

http://fred3m.github.io/toyz


F. Moolekamp, E. Mamajek / Astronomy and Computing 13 (2015) 50–57 53
Fig. 3. Toyz Image Viewer. For FITS files the full catalog of matplotlib colormaps is available as well as linear and log scaling and inverse color maps. To save upload time
only a small tile in the center of the image is used to modify a colormap before it is applied to an entire image. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
Core i7 client running OS X to approximate the time needed to
load datasets of varying sizes from 102 to 106 records (see Fig. 4(a)
and (b)). Python was able to quickly load a dataset with 107 points
but transmitting the data to the client caused all 4 browsers we
tested to crash (see Section 4 for future upgrades that shouldmake
it possible to load over a million points in a browser). While the
time to load the data into memory is very small (<1 s), the time
to transmit the information over the network and process it in the
browser represents the bulk of the timedelay. In the case of a 1Gb/s
ethernet connection to a local network (Fig. 4(a)) the majority
of the load time is spent plotting the data in the browser while
using amuch slower 10Mb/s connection (Fig. 4(b)) causes the total
load time to be dominated by data transfer over the network. We
also tested themajor browsers supported by Toyz: Opera, Chrome,
Firefox and Safari (Fig. 4(c)), finding that for small datasets (105

points or less) all of the browsers performed about the same while
for larger datasets the users browser choice affected the results by
a factor of 2.

2.3. Image viewer

The image viewer was initially developed to view collections of
large astronomical images that were too large to fit on a local hard
drive. Until recently the domain of viewing astronomical images
rested on software that had to be installed on a users machine
and could only efficiently view images stored locally. Even larger
detectors such as MOSAIC (Pogge et al., 1998) at 8K × 8K px and
the One Degree Imager (ODI) (Jacoby et al., 2002) at 12K × 12K px
produce images small enough that a single nights observations
can easily be stored on a notebook or PC and viewed on one of
the existing viewers. Newer cameras like the Dark Energy Camera
(DECam) (DePoy et al., 2008) with a 30K×30K FOV enable a single
observer (or team of scientists) to generate over 1Tb of processed
data in a single night, making all existing open source tools (other
than VisiOmatic) inconvenient and inefficient.

To prevent users from loading an entire 2Gb image at once, Toyz
divides the image into a set of 400 × 200 px tiles and only loads
the tiles into memory (and the browser) when they are visible in
the viewing window. As the user scrolls horizontally and vertically
more tiles are loaded on demand so that with a fast ethernet
connection the user experiences almost no delay in loading images
>2 Gb.

But in order to allow users to quickly load images of any size
we sacrifice the quality of a subscaled image for faster processing.
Whilewe saw in Section 2.2 that python can load data intomemory
very quickly, it turns out that mapping an array of float values into
RGB color tuples is very time intensive and mapping fewer points
to our final tiles greatly improves performance. This means that
instead of ‘‘properly’’ rescaling images using an interpolation or
resampling function, we slice the data by taking every nth point,
giving the tiles a slightly pixelated look. By using this method
the images are loaded and displayed almost instantly on a local
machine or when connected to a server with a very fast network
connection. Most tiles range in size from 5–100 kB in size so for a
standard 1366 × 768 px browser window with 16 tiles filling the
viewer, the browser will need to load at most 1.6 MB, which takes
just over a second with a 10 Mb/s connection.

Of course large FITS images are not the only types of images
worth viewing in a browser. One of the byproducts of data analysis
is often a large collection of plots that are generated wherever the
data is stored and processed (in this case on a server). Depending
on the software used, the filetype of these plots can vary and it is
also useful to have the ability to view these plots without copying
them from the server to the local machine. Toyz uses Pillow, a fork
of the Python Imaging Library, which allows users to view a wide
array of image formats including bmp, eps, jpeg, png, and tiff files,
as well as astropy to load FITS images. Users are given the option
as to whether an image is loaded as a mosaic of tiles or as a single
image (whichmight bemore useful in the case of small images like
plots).

