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a b s t r a c t

Iris is an extensible application that provides astronomers with a user-friendly interface capable of
ingesting broad-band data from many different sources in order to build, explore, and model spectral
energy distributions (SEDs). Iris takes advantage of the standards defined by the International Virtual
Observatory Alliance, but hides the technicalities of such standards by implementing different layers of
abstraction on top of them. Such intermediate layers provide hooks that users and developers can exploit
in order to extend the capabilities providedby Iris. For instance, customPythonmodels canbe combined in
arbitrary ways with the Iris built-in models or with other custom functions. As such, Iris offers a platform
for the development and integration of SED data, services, and applications, either from the user’s system
or from theweb. In this paper we describe the built-in features provided by Iris for building and analyzing
SEDs. We also explore in some detail the Iris framework and software development kit, showing how
astronomers and software developers can plug their code into an integrated SED analysis environment.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The emission processes of astronomical objects (e.g., stars,
galaxies, quasars) are reflected in the spectral energy distri-
bution (SED) of the radiation detected by astronomers with a
variety of telescopes and instruments. Astronomers use this in-
formation to infer the physical properties of the source by com-
paring the detected SED with different emission models. Methods
for these studies have been developed by several communities in
astronomy, focused on either a particular type of source, or quite
often on a particular region of the emission spectrum (e.g., radio,
optical-IR, X-ray). These focused tools typically require different
input formats and imply the use of wavelength specific units, as
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well as being optimized for particular models to compare the SED
with. However, the most complete picture of any emission phe-
nomena requires the use of the most complete information base.
Modern wide-field ground and space telescopes, and the availabil-
ity of data from multi-wavelength archives, allow in principle to
build and study broadband SEDs for any kind of astronomical ob-
ject. However, a tool that can efficiently and powerfully make use
of this information requires a non-wavelength-specific approach.

The International Virtual Observatory Alliance (IVOA; Quinn
et al., 2004) provides a set of standards and protocols that facili-
tate interoperability among astronomy-related services and tools.
These IVOA specifications can be implemented to enable general-
ized SED analysis, regardless of the spectral regime and objects be-
ing studied.

In order to design effective applications, one wants to leverage
IVOA standards without exposing the complexity and technicality
of their specifications to the users. Also, while application develop-
ers implement many desired features, it is useful, and sometimes
required, to provide hooks for users and third party developers
to extend the application’s functionality without requiring knowl-
edge of standards themselves. Designing such an application, like a
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general SED analysis tool, thus becomes an exercise in designing a
framework that implements some basic, effective functionality for
a wide set of use cases, while being highly extensible.

Iris, the Virtual Astronomical Observatory (VAO; Berriman et al.,
2012) SED analysis tool, is such an IVOA-enabled desktop applica-
tion. With Iris, users may populate SEDs with data from files, built-
in portals to data archives, and other Virtual Observatory (VO)
applications. Users can interactively visualize and edit SEDs, and fit
SEDs with fine-tunedmodeling features. Iris provides a suite of as-
trophysical models, but also lets users import custom models and
template libraries. All front-end features of Iris completely hide the
underlying technical IVOA specifications from the user.

While implementing IVOA standards and protocols, we took
advantage of existing astronomy software, namely Specview
(Busko, 2002) for the visualization and fitting user interfaces, the
NASA/IPAC Extragalactic Database (NED) SED Service3 for data
acquisition, and Sherpa (Freeman et al., 2001; Refsdal et al., 2009)
for the modeling and fitting engine. Along with these components,
new ones, like the SED Builder, were developed specifically for Iris
(Doe et al., 2012; Laurino et al., 2013).

Iris was developed inside the framework of the VAO science ap-
plications: the different components were contributed by devel-
opers from the Smithsonian Astrophysical Observatory, the Space
Telescope Science Institute (STScI), and the NASA Infrared Process-
ing and Analysis Center (IPAC). Quality assurance and testing were
led by teammembers at the National Optical Astronomy Observa-
tory and STScI.

In this paper we present the Iris application, design, and exten-
sible architecture. In Section 2 we briefly explore the landscape of
SED applications and analysis tools that Iris joined, and provide an
example use-case of Iris. We explore how astronomers can include
their own models or templates as Python functions in Section 3.
An introduction to Iris’ general architecture (the Iris stack) is illus-
trated in Section 4. A more detailed overview of the Iris extensible
framework design (Section 5) is followed by a detailed description
of the more advanced Iris capabilities (Section 6). Finally, we de-
scribe the Iris software development kit, including a ‘‘How-to’’ on
extending Iris with plug-ins (Section 7). Sections 5 and 7 are tar-
geted to software developers.

The paper refers to version 2.0.1 of Iris. Iris can be downloaded
as a binary archive for OS X and Linux,4 and the source code is
hosted on GitHub as a public repository.5

2. SED analysis with Iris

Fitting spectral energy distributions enables astronomers to es-
timate fundamental properties of various astronomical objects. In
galaxy evolution studies, for example, stellar mass, star formation
rates, dust content, and redshift are often derived fromgalaxy SEDs
(e.g. Sawicki and Yee, 1998, Shapley et al., 2001, Robitaille et al.,
2007, andmanyothers). Accretiondisks surrounding supermassive
black holes, X-ray binary and young stellar objects can be studied
by fitting models to the host objects’ SEDs, extracting information
like accretion rates, disk geometry, and disk temperature (e.g., Cz-
erny and Elvis, 1987; Vrtilek et al., 1990; Chiang and Goldreich,
1997; Robitaille et al., 2006). Stellar SED analysis can recognizemid
IR excess, which may indicate circumstellar disks (Lagrange et al.,
2000; Chen et al., 2005). As these examples show, SEDs are widely
used throughout astronomy.

With ever increasing wide-field surveys and datasets over the
years, astronomers have been able to use multi-wavelength SEDs

3 http://vo.ned.ipac.caltech.edu/SED_Service/.
4 http://cxc.cfa.harvard.edu/iris/latest/download/.
5 https://github.com/ChandraCXC/iris.
more frequently for their research. As such, many robust SED anal-
ysis codes have been created to help astronomers model, fit, and
derive physical quantities from SEDs (Walcher et al., 2011; Conroy,
2013). These widely-used codes implement a diverse set of meth-
ods, for instance: inversion (e.g., STARLIGHT Cid Fernandes et al.,
2004 and PAHFIT Smith et al., 2007), principal component anal-
ysis (e.g., Budavári et al., 2009), χ2-minimization codes (e.g., Le
PHARE Arnouts et al., 1999; Ilbert et al., 2006 and HyperZ Bol-
zonella et al., 2000), andBayesian inference (e.g., BPZBenítez, 2000,
VOSA Bayo et al., 2008, and GalMC Acquaviva et al., 2011).

Most widely used fitting packages are tailored for specific
datasets or spectral ranges (such as PAHFIT and STARLIGHT),
providing robust fitting methods and results. They require the
data to be in a specific format with specific units in order for the
tool to work properly. When fitting a broadband SED that spans
over decades in the spectrum, the astronomer will typically gather
datasets from different public archives and colleagues in order to
add such data to their own. More often than not, the datasets are
stored in different file formats and units. The user must provide
their own methods to extract the necessary data from each file,
homogenize the units, and output a file in the format supported
by the tool; converting the data to a supported format may easily
become a tedious task with each additional dataset.

