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ABSTRACT

The VOEvent standard provides a means of describing transient celestial events in a machine-readable
format. This is an essential step towards analysing and, where appropriate, responding to the large
volumes of transients which will be detected by future large scale surveys. The VOEvent Transport
Protocol (VTP) defines a system by which VOEvents may be disseminated to the community. We describe
the design and implementation of Comet, a freely available, open source implementation of VTP. We use
Comet as a base to explore the performance characteristics of the VTP system, in particular with reference
to meeting the requirements of future survey projects. We describe how, with the aid of simple extensions
to VTP, Comet can help users filter high-volume streams of VOEvents to extract only those which are of
relevance to particular science cases. Based on these tests and on the experience of developing Comet, we

Time domain astrophysics
Network protocol design

derive a number of recommendations for future refinements of the VTP standard.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Exploring the astrophysical time domain through timely
follow-up observations of transient and variable sources offers the
potential of many and varied scientific results. However, achieving
these results requires a fast and reliable way of disseminating suf-
ficient information about new transients to appropriate follow-up
facilities.

Mechanisms for distributing news of transient events already
exist: both the NASA Gamma-ray Coordinates Network! (GCN) and
The Astronomer’s Telegram? have long track records of enabling
transient astronomy. However, the next generation of large-scale
survey telescopes such as Gaia, SKA and LSST promise an increase
by several orders of magnitude in the rate of transients being re-
ported. The sheer volume of events presents a scalability challenge:
itis no longer practical for even large teams of astronomers to con-
sider reading, understanding and responding to these notifications
manually. Automation is essential. Furthermore, the diverse nature
of these transient hunting facilities — covering not just electromag-
netic gamut from low-frequency radio telescopes to space based
X- and y-ray monitors, but also other types of instrumentation
such as gravitational waves detectors - means that a flexible and

* This code is registered at the ASCL with the code entry ASCL: 1404.008.
E-mail addresses: j.swinbank@uva.nl, john@elsevier.swinbank.org.

1 http://gcn.gsfc.nasa.gov/.
2 http://www.astronomerstelegram.org/.
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adaptable machine-readable mechanism must be adopted for de-
scribing transients.

The International Virtual Observatory Alliance (IVOA) has
developed the VOEvent® (Seaman et al., 2011) standard to ad-
dress these issues. VOEvent provides a standardized, machine-
and human-readable way of describing a wide range of transient
astronomical phenomena. An individual VOEvent document (or
“packet”) describes a particular transient event, providing not only
information about what has been observed and how the obser-
vations were made, but also making it possible for the author
to include a scientific motivation for why this particular event is
interesting. Furthermore, a VOEvent may cite other VOEvents, pro-
viding more information about a given transient or, if necessary,
superseding or retracting an earlier message.

VOEvents are published as XML (Bray et al., 2008) documents
which should be in compliance with schema (Gau et al., 2012;
Peterson et al., 2012) produced by the IVOA. Working in XML
enables VOEvent to make extensive use of other relevant [VOA
standards and enables convenient processing with a wide range of
commercial and open-source software.

The VOEvent standard defines the structure and content of a
VOEvent packet, but it does not describe a mechanism by which
the author of a VOEvent may distribute it to potentially interested
recipients. This transport agnosticism provides the maximum
possible flexibility for individual projects to disseminate events

3 http://www.voevent.org/.
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Fig. 1. An overview of the passage of a VOEvent through a VTP network. The
network roles and connection types described in Section 2 are all represented.
Arrows indicate the direction of data flow; their style represents the type of
connection. The dashed arrow is an author-to-broker connection, while solid arrows
are broker-to-subscriber connections (which are equivalent to broker-to-broker).
First the event is sent by an author to a single broker. This broker then distributes it
to all of its subscribers, which may include other brokers, which, in turn, redistribute
the event until every entity on the network has received a single copy: de-
duplication, where necessary, is applied as discussed in Section 3.2.3.

Source: Adapted from Swinbank (2014).

by whatever means best meets their science goals. However, a
baseline specification for a simple transport protocol is of value
in terms of providing a common starting point for building
international VOEvent distribution networks (Williams et al.,
2012). The VOEvent Transport Protocol (VTP; Allan and Denny,
2009) is now seeing widespread adoption as such a baseline.

This paper describes Comet, an implementation of all the
components necessary for interacting with VTP while acting as
a test-bed for production-level VTP deployments and for new
technologies and “value-added” services to assist in addressing
the transient deluge. Section 2 provides an overview of VTP and
discusses the general topology of event distribution networks.
Section 3 describes how Comet has been designed and built to meet
the protocol specifications. Section 4 describes how Comet builds
upon VTP to help address future challenges in VOEvent filtering
and selection. Section 5 considers the performance implications
of deploying VTP in support of next-generation astronomical
infrastructure, considering both the scalability of the protocol
to large numbers of events and to high latency connections. In
Section 6 we consider the security implications of VOEvents, how
they can be addressed at the transport level, and describe a system
being prototyped in Comet. Implications for future revisions of the
VTP standard are summarized in Section 7. Section 8 describes the
terms under which Comet is available and how to obtain it, while
a summary of the results are presented and some more general
conclusions drawn for future of VOEvent transport in Section 9.

2. VOEvent transport protocol

VTP provides a simple system for distributing VOEvents from
one or more authors to a network of potentially interested sub-
scribers. It builds upon the semantics of VOEvent interchange de-
scribed in the VOEvent standard (Seaman et al., 2011), but includes
only those entities which directly interact by means of the net-
work. To wit, VTP defines the following network roles:

Author. An author is responsible for creating and publishing one
or more VOEvents.

Subscriber. A subscriber receives the VOEvents generated by one
or more authors.

Broker. A broker receives VOEvents from other network entities,
re-distributes them to one or more subscribers. In addi-
tion, a broker may perform “added value” services. These
could be at the request of particular subscribers (e.g. to

apply a filter to the event stream sent to that subscriber),
or applied more generally to the event stream (e.g. to ap-
ply some annotation to all events processed).

Connections between these entities take place over TCP (Cert
and Kahn, 1974). The VTP standard defines three types of connec-
tion:

Author to Broker. The author makes a TCP connection to the
broker and transmits a VOEvent packet. On receipt of
a syntactically valid message, the broker sends an ac-
knowledgement. The connection is then closed; submit-
ting a further VOEvent packet would require initiating a
new connection.

Broker to Subscriber. The subscriber opens a TCP connection to
the broker, which remains open indefinitely. The broker
and subscriber send periodic “heartbeat” messages over
the connection to verify that it remains live. When the
broker receives an event for distribution, it sends it to the
subscriber over this connection. The subscriber replies
with an acknowledgement.

Broker to Broker. A broker may subscribe to the output of an-
other broker. In doing so, it acts as a subscriber, and the
relationship between them is as described in “Broker to
Subscriber”, above.

Note that the broker-to-subscriber connection remains open
at all times, even when a subscriber has recently received an
event. The standard mandates that the subscriber must always be
prepared to receive more events, even while a previous event is still
being processed: otherwise, a backlog of events waiting to be sent
to a particular subscriber could build up and overload the broker.

By causing brokers to subscribe to the output of their peers, it
is possible to build extended networks of mutually-interconnected
brokers. An author need only publish to one broker and ultimately
their event will be distributed to all entities on the network. This
is not only efficient, but it is also robust: the failure of any given
entity can only cause local disruption to the distribution system.
The topology of such a network, and the path a VOEvent packet
might take across it, is shown in Fig. 1.

In addition to passing VOEvent XML documents, VTP defines
a “Transport” document type. Transport documents are used for
the heartbeat messages between brokers and subscribers and
for sending acknowledgement of event receipt. The documents
are kept intentionally short, providing simply a timestamp,
an indication of the originator, and - in the case of an
acknowledgement - the identity of the event being acknowledged.