The image viewer consists of standard tools such as scaling,
panning and centering, as well as a few additional handy features.
Since many modern astronomical and scientific images contain
multiple frames, a set of controls allows users to easily browse



54 F. Moolekamp, E. Mamajek / Astronomy and Computing 13 (2015) 50–57
Fig. 4. Estimates of the time to load a datasets (based on the number of rows in
the source) on a Macbook air connected to server running a Toyz instance with (a)
a 1 Gb/s local network connection, (b) a 10 Mb/s internet connection. Using the
same data sources, (c) compares the performance of the most popular browsers.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

through the different frames of a single FITS image (see Fig. 3). It
is also possible to have multiple viewer frames loaded at the same
time, making it easy to switch or ‘‘blink’’ between different images
(see Section 3.1 for more on blinking and other tools specifically
related to astronomical FITS images).

The viewer is also designed to be customizable in that end users
can add their own controls to the toolbar and even create their
own custom image loaders. Since the viewer is also just a tile in
a workspace, it is possible to have multiple viewers loaded at the
same time and in the future it should even be possible to link the
images to catalogs similar to GLUE.

2.4. Security

The typical Toyz install does not require much in the way of
security. The recommended install of Toyz for research purposes
is to install the application on a server, log on to the server using
a secure shell and forward the port Toyz is running on from the
server to the local machine. As long as the server is located behind
a firewall the need for security is limited, especially if there is no
reason for the users in the group to keep their analyses or data
private from one another. In this simplest use case each user can
be added to an admin group, allowing them access to all of the files
on the server (that the account running the instance of Toyz has
permission to access) and run any python module that conforms
to the Toyz standard (see Fig. 6).

In other scenarios, for instance groups working with confiden-
tial data or classrooms where students should not have access to
each others data or analyses, it is necessary for each user to have
his/her ownaccount. Toyz provides an admin consolewebpage that
allows administrators to create new users and groups as well as
change their permissions for a wide variety of features. By default,
each user outside the admin group does not have permission to
view any directories outside of the default directory created for
him/her when his/her account is created and only administrators
can change those permissions. This allows some directories to be
shared by specified users or groups while remaining private from
others.

More importantly, because Toyz acts as a GUI to the entire
python library, without specific precautions taken a user would
be able to run any python module, giving them the ability to run
arbitrary code on the server. To combat this Toyz users and groups
outside the admin group can only run python modules they are
specifically given permission to run and no user is allowed to run
a python module or function that does not conform to a specific
standard given in the Toyz documentation.

3. Affiliated packages and extensions

A template is included with the Toyz source code that allows
users to create their own custom Toyz. This allows them to create
custom web pages, new workspace tile types, as well as python
data types, classes, and functions for any purpose that their group
sees fit, as long as they conform to the standards specified in the
template. Many of the built-in Toyz functions can also be wrapped,
as in the example of the Astro-Viewer (see Section 3.1), where even
the control panel of the viewer has been created in such a way
as to allow users to add their own buttons and controls. The Toyz
website has a section for affiliated Toyz called the Toy Box which
will host links to packages created by other users or groups built
on the Toyz framework.

3.1. Astro-Toyz

To demonstrate the flexibility of Toyz as well as support our
own research we developed an affiliated package called Astro-
Toyz. While Toyz was designed for general data visualization
and analysis, Astro-Toyz is designed specifically for the analysis
of astronomical data. It contains add-ons to the image viewer
that displays world coordinates, plot histograms or surface plots
(similar to imexam in IRAF Tody, 1986), and align images in
separate viewer frames to the same coordinates and scaling so that
images can be blinked (see Fig. 5).