While SED analysis tools often have different input formats
from each other, they effectively require the same information to
run.Whether datasets are stored in a FITS file, a tab-separatedASCII
table, or a VOTable (Ochsenbein et al., 2011) coming from a VO
data discovery application, they are all serializations of the same,
global, abstract, scientific model of photometric measurements for
astronomical sources.

By employing a standardized definition of such models, Iris
streamlines the process of building SEDs for analysis. In other
terms, one of the goals of Iris is to make SED building a painless
and straightforward process, letting the scientist focus on the
sophisticated and original parts of the scientific work-flow: data
analysis, hypothesis testing, and knowledge extraction.

Following VO efforts to combine data services and applications
seamlessly, Iris offers an interface for building large broadband
SEDs from different sources in various data formats, while
providing robust fitting methods and interactive visualization
capabilities using existing astronomical software. It is important to
stress that this is not only a matter of ingesting non-standard files,
but also to allow scientists to create standardized versions of their
datasets: the improved interoperability enables more tools, inside
or outside Iris, to load and interpret such datasets with minimal
user intervention.

Much effort has been put into making Iris lenient on data
format. While natively supporting VO-compliant files (properly
annotated VOTable and FITS files), Iris can ingest ASCII, CSV, and
other table-like formats aswell with some extra user input. Table 1
describes the file formats that can be read into Iris. Users may also
seamlessly transfer data fromother VO applications or data archive
services through SAMP, the Simple ApplicationMessaging Protocol
(Taylor et al., 2011). Moreover, Iris can read, write, and display
SED data in a variety of commonly-used units, which are listed in
Table 2, with minimal user effort.

But more importantly, Iris provides standardized views of
the integrated datasets to its clients, whether they are built-in
components, third party plug-ins, or external applications.

2.1. A use case

In this section, we present a brief, illustrative use-case of Iris
to showcase its main features. We outline the analysis of the
broadband SED of flat spectrum radio quasar (FSRQ) object PKS
1127-14 (see Błażejowski et al., 2004), and save the results to file.

http://vo.ned.ipac.caltech.edu/SED_Service/
http://cxc.cfa.harvard.edu/iris/latest/download/
https://github.com/ChandraCXC/iris
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Fig. 1. Building the SED of blazar PKS 1127-14 in Iris. Top-left: Data from the NED SED Service, a local file, and from TOPCAT are managed in the SED Builder. Bottom-left:
The various data segments plotted in νF (ν) units inside the SED Viewer. Squares show data with flux uncertainties, whereas the pink diamonds denote points without
associated uncertainties. Each segment in the SED Builder is plotted in a different color. Black squares are data taken from NED; the pink squares in the radio are the data
from PLANCK; and the red, yellow, blue, and green squares in the near-IR are the four WISE bands. Right: An ASDC Data Query form for PKS 1127-14. The user searches for
data between specified dates and available instruments (Swift and GALEX in this case). The data have been added to the open SED PKS 1127-14. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
Table 1
Supported file formats.Native formats are automatically loaded into Iris. Supported formats require some user input tomap the file data to the spectral and flux information.

Format Description

Native VOTable XML-based format, text or binary following IVOA Spectrum Data Model v1.0, 1.1, or 1.2.
FITS Series of HDUsa with text header and text or binary data extensions following IVOA Spectrum Data Model v1.0, 1.1, or 1.2.

Supported

VOTable XML-format, text or binary.
FITS Series of HDUsa with text header and text or binary data extensions.
ASCII Table Text file with columns separated by spaces and/or tabs.
CSV Text file with columns separated by commas (first row may contain column names).
IPAC A custom bar-separated text format by IPAC.
TST Tab Separated Table (comments are ignored, metadata is in key, value pairs).

a Header data units.
Table 2
Supported SED units. Iris can read, write, and/or plot data in the spectral and flux
units listed in this table. Italicized units are only available for plotting.

Spectral axis Flux axis

Å erg/s/cm2/Å
nm erg/s/cm2/Hz
µm photon/s/cm2/Å
mm photon/s/cm2/Hz
cm Watt/m2/µm
m Watt/cm2/µm
eV Watt/m2/nm
keV Watt/m2/Hz
MeV Rayleigh/Å
Hz Jy
kHz mJy
MHz µJy
GHz
THz AB mag
1/µm ST maga
km/s@21 cm
km/s@12 CO Jy Hz

erg/s/cm2

a ST = −2.5 log10 fλ − 21.10, where fλ is the source flux density expressed per
unit wavelength.

For details on the Iris features introduced in this use-case, see
Section 6.
An Iris session begins with populating a SED by clicking on
the SED Builder icon on the Iris desktop. A user loads a local
ASCII file of PLANCK data, a WISE dataset from TOPCAT ASCL:
1101.0106 (Taylor, 2005) through a SAMP message, and all data
associated with PKS 1127-14 in NED with the NED SED Service
portal. The user also uses the built-in Italian Space Agency Science
Data Center7 (ASDC) query tool to find optical/UV data for PKS
1127-14, and adds it to the SED (see Fig. 1).

Data are converted to a single set of units on the fly, and dis-
played in the SED Viewer. The user can switch the spectral and flux
axes between a variety of commonly-used SED units, e.g., one can
switch from Jy vs. µm to Jy Hz vs. Hz. The Metadata Browser – an
interactive table of the SED data – allows the user to interactively
inspect and filter out data points by hand or with Boolean expres-
sions.

The user also employs the Science Tools, an Iris built-in com-
ponent that lets the user cosmologically redshift SEDs, interpo-
late SED data, and calculate integrated fluxes of SEDs through
photometric filters or user-defined passbands. In particular, the

6 ASCL: Astronomy Source Code Library.
7 http://www.asdc.asi.it/.

ascl:1101.010
http://www.asdc.asi.it/
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Fig. 2. Fitting Visualization. Visualization of a linear combination of log-parabolas and blackbody distributions for FRSQ blazar PKS 1127-145, fit with Nelder–Mead
optimization and least-square statistics. Left: The best fit linear combination overlaid on the SED data as a red curve. The blue line shows the spectral range over which the
data were fit. Below the main plot are residuals of the fitted curve, in dex units. Top-right: The fitting options and results. Here, the user chooses between Nelder–Mead,
Levenberg–Marquardt, and Monte-Carlo (Differential Evolution, Storn and Price, 1997) optimization and various least square and χ2 statistics. The fit statistics are reported
here after the fit has been performed. Bottom-right: The Fitting Tool window. The model components used in the fit and their fitted parameter values are listed in the
Components field. Below that is the Model Expression, in which the components are linearly combined. Note that components are referenced by the c# suffix of the
component name. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
user shifts PKS 1127-14 from its observed redshift at z = 1.18 to
rest frame using the Redshift tool before fitting the SED.

The user then filters out all the points devoid of errors using the
metadata browser filtering features.

