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a b s t r a c t

The Data Center Helper Suite DaCHS is an integrated publication package for building VO and Web
services, supporting the entire workflow from ingestion to data mapping to service definition. It
implements all major data discovery, data access, and registry protocols defined by the VO. DaCHS in
this sense works as glue between data produced by the data providers and the standard protocols and
formats defined by the VO. This paper discusses central elements of the design of the package and gives
two case studies of how VO protocols are implemented using DaCHS’ concepts.
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1. Introduction

To aid in the adoption of Virtual Observatory (VO) standards,
it is important to keep the entry barrier to running interoperable
services low. In particular for the VO’s ‘‘S-protocols’’ (SCS,1 SIAP,2

SSAP3), an important design goal has been a straightforward map-
ping to common network programming paradigms. Nevertheless,
running fully compliant services seamlessly integrated into the
Virtual Observatory as a whole requires a significant effort — for
example, a registry record needs to be maintained, and the auxil-
iary services required by VOSI4 have to be in place as well.

With advanced protocols like TAP5 the implementation effort is
significantly larger.

Therefore, packaged standard software that contains all the
building blocks necessary for the operation of services in a

∗ Corresponding author. Tel.: +49 6221541837.
E-mail address:msdemlei@ari.uni-heidelberg.de (M. Demleitner).

1 Simple Cone Search, a protocol allowing remote searches in catalogs of celestial
objects (Williams et al., 2008).
2 Simple Image Access Protocol, a protocol allowing discovery of images of the

sky (Tody and Plante, 2009).
3 Simple Spectral Access Protocol, a protocol supporting the discovery of spectra

(Tody et al., 2012).
4 Virtual Observatory Support Interfaces, a suite of simple endpoints allowing

clients an inspection of a service’s data content, access options, and health (Graham,
2011).
5 The TableAccess Protocol (Dowler et al., 2010) enables the exchange of database

queries and results between clients and remote servers. For its operation, it depends
on several other standards, in particular the SQL-like query language ADQL (Ortiz
et al., 2008) and the Universal Worker Service (UWS, Harrison and Rixon 2010)
pattern for asynchronous execution.

http://dx.doi.org/10.1016/j.ascom.2014.08.003
2213-1337/© 2014 Elsevier B.V. All rights reserved.
mutually compatible form is an important contribution to keeping
the operation of VO services within reach of modest organizations.

The German Astrophysical Virtual Observatory (GAVO) has
been developing such a package since 2007 under the name
DaCHS (which stands for Data Center Helper Suite). Compared to
most other packages available for this purpose (for instance, VO-
Dance (Molinaro et al., 2012) or Saada (Michel et al., 2005); for
more information on packages available for VO publishing, see the
IVOA’s web page on publishing in the VO6), its focus is on a unified
handling of the entire publication process from the rawdata files to
the dissemination of data andmetadata, including registry records
(schematically shown in Fig. 1). DaCHS also helps in organizing
ancillary tasks that may be necessary to unify data for publication
purposes, like header normalization or astrometric calibration as
required for effective publication via VO image access protocols.
However, actual data reduction tasks are not considered in scope,
which means that DaCHS will not, for example, grow an actual
workflow engine, and the inputs are expected to be at least almost
science-ready.

In DaCHS’ development, two main principles served as guide-
lines:

(1) Be declarative when reasonably possible.
(2) There is exactly one place for each piece of metadata.

Point (1) means that when making design choices, we have
a bias towards declarations (‘‘My problem is X’’) as opposed
to procedural definitions (‘‘if a, do b, otherwise c’’). This is
motivated by the expectation that declarative specifications will
allow easier development of the underlying software without

6 http://wiki.ivoa.net/twiki/bin/view/IVOA/PublishingInTheVONew.
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Fig. 1. The generic workflow leading to a VO publication as modeled by
DaCHS, with boxes depicting data representations, and single arrows showing the
transformations, annotatedwith the procedures (above the arrows) and definitions
(boldface, below the arrows) involved in the transformation. In gray with double
arrows we indicate external users of the various representations.

requiring adaptation of the service definitions. For an operator
running hundreds of services, such a requirementmight otherwise
block software upgrades indefinitely. On the other hand, for many
data publication tasks a procedural specification is much more
natural, and DaCHS does take advantage of that. This is why the
guideline is qualified by ‘‘when reasonably possible’’.