In the long run the goal is for Astro-Toyz to be a front end for
astropy, providing a GUI for users to make use of astropy tools
and affiliated packages such as convertingWCS coordinates, object
detection, matching to source catalogs from online sources like
Vizier (Ochsenbein et al., 2000) by using astroquery, performing
precision astrometry and photometry, and various other tasks
supported in the astropy universe. We hope to entice the large
community of developers who maintain other astropy packages
to add their own interfaces onto Astro-Toyz to broaden its scope.
At that time Astro-Toyz will be capable of being implemented in



F. Moolekamp, E. Mamajek / Astronomy and Computing 13 (2015) 50–57 55
Fig. 5. Image displayed using the Astro-Toyz image viewer. DECam image in the vicinity of the spiral galaxy ESO 18–13. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
Fig. 6. Management console. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

undergraduate astronomy classes, allowing users to perform all
of their analysis from their own computers without installing any
software.

Currently Astro-Toyz is not quite ready for that level of
interaction but does provide additional tools to the Toyz image
viewer that give users access to a number of advanced features
including displaying WCS and header info, access to the full
matplotlib (Hunter, 2007) catalog of color maps, WCS alignment
between images and blinking betweenmultiple aligned images for
moving object detection.

3.2. Extensions

At times it may also be useful to write a short module to
extend the functionality of Toyz (or a Toyz affiliated package) for
a specialized task. Fig. 7 shows an example of a custom workspace
tile that loaded images and source information for point sources
selected in one of the high charts files, used to track down saturated
stars and other artifacts passing as point sources in our catalog.
This tile was very specific to our observations and analysis and
is not useful enough to make its own affiliated package, but it
demonstrates the power Toyz gives its users to generate custom
interactive content.

4. Future work

Toyz is still in its infancy and a number of exciting improve-
ments are planned for the future. The biggest upgrade will be in-
tegration with Jupyter. Both iPython and Jupyter have similar APIs
that allow users to run python code from a web browser but cur-
rently the interface to Jupyter is the traditional notebook format.
We are in the process of designing a notebook extension that will
implement the Toyz workspace interface in iPython, which will be
useful for a wider community of users outside astronomy as well
as making it easier for end-users to develop their own custom tiles
and tools without extensive knowledge of javascript.

To improve collaboration an upgrade to workspaces is planned
to allowmultiple sessions to share the same set of session variables
and client interfaces. This will make it possible for a user to open
multiple tabs in a client browser that all connect to the same
instance of a data source, saving memory and allowing changes to
the data to propagate to all of the clients. Another advantage of this
upgrade is that multiple users will be able to connect to the same
workspace and get live updates as theworkspace tiles aremodified
by their collaborators.

On the data visualization front there are plans to fully integrate
Toyz with GLUE to give users access to the entire GLUE API in a
web browser, allowing them to connect to both local and remote
data. We have also been in contact with the Ginga collaboration to
discuss integrating the current Toyz ‘‘slippy map’’ viewer with the
extensive toolset developed by Ginga to create a more complete
image viewing platform.

Due to limitations in browser memory Highcharts is limited
in the number of data points that can be displayed at once in



56 F. Moolekamp, E. Mamajek / Astronomy and Computing 13 (2015) 50–57
Fig. 7. Custom webpage to interact with a point source catalog. On the left are interactive Highcharts plots. On the right is a custom tile created to display an image and
surface plot from images taken of the same field with three different filters. Each set of images on the right corresponds to a different source selected in the Highcharts plots
and can be removed if the detection is an artifact. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
an efficient manner. More advanced technologies like WebGL are
better suited for the task of displaying large datasets as they work
off of browser plugins and expand the memory and functional
capacities of web browsers.

As for Astro-Toyz, the biggest upgrade will be implementing
a set of catalog tools, allowing users to create and plot a source
catalog over a FITS image and add or remove sources. Much of this
functionality has already been created but several recent upgrades
to the way Toyz handles data sources have made it necessary
to re-write much of the Astro-Toyz catalog backend. Once this is
completed catalogs will be loaded as a data source in the same
manner as datasets. In addition, wewill continually be adding new
features to incorporate more astropy functionality so that it can
become a fully operational front-end to the most useful astropy
functions, allowing undergraduates to process data in classes with
little to no programming background.