When the user is done building and editing the SED, the user
begins the fitting session. With the fitting tool, the user can build
a model expression as an arbitrary combination of model compo-
nents. Choosing from a list of built-in astrophysical andmathemat-
ical models, the user fits PKS 1127-14 with a linear combination
of four models: two logarithmic parabolas to model the radio syn-
chrotron and inverse Compton radiation (Massaro et al., 2006;
Tramacere et al., 2009), and two blackbodies to approximate the
models for the hot dust component and accretion disk of the
blazar (Dermer and Schlickeiser, 2002). The fit is performed us-
ing Nelder–Mead optimization and least square statistics. The user
has fine control over the parameters, including setting initial val-
ues, the range of the values, freezing and thawing parameters, and
linking model parameters to other parameters in the model ex-
pression; the user also controls the spectral ranges over which to
fit the models. Finally, confidence intervals are computed for the
overall model parameters.

Fig. 2 shows the final model for PKS 1127-14 overlaid on the
input data and, in the lower panel, the fit residuals.

When the user is satisfiedwith the fitting results, the user saves
an XML-style file of themodel that can be re-read into Iris and fit to
other SED data. The user also saves the fit results to a text file, that
shows the parameters of the fit and the details about each model
component, with the best-fit parameter values.

3. User models and templates

Keeping with our requirements of developing an extensible
SED analysis tool, we provide a user interface for adding custom
models, templates, and template libraries for the fitting engine to
use in a Custom Fit Models Manager.
Sherpa, Iris’ fitting engine, provides command line functions for
users to add their own models and templates to a Sherpa session.
Wewrap a graphical user interface (GUI) around such functions for
streamlined integration and user-friendliness. The user provides
the full path to the directory where the models and templates
exist, as well as information about the parameters. Installing a
model saves a copy of the model files in the user’s home directory
(in ˜/.vao/iris/components), allowing the user to apply the
models in future sessions.

3.1. Custom Python functions

Iris accepts custom models as Python functions stored on the
user’s disk. Any number of functions can be stored in a single file.
The function implementing the model must take two parameters:
the first is an iterable of the model parameters, the second is
a placeholder for the spectral axis, x, in units of Angstroms. For
example, a model file for a modified black body Bν(T ) (ν/ν0)

β

could be defined as in Listing 1.
User models can be arbitrarily combined with other custom or

preset model functions when using the Iris fitting tool.

import numpy as np

def modified_blackbody(p, x):
""" Modified blackbody.

Parameters
----------
p : [lambda_0 , A, T, beta]

p[0] ’ lambda_0 ’ : reference wavelength
p[1] ’A ’ : amplitude of model at lambda_0
p[2] ’T ’ : temperature of blackbody
p[3] ’ beta ’ : dust emissivity index

x : array spectral values, in Angstroms
"""

# Blackbody function
efactor = 1.438786e8 / p[2]
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numerator = p[1] * np.power(p[0], 5.0) * \
(np.exp(efactor / p[0]) - 1.0)

denominator = np.power(x, 5.0) * \
(np.exp(efactor/ x) - 1.0)

B_lambda = numerator / denominator

# speed of light in AA/s
c = 2.998e18

powerlaw = (c / (x/p[0]))**p[3]

return B_lambda * powerlaw

Listing 1: Example of a user-definedmodel that can be dynamically
loaded into Iris. The code, written as a Python function, imple-
ments a modified blackbody and can be combined in Iris with
other built-in and custom components. Backslashes indicate line
continuations.

3.2. Table models

A table model is a single template, having just the x and y
coordinates. Iris accepts two column ASCII files as table models,
following the convention where the first column is the spectral
values and the second contains the fluxes. The spectral and flux
units must be in Angstroms and photons/s/cm2/Å, respectively.8
The fit returns the normalization constant (or amplitude) of the
model.

3.3. Template libraries

The template model is essentially a list of table models with
parameters other than the amplitude. Like the load_template
_model function in Sherpa, the user must create an index file that
lists the parameter values of the templates and the full path to
the template those parameter values describe (see Listing 2 for an
example). Sherpa uses a grid-search method to find the best-fit
template. The parameters grid is created using the values provided
in the index file.

# INDEX REFER MODELFLAG FILENAME
0.0 5000 1 /data/sed_temp_index -0.00.dat
-0.10 5000 1 /data/sed_temp_index -0.10.dat
-0.25 5000 1 /data/sed_temp_index -0.25.dat
-0.35 5000 1 /data/sed_temp_index -0.35.dat
-0.50 5000 1 /data/sed_temp_index -0.50.dat

Listing 2: Example of template library definition file. Template
library definition files are in ASCII format.

4. The Iris stack

The Iris stack (Fig. 3) shows how one can put the technical
IVOA specifications to work for scientists through higher and
higher layers of abstraction: the details of the Virtual Observatory
standards and protocols lie in the lowest layer, the internals of
the Iris building blocks lie in the middle layer, while the top layer
expresses high-level user-oriented features.

A reader without any knowledge of programming, let alone
of the VO specifications, should understand the labels used in
the top layer of the diagram and their components (e.g., Fitting

8 While Iris ingestsmany other units (see Table 2), the Custom FitModelManager
is independent of Iris’ units handler and only accepts files with spectral values in
Angstroms and the flux in photons/s/cm2/Å.
Fig. 3. The Iris Stack. With its architecture Iris allows developers to create
components using higher and higher abstractions on top of web services, desktop
applications, and Virtual Observatory standards and protocols. The technical
specifications lie on the bottom, a middle layer provides abstractions useful to
developers, and the user is only exposed to the science features represented by the
top layer. Users can also plug their code in as Python functions. The result is aimed
to be both user- and developer-friendly. Notice that custom services can be built on
top of custom specifications, but also on top of IVOA standards. Similarly, plug-ins
can use custom services, but they also probably use the Iris Common Framework.
The top layer components (built-in Iris features and plug-ins) provide the user with
scientific features within Iris. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Tool and Redshifting), as long as they have some knowledge of
astronomical SEDs. On the other hand, a developer would find
words like framework, service, and manager quite familiar, while
it takes a VO-savvy person to decode the acronyms at the bottom
of the diagram.9

This architecture enables different entry points for the different
audiences of the application. Core developers work at all levels
of the stack, but need to lay out the foundations on top of the
standard specifications; third party developers use the middle-
level abstractions offered by the Iris framework, while end users
can limit their interaction to familiar astronomical concepts
through the application’s user interface. End users can also plug
in their modeling code and upload templates libraries to Iris.

The color code in Fig. 3 adds a different dimension to this dia-
gramand taps into a different characteristic of the Iris architecture:
extensibility. In particular, scarlet letters denote extensible com-
ponents of the architecture, i.e., components that offer hooks into
the Iris architecture to users and developers. The orange boxes, on
the other hand, express components that were not part of the Iris
design, but that can be used in Iris as plug-ins, possibly providing
interfaces to access non-standard services. Some of these plug-ins,
along with a description of the design of the Iris Software Develop-
ment Kit, will be introduced in Section 7.