VTP makes limited provision for securing access to the network:
that is, for limiting the authors and subscribers which may connect
to a given broker. The simplest, albeit least flexible, approach is for
the broker to maintain a “whitelist” of the IP addresses of entities
which are authorized to connect, and simply drop connections
coming from elsewhere. Such a system is convenient and easy to
implement for small networks, but can rapidly become unwieldy as
the list of authorized users grows or as those users need to connect
from multiple addresses. An alternative is therefore suggested
in the standard based on cryptographically signed transport
messages, which enable an entity to securely demonstrate its
identity on connection. The means by which these signatures may
be applied is not specified in the VTP standard, which rather
refers to the systems proposed by Rixon (2005), Denny (2008) and
Allen (2008). The application of cryptographic signatures to XML
documents is a potentially complex topic, and one to which we
return in Section 6.
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3. The design and implementation of Comet

Comet is a freely available, open source package which can fulfil
any or all of the roles within a VTP network. It can receive events
from remote brokers (the subscriber role), receive events from
authors and distribute them to subscribers (the broker role) and
it provides a tool which can publish a VOEvent to a remote broker
(the author role). Comet aims both to act as a production-ready
event distribution system, which projects can immediately start
using to service their science goals, and as a convenient system
for exploring the characteristics of VTP and prototyping future
extensions to the protocol. The first of these goals has already
been achieved, with Comet instrumental in low-latency follow up
of gamma-ray bursts (Staley et al., 2013). Early results from the
second goal are described in the subsequent sections of this paper.

Version 1.1.0 of Comet was released in February 2014 and is
current stable version at the time of writing. Here, we specifically
consider the implementation of this version, although there are
currently no plans for major architectural changes in the future.

3.1. Twisted Python and event-driven programming

Comet is implemented in Python, and is built atop the Twisted
networking engine.* Twisted enables an event-driven and asyn-
chronous style of development which is extensively used through-
out Comet.

Conventionally, we think of programs as being executed in
order: the system executes the instructions described by the first
statement, followed by the second statement, and so on until the
process is complete. Of course, spreading a process across multiple
threads of execution makes the precise ordering of statements
non-deterministic (and, indeed, introduces a whole new level
of complexity in the process; Lee, 2006), but the fundamental
point remains: the aim is to execute the program as rapidly and
efficiently as possible and then exit.

It is obvious that this model does not map well to network based
applications. Consider the “subscriber” role in a VOEvent network:
it is not rushing to finish some particular task and then terminate,
but rather it continues listening to the network indefinitely for the
arrival of VOEvents, and takes appropriate action when a packet is
received. Event-driven programming is the generalization of this
concept: rather than a list of instructions to be executed sequen-
tially, we define the actions that should be taken in response to
possible events. Twisted provides an “event loop” which waits for
events and calls the appropriate actions when they occur.

When talking to the network, Twisted provides the Protocol
as an abstraction for managing events. A protocol defines the
interaction that a particular component of the system has with the
network. For example, Listing 1 shows a simplified version of the
protocol for Comet’s VOEventReceiver. This is the part of the
broker which listens to the network for submissions from authors.
Four separate events are handled by this protocol:

e When anew connection is initiated by an author, the broker sets
a timer on the connection. If no traffic is received, the timer will
eventually reach zero and the connection will be timed-out. The
timer is initialized to the essentially arbitrary value of 20 s; this
may be refined (or made user-configurable) in light of practical
experience in future Comet releases.

e When a connection is lost, the connection is closed and the
timeout is aborted.

e When a connection times out, close it.

4 https://twistedmatrix.com/.

class VOEventReceiver (Protocol):
TIMEQUT = 20 # seconds

def connectionMade(self):
setTimeout (self.TIMEOUT)

def connectionLost(self):
setTimeout (None)
close_connection()

def timeoutConnection(self):
log.msg("Connection timed out")
close_connection()

def stringReceived(self, data):
try:
message = parse(data)
if is_valid(message):
log.info("Good message received")
acknowledge (message)
process_event (message)
else:
log.warning("Bad message received")
except ParseError:
log.warning("Message unparsable")
finally:
close_connection()

Listing 1: An example of an event-driven Twisted protocol, based
on Comet’'s VOEventReceiver.

e When a string is received over the connection, parse it and
see if it can be recognized as a valid VOEvent. If so, return
an acknowledgement and process the newly received event
(for example by re-distributing it to subscribers). If not, log a
warning message. Finally, shut down the connection.

Similar, although often more complex, protocols are defined for
all of the other roles in the system: an author connecting to a broker
(VOEventSender), a broker to a subscriber
(VOEventBroadcaster), and a subscriber to a broker
(VOEventSubscriber).

Event-driven programming provides a convenient abstraction
for responding to network events. However, it does not address is-
sues regarding concurrency. As described in Section 2, VTP requires
that even immediately after receiving an event subscribers must be
ready to accept another: there can be no delay while the event is in-
gested. Contrast this with the model described above and outlined
in Listing 1: here, when an event is received, each of the functions
parse(), is_valid(), acknowledge (), process_event ()
and close_connection() is called in turn. If these operations
are not assumed to be instantaneous, we must wait for them to
complete before proceeding. While waiting, new events cannot be
received. We are thus in violation of the VTP standard.?

Twisted addresses this problem through the use of Deferreds.
A deferred is effectively a promise that processing is underway
and that results will be available in future. We can then queue
up other processing tasks (or “callbacks”) that will be executed
when the result of the deferred is available. For example, we could

5mn practice, the implementation of some of these operations used in the Comet
codebase can be assumed to be effectively instantaneous. This is safe so long as
the time taken to parse is sufficiently short that no backlog of events waiting to be
processed builds up and no network timeouts occur.
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define a version of parse () - call it deferred_parse() - that,
rather than returning an object representing a parsed version of
the VOEvent document, returns a promise to eventually parse the
document in the future and then make it available for further
processing. We can then queue up our other functions to run only
when parsing is complete. For example, see Listing 2, in which we
queue up a number of callbacks to be run when parsing is complete
and also add an “errback” which handles logging a message if any
of the callbacks fail to run successfully.

def stringReceived(self, data):

= deferred_parse(data)
.addCallback(is_valid)
.addCallback(check_role)
.addCallback(acknowledge)
.addCallback(process_event)
.addErrback(log_failure)
.addCallback(close_connection)

[T e Ty o Ty o PN o PN o Pl o P

Listing 2: A version of VOEventReceiver.stringReceived ()
(shown in Listing 1) based on deferred processing.

Finally, we must implement deferred_parse(). Simply
returning a deferred from a function does not prevent it from
blocking. Instead, we create a dedicated thread which is devoted to
parsing the data, and have it run concurrently with the rest of the
application. When that thread completes, the deferred fires with its
result. Conveniently, Twisted makes it easy to apply this pattern to
a blocking function such as our parse () : see Listing 3.

from twisted.internet.threads import \
deferToThread

def deferred_parse(data):
return deferToThread(parse, data)

Listing 3: The implementation of the non-blocking
deferred_parse () function.

Although the examples presented in this section are only in-
tended to be illustrative, they demonstrate the concepts of asyn-
chronous, event-driven programming upon which Comet is built
and are fundamental to understanding its operation.

It is worth emphasizing that the techniques described in this
section are not unique to Twisted. Other frameworks such as
gevent® and asyncio’ provide implementations of similar capa-
bilities in Python, and equivalent libraries are available for many
other languages. However, the rich software ecosystem supported
by Twisted, combined with its demonstrated ability to deliver ac-
ceptable performance (Section 5), have provided an excellent plat-
form upon which to develop Comet.

3.2. Comet architecture

Comet is built around the four Twisted protocols discussed
in Section 3.1. These enable it to take the part of either side in
each of the three connection types discussed in Section 2. For
the convenience of end users, these are made accessible under
two distinct front ends. In this section, we first introduce those
components and describe the relationship between them, and then
discuss how Comet implements some specific requirements of VTP.

6 http://www.gevent.org/.

7 Recently added to the Python standard library;
https://docs.python.org/3.4/library/asyncio.html.

3.2.1. The components of Comet

The authorial component is comet-sendvo. This is a command-
line tool which enables the user to submit a VOEvent to a remote
broker. The user is expected to supply the VOEvent either on stan-
dard input or via a reference to the filesystem; comet-sendvo trans-
mits it to the specified destination using the VOEventSender
protocol and shuts down.

Processing a single event and then exiting is an appropriate
model for an author, but is not the behaviour required of a broker
or subscriber. Rather, these tools must remain active, continuing to
receive and process VOEvents until the user shuts them down. To
support this mode of operation, Comet can run as a “daemon”, or
background process. The Comet daemon can:

1. Accept submissions from authors (including, of course, comet-
sendvo);

2. Subscribe to event streams from one or more remote brokers;

3. Distribute event packets received (whether by direct author
submission or by subscription) to its own subscribers;

4. Execute arbitrary logic based upon the event packets received.

A single Comet daemon is capable of performing any or all of
these actions, depending upon configuration: it is not necessary to
start separate “broker” and “subscriber” daemons, for example.

Both comet-sendvo and the Comet daemon make extensive
use of the facilities provided by Twisted for event-driven and
asynchronous programming, as well as its support for logging and
daemonization. They are exclusively command-line driven, and do
not rely on configuration files.