The source code and documentation for Toyz is located at
https://github.com/fred3m/toyz while Astro-Toyz can be down-
loaded from https://github.com/fred3m/astro-toyz where bug
fixes or and new pull requests are always welcome.

Acknowledgments

We would like to thank the astropy community for leading
the way in development of open source astronomical packages,
NSF grant AST-1313029 for supporting our research, and Cameron
Bell for proofreading and providing helpful comments in the
preparation of this paper. We would also like to thank Klaus Lang
for his assistance in making the Toyz and Astro-Toyz installation
process much simpler, and to the RocPy meetup for many helpful
suggestions and feedback, especially Rich Sarkis,whowas essential
in the early design phase of Toyz by providing insight into the best
libraries, modules, and technologies to use.

References

Astropy Collaboration, Robitaille, T.P., Tollerud, E.J., Greenfield, P., Droettboom, M.,
Bray, E., Aldcroft, T., Davis, M., Ginsburg, A., Price-Whelan, A.M., Kerzendorf,
W.E., Conley, A., Crighton, N., Barbary, K., Muna, D., Ferguson, H., Grollier, F.,
Parikh, M.M., Nair, P.H., Unther, H.M., Deil, C., Woillez, J., Conseil, S., Kramer,
R., Turner, J.E.H., Singer, L., Fox, R., Weaver, B.A., Zabalza, V., Edwards, Z.I.,
Azalee Bostroem, K., Burke, D.J., Casey, A.R., Crawford, S.M., Dencheva, N., Ely,
J., Jenness, T., Labrie, K., Lim, P.L., Pierfederici, F., Pontzen, A., Ptak, A., Refsdal,
B., Servillat, M., Streicher, O., 2013. Astropy: A community Python package for
astronomy. Astron. Astrophys. 558, A33. arXiv:1307.6212. doi:10.1051/0004-
6361/201322068.

Beaumont, C., Robitaille, T., Borkin,M., 2014. Glue: Linked data visualizations across
multiple files. Astrophys. Source Code Libr.

Bertin, E., Pillay, R., Marmo, C., 2015. Web-based visualization of very large
scientific astronomy imagery. Astron. Comput. 10 (0), 43–53. URL:
http://www.sciencedirect.com/science/article/pii/S2213133714000730.
arXiv:1403.6025. doi:10.1016/j.ascom.2014.12.006.

Darnell, B., 2015. Tornado Developers, Tornado web server.
https://github.com/tornadoweb/tornado.

DePoy, D.L., Abbott, T., Annis, J., Antonik, M., Barceló, M., Bernstein, R., Bigelow, B.,
Brooks, D., Buckley-Geer, E., Campa, J., Cardiel, L., Castander, F., Castilla, J., Cease,
H., Chappa, S., Dede, E., Derylo, G., Diehl, H.T., Doel, P., DeVicente, J., Estrada,
J., Finley, D., Flaugher, B., Gaztanaga, E., Gerdes, D., Gladders, M., Guarino, V.,
Gutierrez, G., Hamilton, J., Haney, M., Holland, S., Honscheid, K., Huffman, D.,
Karliner, I., Kau, D., Kent, S., Kozlovsky, M., Kubik, D., Kuehn, K., Kuhlmann, S.,
Kuk, K., Leger, F., Lin, H., Martinez, G., Martinez, M., Merritt, W., Mohr, J., Moore,
P., Moore, T., Nord, B., Ogando, R., Olsen, J., Onal, B., Peoples, J., Qian, T., Roe,

https://github.com/fred3m/toyz
https://github.com/fred3m/astro-toyz
http://arxiv.org/1307.6212
http://dx.doi.org/10.1051/0004-6361/201322068
http://dx.doi.org/10.1051/0004-6361/201322068
http://dx.doi.org/10.1051/0004-6361/201322068
http://refhub.elsevier.com/S2213-1337(15)00094-3/sbref2
http://www.sciencedirect.com/science/article/pii/S2213133714000730
http://arxiv.org/1403.6025
http://dx.doi.org/10.1016/j.ascom.2014.12.006
https://github.com/tornadoweb/tornado