Point (2) is motivated by the observation that while quality
metadata is paramount to smooth VO operation, metadata
maintenance rarely gets the attention necessary. Hence, it must be
made as easy and labor-efficient as possible. Also, various elements
of the data publication and access process share the same pieces
of metadata. For example, the data type of a database column is
relevant during ingestion, for the service operation itself, and to
the VORmapper7 in the model of Fig. 1. Similarly, a datum like the
bibliographical source is required both in running the service – at
least when following the recommendation fromDALI8 to include it
in result tables – and the VORmapper (i.e., the component creating
registry records; see below).

This tight coupling of the publication workflow through the
metadata was the main driver for producing an integrated
publication package, allowing a re-use of data descriptions all
the way from parsing the data files to the generation of registry
records. Weighing this up against the obvious advantage that a
more componentised architecturewould havewith respect to easy
integration into existing software landscapes, we decided for an
integrated package.

As a publication package brings together several different
parties, some nomenclature must be introduced. Where we

7 VOR or VOResource is used here to refer to the entire data model of the VO
registry as defined through the VO resource specification (Plante et al., 2008) and
its extensions.
8 Data Access Layer Interface, a set of rules and recommendations common to all

(future) VO data access protocols (Dowler et al., 2013b).
speak of authors, we refer to the creators of DaCHS itself. The
operators are the persons running the software, i.e., publishing
data. Users (humans) and clients (software programs) finally are
the consumers of the data.

The term ‘‘publication’’ is also ambiguous in this context. It here
refers to both the process of making some data collection available
via network protocols, and the explicit step of making a resource
known to the VO Registry.Where the distinction needs to bemade,
we write ‘‘publication to the Registry’’ if we mean this second
reading. A publication in the sense of ‘‘journal article’’ is referred
to as bibliographical source here.

In the remainder of this paper, we will describe DaCHS’ view
of the publishing workflow in more detail before discussing the
various metadata systems in Section 3. We then move on to two
case studies intended to illustrate how VO protocols sit on top
of DaCHS’ infrastructure. The first of these (Section 5) covers the
Simple Spectral Access Protocol SSAP as the most advanced of the
currently defined ‘‘S-protocols’’, the second (Section 6) the new
datalink protocol that significantly departs from the usual model
of basically providing a network layer on top of a database.

2. The publication workflow in DaCHS

The publication workflow as modeled by DaCHS is shown in
Fig. 1. It gives the operations necessary to transform a set of inputs
(e.g., images, spectra, tables) as delivered by the data provider
(e.g., research group, instrument operator) to the structured
representations required by various consumers — protocol clients,
web browsers, and the VO Registry.

In explaining the workflow, we illustrate the abstract steps
with samples of inputs DaCHS operators would have to produce.
This exposition is based on material from Demleitner (2013) and
in particular the DaCHS tutorial (Demleitner, 2014). This latter
resource should be consulted by new operators attempting to
reproduce the steps sketched out here.

In DaCHS, service creation involves writing a resource descriptor
(which is discussed in a more general setting in Section 4; we
sometimes write RD for short). This is an XML file allowing the
software to perform the various tasks shown in Fig. 1. When
writing one, one typically starts with the description of the
structured representation (the center box in Fig. 1), which in
DaCHS consists ofmetadata for database tables. A fragment of such
a table definition could look like this:
<table id="main" onDisk="True" adql="True"

mixin="//scs#q3cindex" primary="hipno">
<stc>

Position ICRS Epoch J2000.0
"raj2000" "dej2000"
Error "err_ra" "err_de"...</stc>

<column name="hipno" type="integer"
ucd="meta.id;meta.main"
description="Number of the star in ..."/>

<column name="raj2000"
type="double precision"
ucd="pos.eq.ra;meta.main" unit="deg"...

Glossing over the details, the operator here gives various prop-
erties of the table itself (name, primary key, access control), fol-
lowed by a specification of the structure of space–time coordinates
in the table (in this case, this is just a spherical position with er-
rors; see also the STC discussion in Section 3). Subsequently, col-
umnmetadata – names, types, units, UCDs9 – is given, one element
per column.