3.2.2. Schema validation

It is possible to construct XML documents which claim to be
VOEvents but which do not, in fact, adhere to the VOEvent XML
schema. In some cases, the document may be completely un-
parsable; in others, it may be possible to extract some data, but
with unpredictable results and no guarantee that the recipient re-
ceives the information the author intended.

Current versions of Comet insists that events being submitted
to the broker by an author comply with the VOEvent 2.0 schema;?
extending this to include later versions as they become available is
straightforward. Schema validation is applied to the event before it
is accepted for redistribution by the broker; if that validation fails,
a nak message which indicates the problem is sent to the author
and the event is dropped. It is to be hoped that a well-intentioned
author will correct and resubmit the event.

When receiving events from an upstream broker (either as a
broker itself or as a subscriber) Comet does not attempt to validate
the event against the schema (although it is still required that the
event must be parsable). This is because there is no way to indicate
the failure to the author: any nak sent to the upstream broker
will not be propagated further. The author cannot know that their
event has been rejected, will not correct and re-send, and valuable
scientific content may be lost.

3.2.3. Event de-duplication

As described in Section 2 it is possible to build a mutually
interconnected “mesh” of brokers to efficiently and reliably dis-
tribute VOEvent packets to a large number of subscribers. How-
ever, this runs the risk that events could continue “looping” on the
network indefinitely, as two or more brokers which subscribe to
each other’s feeds repeatedly exchange the same event. To avoid
this problem, Comet refuses to process any given event more than

8 http://www.ivoa.net/xml/VOEvent/VOEvent-v2.0.xsd.
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once: if a newly received event is the same as one which has been
previously seen, it is simply dropped without being further dis-
tributed.

In order for this approach to be effective, it is necessary to define
what it means for two VOEvent documents to be “the same”. In
particular, due to the nature of XML, it is possible for exactly the
same information about an event (the “infoset”) to be encoded
in multiple different, but all equally valid, XML documents. At
the simplest level, this is because XML is (for the most part)
white space agnostic—new lines or spaces can be inserted without
changing the meaning of the document. The question becomes
more complex, though, when we consider the various versions
of the VOEvent standard. Version 2.0 (Seaman et al.,, 2011) is
current, but the previous version (1.1; Seaman et al., 2006) is still
in use by some systems. If the same information about the same
astronomical event is encoded in a VOEvent 2.0 document and a
VOEvent 1.11 document, are these “the same”?

This question is particularly pertinent because this situation is
exactly that which exists in practice: since 2012,° NASA GCN has
issued both version 1.1 and version 2.0 VOEvents containing the
same information.

Seaman et al. (2011) require that each VOEvent carry an
IVORN'® which “will stand in for a particular packet”. It is this
IVORN that is used to identify events in the context of references
and citations, for example. There has been some debate!! as to
whether IVORNs uniquely identify a particular infoset or a particu-
lar representation thereof: this is not currently well defined by the
relevant documentation. In the case of the events issued by GCN, a
single IVORN is used to describe both the version 1.1 and the ver-
sion 2.0 VOEvent packets: this provides a de facto standard that the
IVORN identifies the infoset.

VTP makes no distinction between the versions of VOEvents
which it transmits: the same protocol may be used for version 1.1,
or 2.0, or putative future versions. However, the consumer of a
particular VOEvent may well have a toolchain that is tuned to work
with one particular standard. In other words, authors may wish to
use a VOEvent network to distribute multiple different versions
of the same event, while subscribers may depend on receiving a
specific representation of that event. If an author submits version
1.1 and version 2.0 representations of an event, it would not be
appropriate for a broker to regard them as duplicates and discard
one of them. The only possible conclusion is that the IVORN is not
a suitable means of identifying unique packets for the purposes of
de-duplication.

Comet therefore regards packets as duplicates only if they are
bit-for-bit identical with a packet which has been seen before.
This is determined by calculating the SHA-1 (Eastlake and Jones,
2001) cryptographic hash of every packet which is seen by a
Comet daemon and storing it, together with the time and date at
which the packet was seen, in a DBM-style (AT&T, 1979) persistent
database.'> When an event is received, its SHA-1 hash is calculated
and compared against the contents of the database to establish if
it has been seen before.

Each individual SHA-1 hash is stored as 40 bytes, plus a fur-
ther 13 bytes are used to record the timestamp. The total stor-
age requirement is therefore very modest. However, on a busy

9 http://gcn.gsfc.nasa.gov/admin/voevent_version20_available.txt.
10 |nternational Virtual Observatory Resource Name.
1 http://www.ivoa.net/pipermail/voevent/2012-March/002836.html.
12 “DBM-style” databases provide mappings between “keys” and “values” in the
manner of an associative array. Various libraries implementing this style of database
exist; Comet uses Python’s anydbm interface, which automatically chooses a
particular implementation based upon the platform on which it is running.

broker processing many events, the database could grow to a sig-
nificant size, wasting resources and slowing down access. There-
fore, Comet periodically removes all events older than 30 days from
its database. Duplicates issued more than 30 days after the origi-
nal event will therefore not be detected; however, an event loop
with such a long period poses no threat to the integrity of the net-
work. It may be appropriate to tune this timescale in future based
on practical experience with large scale VTP deployments.

It should be noted that this de-duplication scheme requires
that all entities on the network forward events unchanged: even
an apparently inconsequential change to an event packet which
results in a valid encoding the same infoset as before would
result in a different SHA-1 hash for the event. The current VTP
standard implies but does not absolutely require this behaviour:
see Section 7 for further discussion.

3.2.4. Security and whitelisting

The released version of Comet described here (1.1.0; Section 3)
does not implement an authentication scheme based on crypto-
graphic signatures as described in Section 2. Work is ongoing on
prototyping such a scheme using Comet as a test-bed: this is de-
scribed in Section 6.

When acting as a broker, Comet includes the ability to check
authors submitting events against a whitelist of IP addresses.
Multiple disjoint ranges of addresses to whitelist may be specified
using CIDR notation (Fuller et al., 1993), making the system very
flexible.

Comet does not currently provide built-in whitelisting support
for subscribers. However, equivalent functionality is available
through the use of an operating system level packet filter.

3.2.5. Acting on events received

Just receiving a VOEvent and optionally re-distributing it is of
limited practical value: ultimately, some recipient of the event will
wish to take action based upon it. The algorithms which may be
employed to determine whether a given event is worth of follow-
up are dependent on the particular science goals of the recipient,
are potentially complex, and are certainly outside the scope of this
paper. Since it is not possible to anticipate the requirements of the
end user in a universally applicable way, Comet rather seeks to be
easily adapted to each particular use case. Two mechanisms are
provided to make this possible.

The simplest option is that when a new event is received, Comet
can spawn an external process and provide the text of the event
packet to it on standard input. The process is run asynchronously,
so that potentially lengthy processing jobs can be run on events
without interrupting Comet’s regular operation. Comet monitors
the execution of the process and logs a warning if it is unsuccessful
(that is, if it exits with a status other than 0), but otherwise has no
control over the processing performed.

In some circumstances, the user may wish for more control than
is provided for by passing events to another process. Comet there-
fore makes it possible to write plugins, which can be loaded into the
daemon at run time. Users write plugins in Python, implementing a
standard interface. Plugins provide a __call__() method which
is invoked with the contents of an event whenever one is received.
An example is shown in Listing 4.

Comet automatically probes for all available plugins and makes
them available as command line arguments, so the user can specify
which plugins are required when the daemon is started. If required,
plugins may also define configuration parameters implementing
the IHasOptions interface; these are exposed as command line
options.
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from zope.interface import implementer
from twisted.plugin import IPlugin
from comet.icomet import IHandler, IHasOptions

# 4 plugin implements the IPlugin

# and IHandler interfaces

Q@implementer (IPlugin, IHandler)

class ExamplePlugin(object):
# The "name" attribute is used to refer
# to the plugin on the command line.
name = "example"

# The "__call__()" method is invoked
# when a new event 1s received.
def __call__(self, event):

print "Event received"

# The plugin must be instantiated before use.
example_plugin = ExamplePlugin()

Listing 4: A simple example of a Comet event handling plugin. This
plugin prints a message whenever a new event is received.

4. Filtering events

Next-generation telescopes such as LSST anticipate to detecting
and announcing transients using VOEvent at rates of perhaps
tens of millions of events per day (Kantor, 2014). It is unlikely
that most individual subscribers will have a use for all of these
events. Winnowing that event stream down so that each subscriber
receives only those events which are of direct relevance to them is
both efficient in terms of resource usage, as fewer events need to
be transported to and processed by the subscriber, but also enables
subscribers to deploy simple, well-targeted systems that address
their science goals, rather than attempting to devise efficient ways
to process millions of VOEvent packets.