F. Moolekamp, E. Mamajek / Astronomy and Computing 13 (2015) 50–57 57
N., Sanchez, E., Scarpine, V., Schmidt, R., Schmitt, R., Schubnell, M., Schultz, K.,
Selen, M., Shaw, T., Simaitis, V., Slaughter, J., Smith, C., Spinka, H., Stefanik, A.,
Stuermer, W., Talaga, R., Tarle, G., Thaler, J., Tucker, D., Walker, A., Worswick, S.,
Zhao, A., 2008. The dark energy camera (decam). URL: doi:10.1117/12.789466.

Federl, P., Grimstrup, A., Kiddle, C., Taylor, A.R., Robinson, K., Stephure, M., Yee, G.,
2012. Remote visualization of large multi-dimensional radio astronomy data
sets. In: Ballester, P., Egret, D., Lorente, N.P.F. (Eds.), Astronomical Data Analysis
Software and Systems XXI. In: Astronomical Society of the Pacific Conference
Series, vol. 461. p. 95.

Federl, P., Grimstrup, C.A.K., Taylor, A.R., 2011. On-line access and visualization of
multi-dimensional FITS data. In: Evans, I.N., Accomazzi, A., Mink, D.J., Rots, A.H.
(Eds.), Astronomical Data Analysis Software and Systems XX. In: Astronomical
Society of the Pacific Conference Series, vol. 442. p. 467.

Fitzpatrick, M.J., Olsen, K., Economou, F., Stobie, E.B., Beers, T.C., Dickinson, M.,
Norris, P., Saha, A., Seaman, R., Silva, D.R., Swaters, R.A., Thomas, B., Valdes,
F., 2014. The NOAO data laboratory: a conceptual overview. In: Society of
Photo-Optical Instrumentation Engineers (SPIE) Conference Series. In: Society
of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 9149.
p. 1. doi:10.1117/12.2057445.

Flaugher, B.L., Abbott, T.M.C., Angstadt, R., Annis, J., Antonik,M.L., Bailey, J., Ballester,
O., Bernstein, J.P., Bernstein, R.A., Bonati, M., Bremer, G., Briones, J., Brooks,
D., Buckley-Geer, E.J., Campa, J., Cardiel-Sas, L., Castander, F., Castilla, J., Cease,
H., Chappa, S., Chi, E.C., da Costa, L., DePoy, D.L., Derylo, G., de Vincente, J.,
Diehl, H.T., Doel, P., Estrada, J., Eiting, J., Elliott, A.E., Finley, D.A., Flores, R.,
Frieman, J., Gaztanaga, E., Gerdes, D., Gladders, M., Guarino, V., Gutierrez,
G., Grudzinski, J., Hanlon, B., Hao, J., Holland, S., Honscheid, K., Huffman, D.,
Jackson, C., Jonas, M., Karliner, I., Kau, D., Kent, S., Kozlovsky, M., Krempetz, K.,
Krider, J., Kubik, D., Kuehn, K., Kuhlmann, S.E., Kuk, K., Lahav, O., Langellier, N.,
Lathrop, A., Lewis, P.M., Lin, H., Lorenzon, W., Martinez, G., McKay, T., Merritt,
W., Meyer, M., Miquel, R., Morgan, J., Moore, P., Moore, T., Neilsen, E., Nord,
B., Ogando, R., Olson, J., Patton, K., Peoples, J., Plazas, A., Qian, T., Roe, N.,
Roodman, A., Rossetto, B., Sanchez, E., Soares-Santos, M., Scarpine, V., Schalk,
T., Schindler, R., Schmidt, R., Schmitt, R., Schubnell, M., Schultz, K., Selen, M.,
Serrano, S., Shaw, T., Simaitis, V., Slaughter, J., Smith, R.C., Spinka, H., Stefanik,
A., Stuermer, W., Sypniewski, A., Talaga, R., Tarle, G., Thaler, J., Tucker, D.,
Walker, A.R., Weaverdyck, C., Wester, W., Woods, R.J., Worswick, S., Zhao, A.,
2012. Status of the dark energy survey camera (DECam) project. In: Society of
Photo-Optical Instrumentation Engineers (SPIE) Conference Series. In: Society
of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 8446.
p. 11. doi:10.1117/12.856609.