9 Unified Content Descriptors, a controlled vocabulary for expressing terms
important for expressing astronomical metadata like ‘‘pos.eq.ra’’ or ‘‘meta.ref.url’’
(Derriere et al., 2004).
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Finally, the mixin attribute in the above fragment deserves
more attention. In DaCHS, a mixin essentially is a collection
of aspects of data representation, first and foremost specific
columns, but possibly also pieces of metadata, indices, and the
like. Additional behavior (such as filling the table of file-like
products) can optionally be attached to them. Mixins are defined
in (typically built-in) resource descriptors and referenced by their
identifiers, which in DaCHS consist of the resource descriptor
name, a hash, and an XML id. The double slash in front of
the resource descriptor name indicates that a built-in resource
descriptor is referenced; these comewith the software distribution
and contain – potentially operator-customizable – material for re-
use in operator RDs, as well as descriptions of system services.

The mixins guarantee certain properties in the table that
protocols exposing the contained data require. In the example,
the mixin ensures that there is one designated spherical position
(identified via special UCDs) per table row, and that positional
queries over it are fast thanks to Q3C-based indexing (Koposov
and Bartunov, 2006). This is what DaCHS’ support for the IVOA SCS
protocol builds on.

Another example for a mixin linked to an IVOA protocol is
//siap#pgs which endows a table with the columns required
in responses for SIAP, plus further columns allowing efficient
queries over such an image collection using the pgSphere postgres
extension. Similar mixins exist for the spectral access protocol,
Obscore10 conformance, and more.

After the definition of the internal representation, the operator
next describes the ingestion process, i.e., whatever is necessary to
bring the input data as provided by the producer to the internal
representation. In DaCHS, ingestion typically is a two-step process.
In the first step (corresponding to the topmost arrow in Fig. 1),
a parser produces a sequence of mappings (‘‘associative arrays’’)
from the input files, where usually both keys and values are simple,
flat strings. The descriptions defining how a given input file relates
to the sequence of mappings in DaCHS are collectively known as
grammars, where different types of inputs (FITS files vs. CSV, say)
require different sorts of rules. The resulting mappings are called
rawdicts (‘‘raw dictionaries’’) in DaCHS terminology.

For example, if the input comes as a formatted ASCII table, the
grammar would assign labels to column ranges like this:

<columnGrammar topIgnoredLines="9">
<colDefs>

hipno: 3-8
srcSel: 47-49

...

— which instructs the parser for column grammars to ignore the
first nine lines, and then, in each line, use the contents of columns 3
through 8 to get the value for the key hipno, analogously construct
the value for srcSel, and so forth.

For comparison, when an input format already is highly struc-
tured, as in the case of FITS headers, the grammar specification can
be as simple as

<fitsProdGrammar/>

This tells DaCHS to fairly directly use pyfits (Barrett and
Bridgman, 1999) to create one rawdict each from (in this case)
the primary header of each input file; no additional instructions
are necessary in the simplest cases, as the parsing rules for FITS
headers are already well-defined by an external standard.

10 Obscore is a datamodelwith a specific table schema for observational products;
coupled with TAP, it allows complex queries to be run against standardized
descriptions of observational products (Louys et al., 2011).
In addition to various sorts of text-based parsers, DaCHS also
has parsers built in for FITS binary tables (one rawdict per row),
VOTables, or generic binary records. Operators can furthermore
write custom parsers in Python.

To actually feed a database table, a second step in the ingestion
is necessary, inwhich the rawdicts are processed to data structures
mapping column names to typed (and possibly digested) values.
Within DaCHS, these are called rowdicts.

The transformation of rawdicts to rowdicts (the second arrow in
Fig. 1) is performed by data mappers (‘‘rowmakers’’). This usually
involves more than type conversion and key mappings: unit
conversions, combining inputs (e.g., date–time values), arbitrary
mapping of values (e.g., standardization of object or filter names),
detection of NULLs, or computing new values (e.g., waveband
limits from filters) are just some of the tasks regularly necessary
to ensure compliance to IVOA standards or rationalize data
representation.

To support this wide variety of mapping operations, we allow
several levels of mixing in procedural content: plain Python ex-
pressions as mapping values, applying pre-defined ‘‘procedures’’,
usually passing parameters, or writing such procedures from
scratch.Writing complete procedures from scratch obviously is the
most expressive method, but as such procedures usually reference
implementation details, it also entails the largest potential for in-
compatibilities as the core software develops. It is much easier for
the core software to keep the interface of pre-defined procedures
and the namespace visible to the plain Python expression stable.