Efforts to develop intelligent systems for alerting users only of
those events which are of relevance to them are ongoing, and will
continue in the future (Williams et al., 2009). Comet contributes
to this effort by introducing a powerful XPath (Clark and DeRose,
1999) based filtering system.

4.1. XPath queries

XPath is a language for selecting parts of and computing values
over an XML document. XPath expressions may return one of four
different result types:

e A Boolean value;

o A floating point number;

e A textual string;

e Aset of XML “nodes”, representing parts of the document.

XPath enables users to specify complex queries, including test-
ing the values of arbitrary elements or attributes specified in the
document and combining those tests with Boolean logic. A com-
plete reference is outside the scope of this paper, but some exam-
ples may serve to illustrate the possibilities.

Starting with string matching,

//Who/Author [shortName="V0-GCN"]

XPath expression 1

returns a set of all nodes in the document which list the au-
thor’s “short name” as VO-GCN. More complex matches can use
functions, such as

//How[contains (Description, "Swift")]
XPath expression 2

which returns the set of all nodes which mention “Swift” in
the context of a describing how the data was obtained. Numerical
comparisons are also possible:

//Param[@name="Sun_Distance" and @value>40]
XPath expression 3

provides the set of all parameters called Sun_Distance with
a numerical value greater than 40.
These expressions can be combined, so that for example

//How [contains(Description, "Swift")] or
( //Param[@name="Sun_Distance" and @value>40]
and //Who/Author [shortName="V0O-GCN"]) )
XPath expression 4

returns a Boolean value which is true if the event either men-
tions “Swift” or both has a Sun_Distance parameter greater than
40 and originates from GCN, and false otherwise.

4.2. Integration with Comet

Comet makes it possible for a subscriber to supply one or more
XPath expressions to a broker. When the broker receives an event,
it evaluates each expression over the event, and only forward it to
the subscriber if at least one of the expressions evaluates produces
a positive result.

Comet takes the result returned by XPath and applies Python’s
bool () built-in function to determine if the result is “positive”.
For example, the values True, 1 and "string" (the Boolean true
value, a non-zero number and a non-empty string) as well as a non-
empty node set are all positive, while False, O and "" (Boolean
false, the number 0 and an empty string) and the empty node set
are “negative” results.

VTP provides no standardized method for a subscriber to send
their filter preferences to the broker. Comet works around this
by overloading the Transport message system provided by VTP
and described in Section 2. According to the VTP specification,
it is legal for a subscriber to send a Transport message of class
authenticationresponse and with arbitrary metadata em-
bedded at any time during a VTP session. Comet looks for XPath
expressions encoded in this metadata and installs them as filters
for the subscriber; other brokers which comply with the protocol
but do not support this form of filtering should simply ignore the
message.

4.3. Alternative filtering systems

XPath provides a convenient, standardized and expressive lan-
guage for accessing and performing simple calculations and com-
parisons based upon the contents of XML documents. Incorporat-
ing XPath based filtering into Comet was straightforward and doing
so provides a powerful means of winnowing high-volume VOEvent
streams.

However, XPath is not appropriate for meeting every possible
use case. In particular, XPath expressions are evaluated over
individual VOEvents, with no reference to their surrounding
context. Consequently, XPath expressions cannot be used to draw
scientific conclusions - or even perform rate-limiting - based
on the evolving contents of a stream of events. Further, XPath
provides no specialist astronomical or mathematical routines: it
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is impractical to use it for filtering based on operations beyond
simple arithmetic and comparisons.

Given these considerations, it is likely that addressing some
scientific goals will require a different approach to filtering than
that currently supported by Comet. The VTP system explicitly
allows for this by encouraging brokers to layer arbitrary “added
value” services on top of the basic VIP system: a richer, more
astronomically-focused and context-aware filtering system is an
example of the possibilities. Indeed, such a service has precedent
in the form of SkyAlert (Williams et al., 2009), which provides a
Python-based interface to filtering events.

5. Performance

Comet has not been designed primarily for performance: at the
time of writing, typical VOEvent brokers are processing perhaps
a few hundred events per day, so the total computational and
storage demands are extremely modest. However, it is informative
to consider how both Comet and the VTP architecture scale to cope
with the millions of events per night promised by future facilities
such as LSST. In this section, we quantify both the number of events
Comet is capable of processing, the latency which it introduces to
the event stream, and the number of subscribers which a broker
can conveniently service. We begin by describing the test system,
move on to discuss the performance characteristics of the major
operations which Comet performs when processing an individual
VOEvent message, and then take a more holistic approach to
consider the performance of a networked Comet broker under a
variety of loads.

5.1. Test system configuration

The basic configuration of all tests below consists of one or more
authors connecting to a broker and sending it events which the
broker then distributes to one or more subscribers. The processes
acting as authors, brokers and subscribers were all run on the same
modest desktop system, based on an Intel Core i7 940 CPU'? and
8 GiB RAM. Storage was provided by two 7200 RPM magnetic disks
configured as a RAID-0 array. The system was running Debian'*
GNU/Linux with kernel version 3.13.

In realistic scenarios, VOEvent authors, brokers and subscribers
would not co-exist on the same system. However, providing many
separate test systems was impractical, and exchanging events over
the public Internet (or even over a local network) introduces an ex-
tra layer of uncertainty in terms of network latency. Instead, the
various processes being tested were run in isolated process con-
tainers using Docker.! Docker-based containers operate in much
the same way as traditional virtual machines, except that they in-
cur no virtualization overhead. They directly address the same ker-
nel as the host system, but are only able to communicate with
each other over (virtual) network interfaces. Within each container
a minimal Ubuntu'® Linux 12.04 system was installed, providing
Python 2.7.3 and Twisted 11.1.0. All testing was carried out with
Comet 1.1.0. The “Dockerfile” used to create exactly the system
used for these tests, as well as all the benchmarking scripts and
plugins described below, are available from the Comet repository
(Section 8).

5.2. Individual event processing

When an event is received from an author by the Comet broker
for redistribution to subscribers it passes through five distinct

13 Four cores with two threads each running at 2.93 GHz
14 http://www.debian.org/.

15 https://www.docker.io/.

16 http://www.ubuntu.com/.

processing stages. These are:

1. The XML document text is parsed into an internal data struc-
ture;

2. The VOEvent is checked for validity against the VOEvent 2.0
XML schema (Section 3.2.2);

3. The SHA-1 hash of the document text is calculated;

4. The hash is compared against, and, if necessary, appended to
the database of previously seen VOEvents (Section 3.2.3);

5. Optionally, one or more XPath expressions are evaluated
against the document before it is forwarded to each subscriber
(Section 4).

Most of these operations are likely to depend upon the partic-
ular VOEvent document being handled: a longer and more com-
plex message will naturally require more effort to process (the
exception is checking and recording the document against the
event database, which involves processing just the IVORN rather
than the complete document). To best represent a real-world
workload, the tests were carried out using a corpus of 16,425 VO-
Events harvested from currently operating VTP brokers between
5 and 15 July 2014.!7 The VOEvents originated from a variety of
sources, and include both notifications of astronomical phenom-
ena and sundry utility and test messages. The longest document
consisted of 9647 bytes; the shortest 636; the median length was
5002 bytes.

Sections 5.2.1-5.2.5 describe tests carried out to investigate the
performance of each of these operations in turn. A summary of the
results is presented in Section 5.2.6.

5.2.1. XML parsing

All 16,425 VOEvent documents in the test corpus were read
from disk and stored as textual data in memory. Each in turn was
parsed into Comet’s internal VOEvent representation.'® In order
to confirm that parsing was successful, the Comet API was used
to retrieve the version attribute from the parsed document and
confirm that it was equal to "2.0". The total time taken to parse
and read the attribute from all of the events was measured.

5.2.2. Schema validation

All test VOEvent documents were read from disk, parsed, and
stored in memory using Comet’s internal representation. The VO-
Event 2.0 XML schema was also read from disk and parsed into
an Ixml XMLSchema object, the same data structure as used by
Comet for schema validation during normal operations. The total
time taken to check all the events against the schema was mea-
sured. Two of the events failed validation.

5.2.3. SHA-1 calculation

All VOEvent documents in the test corpus were read from disk,
parsed, and stored in memory using Comet’s internal represen-
tation. The total time taken to calculate the 40 byte hexadecimal
SHA-1 hash for each event in turn was measured.