The dark green box denotes IVOA sanctioned standards. Blue
denotes components that are built-in in Iris and light green boxes
denote components that were developed in or for Iris.10

This architecture was also driven by a more abstract require-
ment: our team was distributed, with developers and managers
working from different institutions with different tools and prac-
tices (Evans et al., 2012). Moreover, wanting to reuse existing
software instead of reinventing the proverbial wheel, we had to
integrate different existing software components in a seamless
way. So, the Iris stack provided not only a clean and robust archi-
tecture for users and third party developers, but was also useful
in enabling a distributed team of part-time developers to work in
parallel, reducing the overall project risk.

9 SAMP, the Simple Application Messaging protocol was already introduced, DM
stands for DataModel and the SpectrumDM is introduced later in the paper. UTYPEs
are labels used in some file formats (like VOTable, introduced later) to tag data
elements according to aDataModel. SSAP stands for Simple Spectral Access Protocol
and is implemented by services that provide access to spectral datasets, including
SEDs, and is also introduced later in the document.
10 While the NED SED service was developed independently of Iris, its IVOA-
compliant interface was part of the Iris project, along with the development of a
dedicated client in Iris itself.
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Fig. 4. The Iris loosely coupled, extensible architecture. Information freely flows among built-in and third-party components provided as plug-ins. A SED Manager gives
components access to the state of the SEDs in the user’s workspace, while dynamic changes in such state are announced through events that are notified to the subscribed
listeners. A plug-in manager allows users to install and uninstall plug-ins on the fly.
In summary, the Iris frameworkwas designed to address several
different requirements: (i) functional requirements gathered
by the Iris team’s lead scientists; (ii) functional requirements
unknown at development-time; (iii) the distributed nature of the
Iris development team; and (iv) interoperability between several
existing tools and services.

The Iris stack offers a non-technical view of the Iris architec-
ture and design. While the stack shows effectively howwe tried to
abstract end users and developers from the VO specifications and
from the specifics of the Iris internals, the stack does not express
the technical solutions that we employed to achieve such exten-
sible architecture and to meet the aforementioned requirements.
More detail is provided in some of the following sections.

5. The Iris architecture

In order to minimize the risk derived from the requirements
listed in the previous section, we backed Iris with a loosely coupled
architecture through a design pattern called Inversion of Control
(Johnson and Foote, 1988).

But it was not just a matter of risk management. Inversion of
Control supports the implementation of liquid requirements, i.e., a
finite set of predetermined requirements plus an indefinite set
of custom requirements to be implemented by users, at least in
some simple cases or, for more advanced features, by third party
developers.

The architecture that supports the implementation of such
requirements has different components that can be mapped to the
Model–View–Controller (MVC) design pattern.

SEDLib This basic I/O library provides classes for the Model com-
ponents of MVC. Unsurprisingly, SEDLib does so by im-
plementing a Data Model specification defined by the
IVOA. TheDataModel defines both the logical breakdown
of spectral datasets, and the serialization in some stan-
dard file formats. So, on the one hand, SEDLib can perform
the basic read/write operations on spectrophotometric
files, while on the other the library provides the data
structures that client components can use and exchange.

SEDManager TheMVC Controller role is played in Iris by the SED-
Manager, which itself is defined as an Interface. Theman-
ager works as a data storage for SEDLib instances that the
different Iris components can share.
Components The actual Iris functionality is implemented by the
Iris Components. They can be seen as the Views in the
MVC pattern (or, more generally, they can provide any
number of Views), since they present the data stored in
the Controller to the user, query the Controller itself, and
act upon the Models, i.e., the SED objects provided by
SEDLib.

Events Views can be notified of changes in theModels by Events,
if they implement the relative Listener interface and have
been registered to the Events Queue. Events usually have
a payloadwithmore information about their content, and
a pointer to the Model instances involved.

In summary, Components (Views) can be completely disentan-
gled from each other and interact indirectly through the sole com-
mon interface represented by the SEDManager (Controller), which
in turn stores the SED objects (Model). Dynamic changes in the
system are notified to all interested agents (Listeners) via specific
Events.

Components are thus agents that cooperate by attaching them-
selves to a common buswhere the SEDManager provides themem-
ory, and Events guarantee the flow of information (see Fig. 4).

5.1. Inversion of control

We achieve loose coupling by an extensive use of Java Inter-
faces: components, events, and event listeners, for example, are all
defined by interfaces whose implementation can, to some extent,
be freely interchangeable.

Moreover, Inversion of Control is employed to decouple the
implementation of components from the run time context (see
Fig. 5). Methods in the Interface are callbacks, and some of these
callbacks get Interface-typed arguments that provide them context
instances during application execution. For this reason, this pattern
is also sometimes referred to as Dependency Injection.11

Consider, for example, Iris Components: they are the main
providers of Iris functionality, and they can correspond to buttons

11 There is, to be precise, a subtle but significant difference between Dependency
Injection and Inversion of Control, the first effectively being a special case of the
second.
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Fig. 5. Inversion of Control. IoC is a design pattern that promotes decoupling of software components so that they can easily be replaced by different implementations,
with the actual binding often happening at run-time according to some configuration. This pattern, however, also allows new components to be added at any time during
the application lifecycle: a common framework (Iris Common) can be shared as a middle layer among implementations, and a container (the Iris application) can bind
components together on the fly. Components can subscribe to events and react to them.
and menu items on the Iris desktop, loggers, data handlers, etc.
They must implement the IrisComponent interface, listed in
Listing 3.

package cfa.vo.iris;

import java.util.List;
import org.astrogrid.samp.client.MessageHandler;

public interface IrisComponent {

/**
* This method is invoked to initialize the
* component. If the component has to
* launch windows, frames or background
* services , this is the right method to do
* so. Otherwise the component will be
* called only if a callback is invoked.
* @param app A reference to the running \
application
* @param workspace A reference to the \
application ’s workspace
*/

void init(IrisApplication app, IWorkspace \
workspace);

/**
* Return the name of this component. This
* name might be listed in a widget along
* with the other registered components.
* @return The component ’s name as a String.
*/

String getName();

/**
* Get e description for this component. The
* description might be listed in a widget
* along with the other * registered
* components.
* @return The component ’s description as a
* String.
*/

String getDescription();

/**
* Get a command line interface object for
* this component.
* @return A CLI object
*/
ICommandLineInterface getCli();

/**
* Initialize the Command Line Application
* interface
* @param app Reference to the enclosing
* application
*/

void initCli(IrisApplication app);

/**
* The component can contribute menu items
* and desktop buttons to the enclosing GUI
* applications by providing a list of
* MenuItems.
* @return A list of the menu items this
* component will contribute to the
* application.
*/

List<IMenuItem > getMenus();

/**
* The component can register any number of
* SAMP message listeners by providing a
* list of them.
* @return A list of the SAMP message
* listeners that have to be registered to
* the SAMP hub.
*/

List<MessageHandler > getSampHandlers();

/**
* Callback invoked when the component is
* shutdown
*/
void shutdown();

}

Listing 3: This snippet of Java code represents the main interface
that all components in Iris have to implement, and how
dependencies get injected into the components at run-time.
Backslashes indicate line continuations.