Foreman-Mackey, D., Hogg, D.W., Lang, D., Goodman, J., 2013. emcee: The
MCMC Hammer. Publications of the ASP 125, pp. 306–312. arXiv:1202.3665.
doi:10.1086/670067.

Gopu, A., Hayashi, S., Young, M.D., Harbeck, D.R., Boroson, T., Liu, W., Kotulla,
R., Shaw, R., Henschel, R., Rajagopal, J., Stobie, E., Knezek, P., Martin, R.P.,
Archbold, K., 2014. Odi—portal, pipeline, and archive (odi-ppa): a web-
based astronomical compute archive, visualization, and analysis service. URL:
doi:10.1117/12.2057123.

Hickson, I., 2011. The websocket api. W3C Working Draft WD-websockets-
20110929, September.

Hunter, J.D., 2007. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9 (3),
90–95. URL:
http://scitation.aip.org/content/aip/journal/cise/9/3/10.1109/MCSE.2007.55.
doi:10.1109/MCSE.2007.55.
Jacoby, G.H., Tonry, J.L., Burke, B.E., Claver, C.F., Starr, B.M., Saha, A., Lup-
pino, G.A., Harmer, C.F.W., 2002. Wiyn one degree imager (odi). URL:
doi:10.1117/12.457017.

Jones, E., Oliphant, T., Peterson, P., et al. 2001. SciPy: Open source scientific tools for
Python. URL: http://www.scipy.org/ [Online; accessed 19.06.15].

Joye, W.A., Mandel, E., 2003. New features of SAOImage DS9. In: Payne, H.E.,
Jedrzejewski, R.I., Hook, R.N. (Eds.), Astronomical Data Analysis Software and
Systems XII. In: Astronomical Society of the Pacific Conference Series, vol. 295.
p. 489.

Lins, L., Klosowski, J., Scheidegger, C., 2013. Nanocubes for real-time exploration of
spatiotemporal datasets. IEEE Trans. Vis. Comput. Graphics 19 (12), 2456–2465.
doi:10.1109/TVCG.2013.179.

Loebman, S., Ortiz, J., Choo, L.L., Orr, L., Anderson, L., Halperin, D., Balazinska,
M., Quinn, T., Governato, F., 2014. Big-data management use-case: A cloud
service for creating and analyzing galactic merger trees. In: Proceedings
of Workshop on Data Analytics in the Cloud. DanaC’14. ACM, New York,
NY, USA, pp. 9:1–9:4. URL: http://doi.acm.org/10.1145/2627770.2627774.
doi:10.1145/2627770.2627774.

McKinney,W., 2010. Data structures for statistical computing in python. In: van der
Walt, S., Millman, J. (Eds.), Proceedings of the 9th Python in Science Conference.
pp. 51–56.

Merenyi, E., 2014. Hyperspectral image analysis in planetary science and
astronomy. In: American Astronomical Society Meeting Abstracts 223.
In: American Astronomical Society Meeting Abstracts, vol. 223. p. 337.

Ochsenbein, F., Bauer, P., Marcout, J., 2000. The vizier database of astro-
nomical catalogues. Astron. Astrophys. Suppl. Ser. 143 (1), 23–32. URL:
doi:10.1051/aas:2000169. arXiv:astro-ph/0002122.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, É., 2011. Scikit-
learn: Machine learning in python. J. Mach. Learn. Res. 12, 2825–2830.
arXiv:1201.0490.