5.2.4. Event database operations
The contents of a particular VOEvent document are not relevant
when working with the event database: the database operations

17 All documents claiming to comply with the VOEvent 2.0 schema which
were distributed by any of voevent .phys.soton.ac.uk, voevent.dc3.com,
voevent.swinbank.org, 68.169.57.253,209.208.78.170 or
50.116.49.68 were collected. The three numerical IPv4 addresses are used by
NASA GCN and do not have DNS PTR records.

18 Comet represents XML documents using a custom-built wrapper around the
Element class provided by Ixml (http://Ixml.de/).
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<?zml wverston=’1.0’ encoding=’UTF-8’2>
<voe:VOEvent

xmlns:voe="http://www.ivoa.net/xml/VOEvent/v2.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

ivorn="ivo://comet.broker/test#TestEvent-2014-03-31T16:16:37" role="test" version="2.0"

xsi:schemalocation="http://www.ivoa.net/xml/V0Event/v2.0
http://www.ivoa.net/xml/VOEvent/VOEvent-v2.0.xsd"

>
<Who>

<AuthorIVORN>ivo://comet.broker/test</AuthorIVORN>

<Date>2014-03-31T16:16:37.040340</Date>
</Who>
<What>

<Description>Broker test event generated by Comet 1.1.0.</Description>
<Reference uri="http://comet.transientskp.org/"/>

</What>
</voe:V0OEvent>

Listing 5: An example of the form of VOEvent used for benchmark testing. The ivorn attribute of the VOEvent element and the Date
element were automatically generated and reflect the time at which the packet was created.

Table 1

Timing results for each stage of Comet’s processing of a VOEvent document. All
results except the check against the event database were based on a corpus of
16,425 genuine VOEvent documents; the check against the event database was
performed using synthetic test data. Each test is described in Section 5.2.

Operation Total (s) Per event (s)
XML parsing 1.625465 0.000099
SHA-1 calculation 0.152024 0.000009
Event database operations®:

Magnetic disk - 0.013331

tmpfs - 0.000499
Schema validation 1.385420 0.000084
XPath evaluation®:

Expression 1 0.218424 0.000013

Expression 2 0.221899 0.000014

Expression 3 0.579474 0.000035

Expression 4 0.283376 0.000017

2 Also includes SHA-1 calculation.
b Expressions as defined in Section 4.1.

only involve manipulating the arrival time of the VOEvent and
its SHA-1 hash. For this test, therefore, we do not make use of
the corpus of events described above. Instead, a series of test
VOEvent packets of the form shown in Listing 5 was generated.
Each packet was compliant with the VOEvent 2.0 schema, but
carried a relatively small payload amounting to little more than a
timestamp reflecting when the event was created.

A batch of 10,000 such test messages was generated and
stored in memory. The total time taken to both verify that each
VOEvent was not initially present in the event database and then
record it in the event database was recorded.’ Comet does not
provide an interface to the event database which does not involve
calculating a SHA-1 hash; the time measured therefore includes
hash calculation for each event.

The experiment described was initially performed with the
event database stored on magnetic disk. The mean time taken to
check and record an event in the database is shown in Table 1.
Note that this is orders of magnitude above the times measured for
the other processing steps. This is, perhaps, unsurprising: accessing
disk storage involves significant overhead. To mitigate this,
memory-based filesystem was created based on tmpfs (Kerrisk
et al., 2014) and both broker and subscriber were configured to

19 1nversion 1.1.0 of Comet, as tested, checking and recording an event are distinct
operations. Later versions combine these to form an atomic check-and-record
operation, which both improves performance and avoids a race condition.

store their event databases here. This storage is entirely RAM-
based, so avoids the extra delays in writing to disk.

The experiment was repeated with the database stored on the
tmpf s filesystem; the result was a factor of 25 improvement in the
time taken to process each event, as shown in Table 1.

As per Section 3.2.3, Comet stores hashes of the VOEvents
received for 30 days. On a busy VOEvent network, this could
involve generating a much larger database than the 10,000 events
tested, which may impact performance. The previous experiment
was therefore repeated 1000 times using the same databases
stored on tmpfs, resulting in a database containing 107 hashes in
total. The lowest mean processing time per event was measured
when processing batch 155, at an average of 0.000491 s per event;
the highest when processing batch 855, at an average of 0.000502 s
per event. There was no systematic increase in processing time
with event database size. Testing with a significantly larger
database was impossible due to the available memory.

5.2.5. XPath evaluation

The time taken to evaluate an XPath expression over a VOEvent
document depends not only on the complexity of the document
being processed but also on the XPath expression itself. A detailed
discussion of the performance characteristics of XPath is outside
the scope of this work; instead, we take the example queries given
in Section 4.1 as representative of a typical workload.

All test VOEvent documents were read from disk, parsed,
and stored in memory using Comet’s internal representation.
Each of the XPath expressions in turn was parsed into an Ixml
XPath object, as used by Comet for XPath filtering during normal
operations. The total time taken to check all events against each
expression in turn was measured.

5.2.6. Results

The total time for operating on all messages being tested (where
applicable), as well as the mean time per event, for each of the tests
above is recorded in Table 1.

Note that the results recorded for XPath filtering are not directly
comparable to those for the other tests described. All the other
operations are performed once per event received by the broker.
In contrast, potentially several different XPath expressions are
evaluated per subscriber for every event received. Thus, even
though the time recorded for evaluating the XPath expressions is
substantially less than that recorded for event parsing or schema
validation, the total time spent on XPath processing may, in fact,
be greater in a deployed system.
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Leaving aside XPath, of the individual operations performed
once per event interacting with the event database dominates:
even when using a tmpf s-backed database the time taken to check
and record the event hash is more than twice that spent on the
other operations combined, and is compounded by a further factor
of over 25 when magnetic disks are used. Future performance-
focused development of Comet should investigate ways to mitigate
this issue.

5.3. Latency

For certain science cases, maximizing the scientific relevance
of follow-up observations requires extremely rapid response. For
example, identifying precursors of fast radio bursts (Thornton et al.,
2013) would require action on a timescale of a tens of milliseconds.
It is therefore important that the VOEvent transport system does
not introduce excessive latency to the dissemination of event
notifications.

For the purposes of this discussion, we define the “latency” of
a VOEvent as the time elapsed between its creation by an author
and the instant at which it has been received by a subscriber and
that subscriber is in a position to take action (using the strategies
described in Section 3.2.5) based upon it.

In this test, we measure the latency introduced by passing a
VOEvent from an author through a Comet broker and on to a
Comet-based subscriber.

5.3.1. Test setup

A script was used to generate 3000 individual VOEvent packets
of the form shown in Listing 5 and submit them to a broker at
intervals of 0.3 s.

A plugin (Section 3.2.5) was written which, whenever an event
of the form described above is received, compares the timestamp
in the event with the current time, and saves the difference to a
log file. This plugin was enabled on a subscriber, which was then
connected to the broker.

Both the benchmarking script and the plugin described are
available from the Comet repository (Section 8).

5.3.2. Results

The distribution of latencies among the received events when
this test was run in the default configuration is shown in the top
panel of Fig. 2. The mean latency was 0.022 s with a standard
deviation of 0.011 s; the longest recorded latency for any event was
0.171s.

As described in Section 3.1, Twisted provides an event-driven
framework. The core of this framework is the “reactor”, which
provides a uniform interface to event handling across the platforms
upon which Twisted can run. The internal implementation of the
reactor itself can vary from platform to platform to most efficiently
take advantage of the facilities available to it.

The default reactor implementation used by Twisted on the
system used for testing is based on the pol1 () system call (IEEE,
2013). However, modern Linux systems provide the alternative
epoll () call (Kerrisk et al., 2014) which provides a more efficient
alternative. Twisted provides a reactor which is based upon
epoll (). The same experiment was therefore repeated, but with
both broker and subscriber based on this alternative reactor. The
results are shown in the central panel of Fig. 2. This provided
a somewhat improved mean latency of 0.019 s with a standard
deviation 0of 0.011 s, and a reduced maximum latency of 0.130 s.