At startup the Iris application reads the list of Components to
be initiated, and calls their init call-back, which in turn is passed
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Fig. 6. SED Builder. An example view of the SED Builder. On the left side of the window is a list of SEDs open for analysis; in this case, FilterSed is selected. The Segments
or components that constitute FilterSed are shown in the Segments section. Segments may be managed separately. Highlighted SEDs or Segments may be edited, removed,
saved, or broadcast to an external SAMP-enabled application. New Segments and SEDs are added to the Iris session through the SED Builder.
useful information like a reference to the SEDManager, or hooks to
the application environment.

The advantages of this architecture are both functional and non
functional. The architecture helped our heterogeneous develop-
ment team to work in a loosely coupled way, reducing the overall
project risk, and also provided the extensible framework we were
seeking in the first place. As a matter of fact, plug-ins that can be
loaded at run time implement the same interfaces that the built-in
components do, and they are instantiated in exactly the sameway.
The only difference is in the timing: built-in Components get in-
stantiated when the application itself is initialized, while plug-ins
can be instantiated and discarded at any time during the applica-
tion execution.

6. Iris built-in components

In the previous section, we discussed the architecture of Iris
and how the different Components in Iris communicate. Each
Component performs one or more SED-related tasks in Iris, like
building SEDs frommultiple sources and fine-tuned SEDmodeling.
Here, we discuss what the Components do in terms of the science
domain, including descriptions of the autonomous software used
to build Iris: Specview, Sherpa, and the NED SED Service.

6.1. SED builder

Users manage SEDs through the SED Builder (Fig. 6). From the
Builder, users can add, edit, remove, and save SEDs. Users can also
transfer data seamlessly to other VO-enabled applications through
SAMP messages from the Builder. Any number of SEDs can be
analyzed in an Iris session. Each SED has a unique identifier that is
set by defaultwhen a newSED is created, but can be changed by the
user. The user switches between SEDs by clicking on a SED name
in the Open SEDs field; the visualizer will automatically update to
the selected SED.

SEDs are built and managed in Segments, which are groups of
(spectral, flux) coordinates. For example, a spectrum is considered
a Segment; the results of a NED SED Service query are also handled
as a Segment. In general, anything from a single photometric point
to an entire SED can be considered a Segment, with all the points
sharing some if not all of the metadata.
Fig. 7. Available Data Sources. Users may import data from the built-in clients to
the NED SED Service and the ASDC. Data may also be uploaded from a local file, a
URL, a SAMPmessage from a VO-enabled tool, or through a custom file filter plug-in
at run time.

Clicking on a SED in the Open SEDs field will show all the
Segments that populate that particular SED. SED Builder shows
where the Segment data came from, the recorded RA and Dec of
the Segment, and the number of points in the Segment. Segments
can be handled separately from other Segments in the SED; users
can add, edit, remove, and save a subset of Segments selected from
a SED.

6.1.1. Importing data
As described in Section 2, Iris accepts data from a variety of

sources, and is lenient on the data format. Fig. 7 illustrates that
Iris imports data from built-in data archive portals as well as
from outside resources like local files, URLs, other VO-enabled
applications, and from plug-ins.

Iris natively supports IVOA-compliant FITS and VOTable
formats (McDowell et al., 2012). Files in these formats will auto-
matically be added to the user’s workspace. The Builder can con-
vert ASCII Tables, CSV, TSV, IPAC tables, and non IVOA-compliant
VOTable and FITS files into the native format with user input. We
provide two importing forms: (i) the SED importer, which handles
spectrum-style files (i.e., those with columns for the spectral co-
ordinate, flux/energy, and flux/energy uncertainties), and (ii) the
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Photometry Catalog Importer, which handles photometry catalogs
(i.e., files where each column represents a passband and the cell
values represent the corresponding fluxes, with an arbitrary num-
ber of rows). Users can save their setup options from the Import
Setup Frame to a configuration file and automatically read-in files
of the same format to Iris via the command line.

The SED Builder also has a hook for adding custom file filters.
One could develop a custom file reader that would convert a
non-standard file to an IVOA-compliant format. This kind of add-
on would allow Iris to read non-standard files into Iris without
requiring the use of the importer tools.

6.1.2. Saving data
Users can save entire SEDs or sets of Segments to IVOA-

compliant VOTable or FITS files. In order to save all the metadata,
the IVOA-compliant serializations rely on some specific constructs
in the supported file formats, so that SEDs that havemany different
Segments can become very complicated to read for VO-unaware
applications, although they retain all the metadata details. For
instance, segments might have data expressed in different units
inside the same SED.

To facilitate the ingestion of SEDs in VO-unaware applications
and user scripts, we provide a simpler output format that only
saves the minimum amount of meaningful information: the spec-
tral coordinate, the flux or energy, and its uncertainties. As a result,
the resulting SED file has only one Segment, with all the data ex-
pressed in a single set of units defined by the user.

Whether the output includes all of the metadata or has a
simplified single table format, the result is a compliant file that can
be read back into Iris without any additional user’s input.

This allows users to save a standardized version of the file that
can be easily shared by Iris and by the user’s scripts.

6.2. NED SED service

Iris is packaged with a portal to the NED SED Service that, given
a target name, retrieves all photometric data in NED associated
with the source with that target name, and adds it to an existing
SED.

In the context of the VAO development of Iris, we adapted the
NED long standing photometry and spectral energy distribution
service to conform as closely as practical to the relevant IVOA
recommendations in order to deliver photometric data from the
collection into Iris seamlessly. The objective forNEDwas to provide
a working reference service for the development of Iris as well
as to serve as a working prototype for new data protocols for
spectrophotometric data being developed by the IVOA.

The NED SED Service returns data and information from the
NED photometry collection (Mazzarella and NED Team, 2007). The
NED SED Service provides three types of queries:

Information discovery List objects with available photometry
(SED) given a sky position (RA and Dec) and angular size.
Also called a data discovery query.

Information availability For a given named object, return the
number of photometric data points.

Data retrieval For a given named object, return the available pho-
tometric data in an IVOA Spectrum Data Model compati-
ble VOTable.

All three query types use HTTP requests and responses which
conform to the IVOA Simple Spectral Access Protocol Version 1.04
(SSAP; Tody et al., 2012); the responses are in VOTable format. The
NED SED Service client in Iris employs the Data Retrieval query
interface, and stores the response as a Segment. Photometric points
with spectral line-based values and upper- and lower-limit values
are excluded from the response.
Implementing a standard protocol interface, the NED SED ser-
vice is also available through generic VO applications like TOPCAT
and the VAO Data Discovery Tool.12

6.3. SED viewer

The Iris Viewer component is responsible for creating, manag-
ing, and providing user interactive feedback to spectral plots in Iris.

TheViewer also providesmost of the low-level GUI components
used by the Fitting Tool component. The reason for this is that
most, if not all of the GUI code used by both the Viewer and
the Fitting Tool, were developed on top of the Specview ASCL:
1210.016 (Busko, 2002) code base.