Pillay, R., 2014. IIPImage: Large-image visualization. Astrophys. Source Code Libr.
Pogge, R.W., DePoy, D.L., Atwood, B., O’Brien, T.P., Byard, P.L., Martini, P.,

Stephens, A.W., Gatley, I., Merrill, M., Vrba, F.J., Henden, A.A., 1998. Mdm/ohio
state/aladdin infrared camera (mosaic). URL: doi:10.1117/12.317266.

Ragan-Kelley, M., Perez, F., Granger, B., Kluyver, T., Ivanov, P., Frederic, J., Bussonier,
M., 2014. The Jupyter/IPython architecture: a unified view of computational
research, from interactive exploration to communication and publication. AGU
Fall Meeting Abstracts, D7, December.

Tody, D., 1986. The iraf data reduction and analysis system. URL:
doi:10.1117/12.968154.

Valdes, F., Gruendl, R., 2014. The DECam community pipeline. In: Manset, N.,
Forshay, P. (Eds.), Astronomical Data Analysis Software and Systems XXIII.
In: Astronomical Society of the Pacific Conference Series, vol. 485. p. 379. DES
Project.

van der Walt, S., Colbert, S.C., Varoquaux, G., 2011. The numpy array: A structure
for efficient numerical computation. Comput. Sci. Eng. 13 (2), 22–30. URL:
http://scitation.aip.org/content/aip/journal/cise/13/2/10.1109/MCSE.2011.37.
arXiv:1102.1523. doi:10.1109/MCSE.2011.37.

van der Walt, S., Schönberger, J., Nunez-Iglesias, J., Boulogne, F., Warner, J., Yager,
N., Gouillart, E., Yu, T., 2014. the scikit-image contributors, scikit-image: image
processing in python. PeerJ 2:e453. arXiv:1407.6245. doi:10.7717/peerj.453.

Wickham,H., 2009. ggplot2: Elegant Graphics for Data Analysis. Springer, NewYork,
URL: http://had.co.nz/ggplot2/book. doi:10.1111/j.1541-0420.2011.01616.x.

http://dx.doi.org/10.1117/12.789466
http://refhub.elsevier.com/S2213-1337(15)00094-3/sbref6
http://refhub.elsevier.com/S2213-1337(15)00094-3/sbref7
http://dx.doi.org/10.1117/12.2057445
http://dx.doi.org/10.1117/12.856609
http://arxiv.org/1202.3665
http://dx.doi.org/10.1086/670067
http://dx.doi.org/10.1117/12.2057123
http://scitation.aip.org/content/aip/journal/cise/9/3/10.1109/MCSE.2007.55
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1117/12.457017
http://www.scipy.org/
http://refhub.elsevier.com/S2213-1337(15)00094-3/sbref16
http://dx.doi.org/10.1109/TVCG.2013.179
http://doi.acm.org/10.1145/2627770.2627774
http://dx.doi.org/10.1145/2627770.2627774
http://refhub.elsevier.com/S2213-1337(15)00094-3/sbref20
http://dx.doi.org/10.1051/aas:2000169
http://arxiv.org/astro-ph/0002122
http://arxiv.org/1201.0490
http://refhub.elsevier.com/S2213-1337(15)00094-3/sbref23
http://dx.doi.org/10.1117/12.317266
http://dx.doi.org/10.1117/12.968154
http://refhub.elsevier.com/S2213-1337(15)00094-3/sbref27
http://scitation.aip.org/content/aip/journal/cise/13/2/10.1109/MCSE.2011.37
http://arxiv.org/1102.1523
http://dx.doi.org/10.1109/MCSE.2011.37
http://arxiv.org/1407.6245
http://dx.doi.org/10.7717/peerj.453
http://had.co.nz/ggplot2/book
http://dx.doi.org/10.1111/j.1541-0420.2011.01616.x

	Toyz: A framework for scientific analysis of large datasets and astronomical images
	Introduction
	Toyz
	Workspace environment
	Data connectivity and interactive plots
	Image viewer
	Security

	Affiliated packages and extensions
	Astro-Toyz
	Extensions

	Future work
	Acknowledgments
	References