Section 5.2.4 established that the event database operations
take an average of 0.013 s when the database is stored on magnetic
disk, as it was in this default configuration: this is some 70% of
the measured event latency. The same section demonstrated a 25-
fold improvement when the database was stored in RAM using
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Fig. 2. Fraction of events received at a given latency (time between generation
by the author and processing by the subscriber, as described in Section 5.3). The
uppermost plot reflects the default configuration; the central plot uses Twisted’s
epoll () based reactor; the bottom plot uses epoll() and stores the event
database in memory.

the tmpfs filesystem. This performance improvement comes at
some cost: RAM technologies typically used in modern systems are
inherently volatile, and the event database would not survive if the
system were powered down or rebooted. Further, the 107 event
database described in Section 5.2.4 consumed around 1 GiB of
storage; given a database retention period of 30 days (Section 3.2.3)
and potentially multi-million-per-day event rates from next
generation facilities, memory capacity may be a limiting factor.

These considerations notwithstanding, the database was re-
created on a tmpfs filesystem and the test repeated. The results
are shown in the bottom panel of Fig. 2. Not only are these latencies
lower (mean 0.0063 s, maximum 0.013 s) than those based on
magnetic disks, but they are also much more consistent than the
previous tests (standard deviation 0.00033 s).

An overhead of no more than around ten milliseconds is
comparable to that which might be expected from network delays
over short links, and is unlikely to be of significance in all but the
most demanding of astronomical applications. Note, however, that
this figure was measured on an otherwise unloaded system: while
it sets a lower bound on the latency added by Comet, a production
system under load is unlikely to perform at the same level.

For the rest of the tests presented in this paper, we continue to
adopt the epoll () and tmpfs configuration described here.

5.4. Number of subscribers

In order to meaningfully act as a distribution, rather than simply
aforwarding, system, and certainly in order to enable the construc-
tion of extended networks of interconnected brokers, it is neces-
sary that a single Comet broker be able to serve many subscribers
simultaneously. Here, we measure how latency increases as more
subscribers are connected to the broker.

5.4.1. Test setup

Using the same script as described in Section 5.3.1, 1000
test events were submitted to a broker. The number of clients
connected to that broker was increased at logarithmic intervals
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Fig. 3. Scaling of event latency as a function of subscriber count. The solid line
shows the mean latency divided by the number of subscribers; the dashed lines are
similar, but for the maximum and minimum latencies recorded.

(1,2,4,...). Each client recorded the latency of each event received
to a log file.

Each Comet process takes approximately 32 MB of memory,
used to hold the Comet code itself, the associated libraries, the
Python interpreter, and the overhead associated with the Docker
container. The test system contained 8 GB RAM. When testing with
256 subscribers, the machine ran out of memory and started to
swap to disk. This set an upper bound on the number of subscribers
which could be tested.

5.4.2. Results

The latency increases gradually with increasing subscriber
count, from a mean of 0.0063 s for a single subscriber to 0.0931 s
for 256 subscribers, the highest number tested: even at this level,
the mean latency was less than 0.1 s. The maximum latency rose
to a peak of 0.49 s. A latency of around 0.1 s is comparable to a
long range (e.g. transatlantic) network round trip times and is at
a level where it may start to impact on time-critical astronomical
applications.

The scaling of latency with subscriber count is shown in Fig. 3.
Note that the scaling is better than linear across the range of
subscriber counts tested: ingestion of new events into the broker,
rather than distribution to subscribers, dominates.

Other than a slowly increasing latency, the Comet system
showed no ill effects of handling a large number of subscribers:
neither memory nor CPU usage of the broker showed excessive
growth. If the latency were acceptable for the science application,
there would be no difficulty in serving 256 subscribers in a
production mode using this hardware.

For servicing extremely large numbers of clients while minimiz-
ing latency, a tree-like structure could be established. For example,
serving 8 subscribers introduced a mean latency of 0.0093 s. If each
of those 8 subscribers redistributed the event to a further 8 clients,
we might expect a total latency on the order of 0.02 s to reach 256
clients; if the tree were extended to ten levels we might expect to
reach 8'° (~10°) subscribers with 0.1 s latency.

5.5. Total throughput

Next-generation facilities will announce transients at rates far
outstripping those seen at present. Notably, LSST is predicted to
reach an average rate of 107 events per night: assuming those
events are evenly spaced over a 12 h period, this is equivalent
to over 230 events per second. This is the output from just a
single instrument, albeit a prolific one, and takes no account of
the cascade of follow-up packets that a significant transient would
likely generate. Here, we measure how the event rate processed by
the Comet broker running on the test system.
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Fig. 4. At top, the mean throughput of events as transmitted by the author and as
received by the subscriber as a function of number of concurrent connections from
author to broker. The central panel shows the standard deviation of the measured
rates. The number of events which were not successfully received by the subscriber
is shown at the bottom.

5.5.1. Test setup

A script was used to generate 10,000 individual VOEvent
messages, which were stored in RAM. After all of the events had
been generated, the author started submitting them to a Comet
broker which had a single subscriber attached. The total time taken
by the author from the start of the submission of the first event
to the closing of the connection after the submission of the last
event was measured by recording its running time. The total time
from the receipt of the first event to the receipt of the last event by
the subscriber was measured by taking the difference between the
latest and the earliest timestamps recorded in the event database
(Section 3.2.3). These times are then converted into a per-second
event rate.

The number of concurrent connections between the author
and the broker was varied logarithmically. For each number of
connections, the experiment was repeated 10 times.

5.5.2. Results

Fig. 4 shows how the event rate measured at both author and
subscriber varies with the number of concurrent connections. With
a single connection a rate of 283.7 events/s at the author and 283.8
events/s at the subscriber is achieved. This increases to a peak of
519.2 events/s at the author and 534.2 events/s at the subscriber
with 64 concurrent connections; after this, increasing the number
of connections causes the overall throughput to drop. The standard
deviation of the measured rate is also plotted: the throughput
is relatively stable at low connection counts, but substantial
variations are seen with 256 and 512 concurrent connections.

At the highest connection counts, the rate is not only seen to
drop substantially, but also some events are lost in transit: at the
end of the test, the subscriber had received fewer than 10,000
VOEvent packets. Since the throughput was lower at these rates,
and since reliable transmission is essential, concurrency levels
higher than 512 connections were not investigated.

These results may be explained by considering the balance be-
tween the per-connection overhead and the compute load on the
broker. Since each event is delivered by making a new connection
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to the broker (as per the protocol described in Section 2) there is a
per-event overhead due to creating and tearing down the connec-
tion (Section 5.6 discusses some of the overheads in managing TCP
connections). At low connection counts, this latency dominates;
as the concurrency increases, the throughput is dominated by the
broker load.

At the highest connection counts, the configuration of the Linux
kernel’s networking stack comes into play. Large numbers of short
lived connections are a relatively uncommon phenomenon, and
the standard configuration of the Linux kernel is not optimized to
handle them efficiently. Indeed, at very high connection counts,
the kernel logged warnings that it was under a “syN flood” at-
tack (Computer Emergency Response Team, 1996). Under this load,
connections may be dropped or rejected by the kernel, leading to
events never reaching their destination, as seen in the lowest panel
of Fig. 4. Many options within the kernel may be tuned to improve
its performance under these network loads. However, since the
peak throughput was already limited by Comet’s CPU requirements
at lower connection counts, they were not investigated here.

It is worth noting that, at low connection counts, the through-
puts from author to broker and from broker to subscriber were
effectively identical, but they began to diverge as the concur-
rency increased. This is again due to the per-connection overhead:
since the connection from the broker to the subscriber is perma-
nently kept open, it is significantly more efficient, and provides a
continuously-available high bandwidth connection. At high con-
nection counts, the latency involved in servicing many connections
means that such high bandwidth cannot be achieved here when
submitting events.

Without special tuning, a throughput of over 500 events per
second is more than twice that required to service the average
event rate predicted from LSST. Further, this test was limited
by CPU performance on desktop-class hardware that will be
substantially more than a decade old before LSST is commissioned.
In these terms, then, servicing an LSST-scale event stream with a
VTP based broker seems plausible, although there are a number of
caveats:

e This calculation takes no account of follow-up traffic generated
in response to the events;

e These events did not carry a scientific payload, and hence are
likely to be significantly smaller than those which might be
transmitted in practice;

e Although the mean event rate from LSST will be around 250
events/s, this will be transmitted in short bursts of much
higher rates. Averaging the event traffic over time reduces
the instantaneous traffic to a manageable level, but introduces
significant additional latencies.

5.6. High-latency connections

Astronomical observatories are frequently located in remote
locations: in deserts, on mountain tops, and so on. The geographic
isolation of these facilities often results in their having poor
Internet connections. Even if high-bandwidth networking is
arranged specifically to service the observatory, network latencies
are likely to be high.