Specview was developed in the late 1990s, initially as an ex-
periment to evaluate Java graphics capabilities in the context of
interactive spectral plotting. Over the years Specview grew from a
simple visualizer dedicated mostly to plot spectral data from Hub-
ble Space Telescope (HST) instruments, to amore capable tool with
not only sophisticated visualization, but also data analysis capabili-
ties. The ability to ingest spectral data from a variety of sourceswas
also gradually incorporated into the tool, culminating with a Vir-
tual Observatory interface capable of accessing services that com-
ply with the SSAP standard.

Specview however kept the emphasis on spectral data, which
is very different from the broad-band SED concept to which Iris is
dedicated. Being initially conceived as a tool to support HST data,
the design, and subsequent code implementation, were driven by
the needs and requirements imposed byhigh-dispersion, relatively
narrow-band spectra in the near-IR/optical/near-UV range. Thus
some re-work was necessary to make Specview’s internal data
structures and algorithms comply with the data types associated
with SEDs. Even so, a significant part of the code could be kept
as is, thus realizing the savings associated with code re-use. This
is particularly true in the case of the low-level graphics engine
(Busko, 2000). Most of the work in adapting Specview’s code base
to Iris happened on two fronts: (i) adding code that implements
the Iris Component interface, and (ii) augmenting the capabilities
of the Data Browser to allow interactive access to SED metadata.
Someworkwas also done in fine-tuning plotting capabilities to the
particular needs of SED data.

The initial view the Viewer creates of a just-ingested SED is via
a scatter plot depicting wavelengths (frequency and energy units
are also supported) and flux density (or flux) for each data point
that comprises the SED. The plot can be configured in a variety of
ways, by changing the scaling and units. The data initially plotted
can then be further examined inmore detail, using tabular and tree
depictions. In particular, the metadata associated with each data
point, aswell as the globalmetadata associatedwith the entire SED,
can be examined in detail using theMetadata Browser. Data points
can be selectively removed from the SED using filters sensitive to
both data and metadata values. These filters are built by a user-
defined Boolean expression that can be created and interacted
with in the GUI itself. The expression uses Python-like syntax, and
Python operators are available throughout. That way, SEDs can be
modified after being read by the SED Builder, and before being
further processed or measured.

6.4. Sherpa: model fitting

Sherpa ASCL: 1107.005 is the Chandra Interactive Analysis of
Observations (CIAO) ASCL: 1311.006 (Fruscione et al., 2006) mod-
eling and fitting application. Sherpa enables the user to construct

12 http://vao.stsci.edu/portal/Mashup/Clients/Portal/DataDiscovery.html.

ascl:1210.016
ascl:1107.005
ascl:1311.006
http://vao.stsci.edu/portal/Mashup/Clients/Portal/DataDiscovery.html
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Fig. 8. Design of the Specview/Sherpa interoperability layer. The interface between Sherpa (fitting engine), and Specview (graphical user interface) was designed by
defining a common data model for representing the requests and responses of fitting operations: the serialization of the request is a SAMPmessage, whose mtype identifies
the remote operation that the client is requesting.
complex models from simple definitions and fit those models to
1D (spectra) and 2D (images) data using a variety of statistics and
optimization methods.

Written in Python, with C/C++/Fortran extensions, Sherpa was
a robust choice for providing Iris with a curve fitting engine.

However, since the Iris front endwas going to be a Java applica-
tion,13 an interoperability layer had to be designed to interface the
graphical user interface and Sherpa as a fitting engine back-end.

SAMP is used as the interface protocol. This decision makes the
design of the interface very simple, so that the interoperability
layer on top of Sherpa is rather thin and consists only of the code
required to inspect the incoming SAMP messages and build a call
to Sherpa.

The design of this interface is represented schematically in
Fig. 8.

When Iris is launched the sherpa-samp process is also started
in the background. This process starts a SAMP client that waits
for a SAMP hub to attach to, registering to a number of custom
mtypes. The mtypes work as remote procedure identifiers, and
SAMP messages provide the remote methods with data that need
to be processed. Sherpa is used to compute a response that is
packaged as a SAMP response to be shown to the user.

The thin layer between Java and Python code is implemented
using two existing implementations of the SAMP protocol, namely
jsamp14 for Java and SAMPy15 for Python.

The sherpa-samp layer grew to accommodate the new sci-
ence requirements in the latest Iris releases, so to include some
analysis code that is independent of Sherpa.

13 In the first version of Iris the front end was a modified version of Specview
itself, while in later versions we integrated different components under a common
framework graphically represented by the Iris Desktop. Even in this configuration,
the fitting front end was provided by Specview under the hood.
14 http://software.astrogrid.org/p/jsamp/1.3/.
15 http://pythonhosted.org//sampy/.
6.4.1. Fitting options
We provide the following fitting optimization methods and fit

statistics from Sherpa in Iris. Refsdal et al. (2009) discuss Sherpa’s
statistics in detail. Here, we briefly present the options.

The optimization methods available in Iris are variations of
theNelder–Mead simplex, Levenberg–Marquardt, andMonte Carlo
algorithms. The Nelder–Mead simplex method, which finds the
local minimum of a function in parameter space through a direct
search method, is an adaptation of the algorithms described in
Wright (1996) and Lagarias et al. (1998). Levenberg–Marquardt
optimization finds the local minimum of non-linear least squares
functions of the model parameters (Moré, 1978). Lastly, the Monte
Carlo method uses a differential evolution algorithm outlined in
Storn and Price (1997) to find the global minimum in parameter
space.

Sherpa provides several χ2 statistics with different variances.
For example, users can use the variance of the y-uncertainties (or
y-values if there are no uncertainties), or they can set the variance
to 1. Also included are two maximum likelihood functions based
on Poisson statistics: Cash and C-statistic (Cash, 1979).

6.5. Science tools

We provide built-in science tools that perform calculations
commonly used in SED analysis: redshifting, interpolation, and
integration. The data are setup on the Java-side of Iris, but the
actual calculations are performed in sherpa-samp.

The open SEDs are listed in the Science Tools frame. The user
selects the SED they wish to analyze, and inputs the required
information for a calculation.

6.5.1. Redshifting
Redshifting SEDs in Iris refers to cosmological redshift. The

spectral values are transformed into wavelength-space before
shifting the SED. Because the apparent magnitude of a source is
dimmer at high redshifts than low redshift, we correct the flux so

http://software.astrogrid.org/p/jsamp/1.3/
http://pythonhosted.org//sampy/
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that the area under the shifted SED equals that of the un-shifted
SED using

fzf (λ) = fzi(λ)

N
k=1

(fzi(λk+1) + fzi(λk))

N
k=1

(fzf (λk+1) + fzf (λk))

, (1)

where fzi is the observed flux at the initial (observed) redshift zi, fzf
is the flux at the final (target) redshift zf , λ is the wavelength, N is
the number of points in the SED, andλk is thewavelength of the kth
point in the SED. Insherpa-samp, we extend the astLib16 astSED
class that implements Eq. (1).

From the user’s perspective, the user supplies the initial and
final redshift of the SED and clicks ‘‘Create New SED’’.

6.5.2. Interpolation
Iris provides 1D interpolation along the spectral axis. There

are three interpolation options: linear, linear spline, and nearest
neighbor. Interpolation may be carried out on a linear or logarith-
mic scale. Users may choose the number of bins, the spectral range
over which to interpolate, andmay choose to smooth the resultant
SED via a boxcar method.

6.5.3. Integration
The Integration tool was developed for estimating integrated

fluxes of a SED. The tool acts as a wrapper of the astLibmethods
calcFlux and integrate, which in turn use the composite
trapezoidal rule to integrate the SEDs.

Iris provides two methods of integration: (i) through a user-
defined passband, and (ii) through a photometric filter. The first
option lets the user specify the spectral range in wavelength, fre-
quency, or energy units (Angstroms, Hz, and keV, respectively) to
integrate under. The second estimates the integrated flux mea-
sured through any of the photometric filters provided by the Span-
ish Virtual Observatory’s (SVO’s) Filter Profile Service17 (Solano,
2013). This service has an extensive collection of over 1000 filters
at IR, optical, and UV instruments. The user chooses from a list of
filters that can be searched by double-clicking on an instrument
name, or by searching for a string in the browser. The user sees the
minimum, maximum, and effective wavelengths of the filters be-
fore applying the filter to the SED. Both methods return the effec-
tive wavelength of the passband in Angstroms and the calculated
flux in Jansky. The user can export the data to a new SED or save
the results to a simple ASCII formatted file.

Notice that Iris currently integrates the SED data points, possi-
bly after an interpolation, and not the model. So, if the transmis-
sion curves or passbands do not completely overlap with the SED
Iris will return a NaN (Not a Number).

7. Plug-ins: the Software Development Kit

Iris offers a Java Software Development Kit (SDK) that can be
used to extend the Iris capabilities through the use of dynamically
pluggable add-ons, or plug-ins. The use cases for this are listed
below.

New functionality A developermaywant to add new capabilities
in one or more new Components. This use case can be
broken down in more detailed and concrete extensions,
described later in this section.

16 http://astlib.sourceforge.net/.
17 http://svo2.cab.inta-csic.es/theory/fps/index.php.
Custom-to-Standard adapters A developer may want to create
adapters that query a non-standard service, or load a
non-standard dataset, and then turn the data to SEDLib
objects, thus effectively standardizing them so that they
can be used by other components in the Iris environment,
or reused by other VO applications. In other terms, one
can achieve interoperability using the Iris infrastructure
starting from a non-interoperable service, file, or tool. Iris
actually has some built-in Custom-to-Standard adapters,
like the sherpa-samp layer described in Section 6, or
the ASDC plug-in interface that queries a quasi-standard
service, described in Section 7.2.2.

This section describes Java plug-ins, while Section 3 described
how users can extend the models for fitting SEDs using Python
functions.

7.1. Anatomy of a plug-in

A single Java Archive (jar) file can contain several plug-ins, and
each plug-in can bundle several Iris Components.

Each Component can provide several additions to Iris, as
described in some detail below.

7.1.1. Menus and buttons
Usually, although not always, an Iris Component is visible to the

user as either a set of buttons on the Iris Desktop, or as a set ofmenu
items in the Iris menu bar, or both.

Menu items can be added to either the File menu or to the Tools
menu in a specific plugin-related folder.

While the implementation of such buttons and menu items
could be done from scratch by implementing some Java Interfaces,
a set of abstract classes implements a lot of the boilerplate code and
makes some convenient assumptions. This way buttons and menu
items can be created with very few lines of code.

Menu items and buttons can be customized by providing the
button name, a description that will be rendered as amouse-hover
tooltip, and icons.

7.1.2. Command line
Iris offers a framework for providing simple command line

interfaces to its tools. For example, Iris ships a command line
interface to the SED Builder (see Section 6) that allows users to
import non-standard files in bulk through scripts, possibly starting
from templates saved interactively from the SED Builder.

The framework is extensible through a simple dispatching
mechanism. Each component has a name that is used to dispatch
the command line argument to the right CLI engine. For instance,
the line

./Iris builder config.txt

instructs Iris to dispatch the config.txt argument to the SED
Builder’s CLI engine. Components bundled with plug-ins can
provide such an engine by implementing the
ICommandLineInterface Java Interface as shown in Listing 4.

package cfa.vo.iris;

/**
* A simple interface for providing CLI access in
* an extensible , pluggable way
* @author olaurino
*/

public interface ICommandLineInterface {

/**
* The name that has to be associated with the
* implementing component.
* When the calling application parses the

http://astlib.sourceforge.net/
http://svo2.cab.inta-csic.es/theory/fps/index.php
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* command line, it will interpret the first
* argument as the component to which the
* command has to be relayed, using this string
* as a key.
*
* @return The compact name that identifies \
this
* CLI
*/

String getName();

/**
* Callback that gets called when a command \
line
* is parsed and associated to the implementing
* component.
*
* @param args The command line arguments.
*/
void call(String[] args);

}

Listing 4: Every Iris component can expose a command line
interface. Iris dispatches the command line arguments for the
relative component to process. This code is written in Java.

7.1.3. SAMP handlers
A possible extension that plug-ins can offer to the users is SAMP

handlers. When Iris receives a SAMP message that matches the
Handler’smtype, themessage is directly dispatched to theHandler
itself by the Iris framework. As a matter of fact, Iris just offers
a convenient shortcut to the excellent jsamp implementation
of SAMP, making it available to the users with just the bare
minimum amount of work required. The setup of the SAMP
infrastructure through jsamp is all done by Iris, including a keep-
alive mechanism that brings a SAMP hub up when an existing one
is shut down.

A hook is provided for Components willing to send their own
SAMP messages to the SAMP Hub, again as a convenient shortcut
to jsamp.

7.1.4. Custom events
The Iris Events Framework is itself extensible: this way plug-in

developers can, if needed, create their own nested architecture for
their plug-in’s Components.

7.1.5. SED attachments
Components can attach arbitrary objects to the SEDs managed

by the SEDManager. This way users can rely on the Iris framework
to manage the additional information they might want to store
about the individual SEDs. When SEDs are deleted, the manager
takes care of releasing any references to the attachments, reducing
the risk of memory leaks.

7.2. Plug-in examples

7.2.1. ASDC—stable
The Italian Space Agency Science Data Center (ASDC) hosts a

databasewith tens of catalogs in a verywide range of wavelengths,
also providing time domain information.

A plug-in for providing Iriswith a rich graphical user interface to
query their database was developed by the ASDC in a collaboration
between the ASDC and the Iris teams. The plug-in became part of
the main Iris distribution in v2.0 and was a valuable test bench to
review, validate, and improve the Iris Software Development Kit.

While the ASDC data query tool is now part of the Iris
distribution, this tool provides a very good example of how a
plug-in can be integrated seamlessly in the Iris framework to add
specific value to the overall application. Integration can be so
seamless, actually, that including the plug-in into the main Iris
distribution is almost exclusively a matter of configuration rather
than of coding.