One might imagine that some preliminary data analysis for
such an observatory would be performed on-site, rather than
attempting to ship large volumes of raw data out of a remote
location. Further, it would not be practical for large numbers of
external clients to connect inwards to a VTP broker running at
the observatory. Therefore, for the purposes of this discussion, we
assume that the events are generated by a VOEvent author on site,
then shipped using VTP to a remote broker for public distribution.

Assuming that 10 million alerts are issued by the observatory
per night and each event has a size of around 10 kiB, a total of
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Fig. 5. The complete network packet exchange as an author uploads a VOEvent to
a broker. Packets with specific TCP flags set have those flags indicated in upper case.
Payload data (a VOEvent or Transport packet) are indicated by the word “Payload”.
Time increases down the diagram. The network round trip time is denoted by tgr. A
dashed time axis indicates packets being sent with no interval between them. For
example, at time tgy the author sends Ack immediately followed by VOEvent data.

100 GiB of event data might be created. Given that long range
multi-gigabit per second connections are widely available, the total
amount of data to be transmitted is unlikely to be intractable.

Network latency, however, presents a further problem. As
described in Section 2, each event must be submitted by the
author initiating a new connection to the broker, submitting the
event, waiting for an acknowledgement, and then closing the
connection. Sending the event and waiting for acknowledgement
involves a network round-trip. However, data is transmitted over
TCP (Cert and Kahn, 1974), we use the standard TCP mechanisms
for creating and terminating connections, each of which involves
another network round trip. This process is illustrated in Fig. 5:
the complete transaction involved in submitting a single event
to the broker, given a network round trip time of tgr, takes 3tgr.
In practice, after transmitting the final FIN packet, the author
may assume that the connection is closed without waiting for a
response, and hence initiate a new connection, so the figure of 2tgr
describes the interval between connection attempts. Assuming
that events are sent in sequentially, and given a round trip time
of, say, 500 ms, this would limit the rate at which events can be
sent to 1 per second, or 43,200 in a 12 h period. This is far short of
the throughput discussed in Section 5.5, and certainly inadequate
for the putative 10 million alerts per night discussed above. This
is a significant flaw in the VTP system. It is to be hoped that
future revisions can address the issue; for further discussion, see
Section 7.5.

Until and unless this problem is addressed, it is necessary to
consider alternative approaches. As discussed in Section 5.5, it is
possible for an author to submit multiple events simultaneously
by opening more than one TCP connection to the broker. Here, we
investigate to what extent this can mitigate the issue.

5.6.1. Test setup

Events were generated, sent to the broker, and thence onward
to a single subscriber as per Section 5.5.1, and was carried out as
described in that section. Connection counts were again increased
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Fig. 6. Variation of throughput, as measured by the rate of events received by the
subscriber, as a function of number of concurrent connections shown for a variety
of network round trip times.

logarithmically. Given the relative stability of the throughput (at
least for modest connection counts) shown in Fig. 4, a single set of
10,000 events was sent for each level of concurrency.

Link-level network latency was simulated using NetEm (Hem-
minger, 2005), the network emulation functionality available as
part of the Linux kernel. Given a (virtual, in this case) network de-
vice named vethXXX, a delay of YYY ms may be added to each
packet sent through it by running:

tc qdisc add dev vethXXX root netem delay YYYms.

Note that this delay applies only to packets sent through the
interface: no delay is applied to packets received by the interface.
To simulate a symmetric network delay using this approach, it
would therefore be necessary to add a latency of tgr/2 at both the
author and the subscriber interfaces. However, this is complicated
in the test system since the subscriber also communicates with the
broker over its interface. Therefore, instead the whole delay was
applied to the output of the author. Given the symmetric nature of
Fig. 5, the observed effect is identical.

5.6.2. Results

Fig. 6 shows how the throughput varies with the number of con-
current connections for a variety of network round trip times. As
expected, at low concurrencies, the throughput is extremely low:
the network round trip time completely dominates the transmis-
sion rate. However, this is substantially mitigated by increasing the
concurrency: with a round trip time of 100 ms, using 256 concur-
rent connections provides a rate of 500 events/s, which approaches
the peak rate achieved in Section 5.5.2. At higher concurrencies,
though, the rate begins to diminish as the load incurred in manag-
ing connections dominates, as seen in Section 5.5.2.

A similar pattern is seen for other round trip delays: increasing
the number of connections can mitigate the effects of network-
induced latency. However, attempting to initiate more than 512
connections always resulted in a large number of events getting
dropped in transit, as the kernel refused to service so many si-
multaneous network connections. Thus, the peak rates achieved
at the higher round-trip times were always suppressed relative
to the throughput measured with no latency. As discussed in Sec-
tion 5.5.2, appropriate tuning of the kernel networking stack could
be used to help overcome this issue; however, a better approach
would be to address it at the protocol level, an idea to which we
return in Section 7.

6. Authentication

For many applications involving VOEvents, it is important to
be certain of the authenticity of the event. That is, to be able

to guarantee that the event genuinely describes the results of
observations by its supposed author. This is important both for
event authors, to protect their reputation for issuing high quality,
trustworthy events, and to subscribers, who cannot run the risk
of using expensive facilities chasing phantoms. While the overt
motivation for forging events is low - there is no obvious way to
exploit a VOEvent for monetary gain, for example - the potential
for mischief-makers to play havoc with event networks cannot be
ignored.

Two approaches may be taken to securing an event distribu-
tion system. The first is to authenticate the transport layer using
a technology such as TLS (Dierks and Rescorla, 2008). In this way,
each entity involved would be able to verify both the integrity of a
VTP connection and the identity of their remote peer. A subscriber
could therefore be certain of the identity of the broker from which
it receives a particular event. However, that broker was not itself
the originator of the event, but rather it received it either from
the author directly or from another broker: it is now incumbent
upon that broker to not only to verify the identity of the sender
but also to satisfy the subscriber that this has been done with suf-
ficient diligence. If the event has traversed a lengthy path through
multiple brokers before reaching the subscriber, this task becomes
prohibitively complex. As such, this is not a mechanism which VTP
supports.

The alternative is to authenticate individual VOEvent packets.
This can be done by applying a cryptographic signature to the event
using a technology such as OpenPGP (Callas et al., 2007) or XML
Digital Signatures (Bartel et al., 2008). The recipient of an event can
then verify that it is identical to the event to which the signature
was originally applied.

Work has already been carried out on applying XML Digital Sig-
natures to VOEvents (Allen, 2008) outside the framework of VTP.
However, the implementation is relatively complex: not only is
there a paucity of libraries providing a convenient implementation
of the standard, but even the library the authors chose to use?° re-
quired source-level modification to meet their requirements.

On the other hand, both commercial and open-source imple-
mentations of OpenPGP are widely available both as stand-alone
tools and with programming language interfaces. Furthermore,
Denny (2008) describes a mechanism for attaching an OpenPGP
signature to a VOEvent with specific reference to VTP. For these
reasons, a prototype version of Comet with OpenPGP support has
been made available for testing.

6.1. Implementation considerations

The OpenPGP standard itself is widely used and tested: the basic
cryptographic guarantees it provides are as close to unimpeachable
as it is reasonable to ask for. However, there are three key hurdles
which must be overcome before it can be directly used in the
context of VOEvents and VTP.

6.1.1. Bitstream immutability

Section 3.2.3 discussed whether two VOEvent packets can be re-
garded as “the same” and motivated the requirement that entities
participating in a VTP network should transmit events unchanged.
When considering cryptographic signatures, this requirement be-
comes absolutely fundamental. The signature is applied to a par-
ticular collection of bits, with no semantic understanding of what
those bits represent. If a single bit is changed, the signature is inval-
idated, even if that change does not alter the information content of
the document and however inconsequential the change might be.

20 ¥MLSec; http://www.aleksey.com/xmlsec/.
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Beyond its direct requirements on the transport layer, this could
have implications for various uses to which VOEvents may be put.
For example, when storing an event in an archival database, it
would not be adequate to simply extract the information from the
packet and store that, re-serializing it to XML if and when required.
Rather, it would be necessary for the archive to store the exact
bitstream to which a signature had been applied.

6.1.2. Event formatting

The original proposal described by Denny (2008) makes use of
the OpenPGP cleartext signature framework. However, as Callas
et al. (2007, Section 7) make clear, the cleartext signature frame-
work “is not intended to be reversible”: in other words, apply-
ing such a signature may modify the contents of the event packet
itself. Such modifications are generally insignificant (primarily
concerning the way in which lines starting with a “-” - the
“hyphen-minus” character, Unicode code point U+002D - are han-
dled), but, nevertheless, we regard any mutation of the event data
as unacceptable.

To avoid these proposals, we suggest adopting a modification
of Denny’s proposal based on a detached signature (Callas et al.,
2007, Section 11.4) which is bundled with the VOEvent. It is this
modified proposal which is implemented in Comet.

6.1.3. Trust model and key infrastructure

Any entity can generate an OpenPGP key with whatever iden-
tifying name they please and use it to apply a signature to a doc-
ument. The recipient of the document has a strong guarantee that
the document was genuinely signed by the given key, but has no
particular reason to trust that the key was in the possession of a
reputable entity at the time the signature was made. Subverting
the system by signing VOEvents with valid-but-worthless keys be-
comes a trivial exercise.

The most direct solution is for the owner of a key to directly
provide it to likely recipients in person or by some other tamper-
proof means of transmission. The recipient then knows that this
particular key belongs to that particular entity, and can take this
into account when deciding whether a signed event is genuine.

OpenPGP adopts and extends this approach to the “web of
trust” model. Here, entities who have received a copy of the key
directly from its owner can themselves sign and redistribute it. The
recipients can choose whether they believe the intermediary to be
trustworthy to warrant the identity of the owner. The recipients
may sign and distribute the key further, eventually building up a
web of certified keys.

The same model may be applied to event packets themselves.
Rather than simply checking for a valid signature made by the
author of the event, a legitimate approach would be to check
for a valid signature by any entity which the recipient regards
as trustworthy to guarantee the packet’s authenticity. This could
include, for example, intermediate brokers or event aggregators.
However, this scheme is not provided for in the note by Denny,
and has the significant downside of much increased management
overhead, particularly when automatic response to genuine events
is required: the recipient must indicate which entities they trust to
sign events from which authors.

6.2. Usage in Comet

The released version of Comet at the time of writing does
not include support for OpenPGP based event authentication.
However, there is an experimental version available which may
be used for experimenting with these technologies. See Section 8
for information on how to obtain both released and experimental
versions of Comet.

Comet provides comprehensive support for all the modes in
which event authentication may be used within VTP. Specifically:

e When submitting to a broker, comet-sendvo can apply a signa-
ture to the event being sent;

e When receiving an event from an author, the Comet can be set
to only accept events which are appropriately signed;

e When receiving an event from a broker, Comet can be set to
only act upon and redistribute events which are appropriately
signed.

Comet also supports subscriber authentication by applying the
same signing mechanisms to Transport documents (Section 2).
Using this technique:

e Onreceiving a connection from a subscriber, Comet can request
that the subscriber authenticate itself by means of a signed
Transport message, and will then only distribute events to
subscribers which provide trustworthy signatures.

e When subscribing to a remote broker, Comet can provide a
signed Transport message in response to an authentication
request.

Comet’s OpenPGP support is based upon GnuPG.?! Comet does
not provide any mechanism for managing the configuration of
GnuPG: instead, the standard GnuPG tools should be used for this,
and Comet inherits the configuration and key database from them.

Of course, generating and verifying a cryptographic signature
require some numerical calculation. Furthermore, for security
reasons, directly linking GnuPG as a library in application code
is not supported. Handling cryptographic operations in-process is
therefore not possible. Instead, it is necessary to fork a separate
GnuPG process, incurring additional overhead. Therefore, the
impact of OpenPGP support on Comet’s performance must be
considered.

In practice, the overhead of signing an event is insignificant:
any one author is likely to be generating only a limited number of
events, and, even if that number is large, they can trivially spread
the load across multiple machines. However, the Comet broker
must check the signatures of all events received: it is here that
performance issues become critical.

Asimple test was performed to measure the time taken to check
the signature on a VOEvent packet. 1000 distinct VOEvent packets
of the form shown in Listing 5 were generated and signed using
the Comet codebase. Each signature in turn was then checked for
validity. The total time taken to check all signatures on the system
described in Section 5.1 was 22.90 s, or around 0.023 s per event.
This is broadly comparable to values which might be expected
due to network latency, and is a factor of ~3.6 greater than the
latency introduced by the Comet broker when not checking a
signature (Section 5.3.2). While not prohibitively expensive, then,
the overhead introduced by this technique cannot be ignored by
administrators of heavily-loaded brokers.

7. Future VOEvent and VTP revision

This paper has described both VTP itself and the issues that have
arisen when developing a specific implementation of it. From these
considerations, five specific recommendations for future evolution
of the VOEvent and VTP standards can be drawn. Some of these
will be incorporated into a revised version of VTP which will be
submitted for [IVOA standardization at a later date.

21 http://gnupg.org/.
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7.1. Event identity

Section 3.2.3 discussed the question of the identity of a VO-
Event. In particular, it considered whether two events encod-
ing identical information but in with a different (perhaps only
marginally) serialization could be regarded as the same event. This
is not well defined by the current VOEvent standard (Seaman et al.,
2011).

As discussed, the question of the identity of events is important
to the implementation of VTP networks. However, it is also of wider
relevance: the VOEvent identifier provides a convenient means to
refer to a particular celestial transient in a variety of context, but
can only be reliably used as such if it is unambiguously defined.

7.2. Packet immutability

It is an implicit requirement of VTP and of event authentication
techniques based on OpenPGP signatures that the bitstream of a
packet must be unchanged by the process of transmission over VTP.
This requirement goes beyond the straightforward requirement
that the information contained within an event must be unchanged.
The more stringent requirements of VTP are not explicit in the
current version of the protocol definition.

7.3. Event de-duplication

Section 3.2.3 described de-duplication to avoid loops on a VTP
network. This requirement is not explicit within the current VTP
definition. Comet has demonstrated an effective approach to this
problem building upon Sections 7.1 and 7.2.

7.4. Filtering

Section 4 demonstrated that the design of VTP is easily exten-
sible to accommodate relatively complex broker-side filtering ca-
pabilities. However, the implementation of these filters in Comet
requires a non-standard extension to the protocol. Future VTP re-
visions should consider a formalized means of enabling brokers to
advertise what filtering capabilities they are capable of providing,
if any, and for subscribers to specify any filters required.

7.5. Bulk event submission

Section 5 demonstrated that Comet was capable of receiving
and distributing large numbers of events with relatively low la-
tency. However, Sections 5.5 and 5.6 demonstrated that the ma-
jor limiting factor on performance, in particular in the case of high
network round trip times, is the requirement that each individual
event submission by an author takes place over a new TCP connec-
tion.

Two approaches should be considered to this flaw in the proto-
col. The first is simply to drop the requirement that the connection
should be closed between each submission. Not only would this re-
duce the total transaction time per event by removing the need to
repeat the TCP handshake (see Fig. 5), it would also be possible to
interleave transactions: the author could begin the submission of
further events before having received an acknowledgement of the
first.

The alternative approach is to group batches of events into
a single data structure (a “container”), and transmit that over
VTP in a single transaction. The definition of a container format
for VOEvents is already under discussion in the context of the
IVOA.22

22 http://www.ivoa.net/forum/voevent/2013-November/002914.html.

8. Availability

Comet is freely available, open source software released under
a two-clause BSD-style?? license. It includes a comprehensive test
suite and documentation. It is developed using a public code
repository; contributions and bug reports are actively solicited.
Further details, including download and installation instructions,
are available from the project website.?*

All materials used to generate this paper, including the Docker
configuration, benchmarking scripts, and latency measurement
plugin are available from the Comet repository.

9. Conclusions

The VOEvent Transport Protocol is an intentionally minimal
mechanism for distributing notifications of transient celestial
events in the form of VOEvent messages. Comet has been devel-
oped to implement all the core aspects of VTP. It is production-
ready software, and is freely available and ready to be integrated
into a variety of scientific projects.

This paper has described how Comet has been designed to
meet the requirements of VTP based upon an asynchronous, event-
driven style of programming. This has made it possible to provide
a robust, high-performance and easily extensible implementation
of the protocol. The development of Comet cast light on a number
of areas of the protocol and of the wider VOEvent infrastructure
where additional clarity and specification are required.

Using Comet as a test-bed, we have investigated the perfor-
mance characteristics of VTP under a variety of conditions. Our
results demonstrate that VTP is broadly capable of meeting the an-
ticipated requirements of the next generation of large scale tran-
sient survey projects. However, there are deficiencies in the design
of the protocol which adversely affect its performance. We have
discussed how future revisions of VTP could address these prob-
lems. We have also shown a prototype of a highly-configurable
event filtering system which will enable end users to sift through
high-volume event streams and receive only those events which
are of relevance to their own scientific goals.
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