The ASDC data query tool extends the capabilities of the SED
Builder by providing a rich graphical user interface that allows
users to check what archives to query, and since the ASDC query
is a positional cone search, the client provides different adjustable
search radii for each catalog that default to reasonable values
consistent with the resolving power of the individual instruments.

Moreover, the tool allows users to query for specific observation
time ranges, thus allowing basic time domain analysis of the SEDs.

This component proves several points about the Iris framework
and SDK, as listed below.

Custom-to-Standard adapters The ASDCweb service backing up
the implementation of the query tool does not comply
with any VO data access protocols (at least not yet), as
this service was designed as a private interface to their
database to be consumed by a dedicated client like the
one implemented in Iris. The data files coming from the
service, on the other hand, are compliant with the IVOA
specifications, so they can be directly read by SEDLib and
passed to the SEDManager.

Interoperability Although not designed as part of Iris, the ASDC
plug-in integrates seamlessly with the Iris built-in com-
ponents.When the ASDCquery tool downloads data from
the service, the data are listed in the SED Builder and vi-
sualized in the SED Viewer, even though the ASDC tool
does not interact directly with any of them. They all in-
teract only with the SED Manager and they get notified
of changes by the events that are fired when Models are
changed.

The Iris SDK As it will be explored in some detail in Section 7.4,
a plug-in developer can pretty much focus on the im-
plementation of the components’ business logic, with-
out worrying too much about the boiler plate code
required to configure such components. By using the ab-
stract classes that the Iris framework provides, one can
leverage the existing components with just a few lines of
code and then start adding value to the entire application.

7.2.2. Vizier—experimental
Experimental plug-ins are shipped with Iris but they can only

be activated by turning on switches on the Iris command line. For
instance, if one starts Iris with the command ./Iris --vizier
an experimental plug-in18 for the CDS Vizier photometric service
gets loaded in the usual Iris desktop.

7.2.3. R—experimental
A highly experimental proof-of-concept plug-in was developed

to explore the possibility of interfacing Iris with rich analysis
environments like R. The plug-in shows how one can beam data
from Iris to R and trigger some analysis on the dataset in R.19

18 While this client should work fine most of the time, users should not expect
proper error handling, neither there is a way to change the search radius.
19 In order tomake this plug-inwork one needs to install R and the Java-R interface
package, and then set up some environment variables and start Iris in a non-
standard way. If interested in experimenting with this plug-in, please contact the
corresponding author.
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7.3. Other extensibility points

7.3.1. Custom file readers
Iris supports a fair number of file formats natively: VOTable,

FITS, CSV, TSV, ASCII, and IPAC tables. However, new file filters can
be created and loaded at run-time. One can also create filters for
the natively supported files. In this case, the custom filter would
parse the file andmap themetadata to the IVOA Data Model fields.

7.3.2. Persistence
Components can also get a handle to the configuration directory

(usually a hidden folder in the user’s home directory) if they need
to persist information like user’s preferences, local databases, or
work sessions.

7.4. How to write an Iris plug-in

Iris uses Maven Archetypes to streamline the process of
building and distributing Iris Java plug-ins.

You might also write plug-ins without using Maven, but you
would need to take care of many steps that the Maven-generated
project automatically takes care of, like the inclusion of your
dependencies in your plug-in’s jar file.

In order to have a test plug-in up and running you need to create
a new project from the Maven archetype:

$ export repo=http://vaotest2.tuc.noao.edu:8080/\
artifactory/

$ mvn archetype:generate\
-DarchetypeRepository=$repo \
-DarchetypeArtifactId=iris-plugin-archetype \
-DarchetypeGroupId=cfa.vo \
-DarchetypeVersion=1.1

The above command will ask you some questions about the
metadata for your plug-in project, like the group id, the project
id (called artifact-id in Maven), and the version. At the end of the
process you should have a directory named after your project-id.
This directory contains all the files needed to build and package a
test plug-in.

You can type mvn package from the newly created directory
and Maven will package the test plug-in for you in the target
directory as a jar file.

You can use the Iris Plug-in Manager component to install this
jar file into Iris. As soon as the plug-in is installed, a new button
should appear on the Iris desktop. If you click on the button, a
rather impressive dialog box with the universal salutation ‘‘Hello
World!’’ should appear on your screen.

You can inspect the source code of this project and notice that
most of the code is made of metadata strings and basic class def-
initions and instantiations. By inheriting from the abstract classes
that are provided with the Iris SDK, the actual code that one needs
to implement starts from the implementation of theonClick call-
back of the AbstractPluginMenuItem class. From that call on,
a plug-in developer can focus on the implementation of their com-
ponents and start using the hooks provided by the Iris Framework
in order to interoperate with the other Iris components, and pos-
sibly with other VO applications.

One can start from this dummy project, inspect the source code,
make changes to the package and class names and to the metadata
strings, and then start implementing their component’s business
logic and user interface.

The Iris website contains further documentation on how to
write plug-ins, and you can contact the authors of this paper for
further information.
8. Future plans

We are working on improving Iris in several ways. With the
VAO shutting down in 2014, the development of Iris has been
taken over by the Chandra X-ray Center group at the Smithsonian
Astrophysical Observatory.

While the current Software Development Kit is focused on
letting plug-ins contribute SEDs and SED segments to the user’s
workspace, wewant to improve theways inwhich plug-ins can in-
teract with the visualization and fitting code, decoupling Specview
and Sherpa.

We are also exploring solutions to overcome one of the limita-
tions in the current code, namely the handling of high resolution
spectra, that is mostly due to a visualization issue.

Several improvements will derive from the inclusion in Iris
of the latest Sherpa version, and in particular of the new code
for interpolating templates in template fitting. This will allow
users to combine templates with other templates and functions
and compute photometric redshifts through template fitting, for
instance.

Also, we want to provide finer grained control over the visual-
ization and manipulation of individual components in the model
expressions.

From the user interface point of view, we are planning to pro-
vide Python bindings to enhance the integration of Iris in cus-
tomized, complex scientific work-flows.

9. Conclusions

Iris is a Virtual Observatory application designed with the goal
of streamlining the construction of broadband spectral energy
distributions while providing flexible and robust tools for their
analysis, with a stress on interoperability and extensibility.

To summarize, Iris provides: built-in capabilities for building,
viewing, and analyzing broad-band spectro-photometric SEDs; a
Python framework for fitting user-providedmodels and templates;
interoperability with Virtual Observatory tools through the Simple
Messaging Application Protocol (SAMP).

The Iris layered architecture takes advantage of the Virtual
Observatory standards and protocols without exposing their com-
plexity to the end users, who still benefit from the added interop-
erability. At the same time, developers can use a middle layer of
abstraction that exposes the domain objects, i.e., photometric
SEDs, and the user’s workspace, in a clean and consistent way
through a Java software development kit.

This way Iris combines several existing software components
with new dedicated software, and provides hooks for astronomers
and software developers that want to leverage the general
interoperable framework while plugging in their own code.

Iris is available as an Open Source project, and can be down-
loaded as a binary or source distribution for Linux and OS X.
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