For instance, a simple rowmaker could look like this:

<rowmaker idmaps="*">
<map key="src_sel" source="srcSel"/>
<map key="raj2000">hmsToDeg(

@alphaHMS, None)</var>
</rowmaker>

— this would instruct DaCHS to produce values for src_sel in
the rowdicts from the values of srcSel in the incoming rawdicts,
converting types as necessary according to default rules, and to use
the built-in hmsToDeg function to parse the values of alphaHMS
in the rawdicts to obtain the values for raj2000 in the rowdicts.
The idmaps attribute finally says that all remaining keys from the
rawdict that have identically-named counterpart in the database
table are to be type-converted using default rules.

Table mixins are typically accompanied by rowmaker proce-
dures aiding in the mapping from rawdicts to the specific columns
provided by the mixins. This is an important mechanism for
elementary input validation and the provision of defaults. For in-
stance, image metadata necessary for publication over SIAP, to-
getherwith some elementarymanipulation of header values, could
be covered by a rowmaker like (@key is a shortcut notation to ac-
cess values from the rawdict)

<rowmaker>
<var name="cleanedObject">

@OBJECT.split("_")[0]</var>
<apply procDef="//siap#setMeta">

<bind key="title"
>@cleanedObject+" "+@DATE_OBS</bind>

<bind key="instrument"
>"%s %s"%(@TELESCOP, @OBSERVAT)</bind>

<bind key="dateObs">@DATE_OBS</bind>

The apply element is a container for procedural python code
used in rowdict generation. In this instance a predefined procedure
(selected, as usual, by a reference into the built-in//siap resource
descriptor) is invoked with parameters defined in bind elements.

Grammar, rowmaker, and a specification of what files to read
from (typically a shell pattern with optional blacklisting) together
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form an ingestion rule, which in DaCHS takes a form like

<data id="import">
<sources>data/*.txt</sources>
<columnGrammar topIgnoredLines="9">

...
<make table="main">

<rowmaker>
...

With this, DaCHS has enough information to create and popu-
late the database table. This is effected by executing a command
like

gavo imp q

Here, gavo is the name of the DaCHS executable (which is not
called something like ‘‘dachs’’ by default for historical reasons).
The imp argument selects the import subcommand, which looks
for all data elements in the resource descriptor referenced by its
argument and executes the ingestions described there. Finally, q
is the name of the file containing the resource descriptor — as
the canonical extension for resource descriptor files is ‘‘rd’’, this
command line would try evaluating a file q.rd.

Ideally, this ingestion would only be done once at service cre-
ation time. In practice, bugs in the input data, the grammar, or the
mapping rules, evolution of the data collection itself, or improve-
ments in the data publication routinely necessitate re-ingestions,
possibly years after a resource has been published. This is themain
reason for keeping the ingestion rules in the resource descriptor.
Keeping them close to the service and metadata definitions has
also proven useful simply for documenting (executably, if need be)
what operations have been performed during ingestion.

Even if ingestion typically is a rare event, for data producing
more than a few million rows it still may become a bottleneck,
as the described operations typically only process a few thousand
rows per second on current hardware. This is partly due to both
the parser and the mapper being compiled into Python bytecode
rather than native object code, partly due to the overhead of going
through SQL serialization and deserialization of multi-INSERT
statements.

To nevertheless allow rapid ingestion of datasets in the gi-
garecord range, DaCHS supports a shortcut mechanism called ‘‘di-
rect grammar’’. These are external binaries creating material going
into the database via binary copy in one step. Thus, they sidestep
DaCHS’ mapping mechanisms and combine the roles of the nor-
mal grammars and the rowmakers in one piece of code. The usual
way of creating such external binaries is to use DaCHS’ mkboost
subcommand to generate C source code templates. When parsing
from FITS binary tables, the generated source code will immedi-
ately work if the relation between database table and source table
is sufficiently simple. In all other cases,manual translation of gram-
mar andmapping rules to C code is required. The reward of the ad-
ditional effort and the loss of declarativeness is that the ingestion
time typically is significantly shorter than the time the database
engine spends on indexing and other post-ingestion operations.

The structured representation resulting from the ingestion is
the basis for the operation of services. Services adhere to certain
protocols that govern the actual bytestreams of the inputs and
outputs of the service. That is true regardless of whether the client
is a web browser or specialized software speaking IVOA protocols.
Most of the protocol logic is hardcoded in so-called renderers,
which are objects that convert between whatever is on the wire
– parameters and uploads on input, serialized byte streams on
output – and internal representations — input tables on input,
output tables on output. In DaCHS, they are referenced in short
strings (‘‘form’’ for exposing a service over HTML forms, ‘‘siap.xml’’
for handling requests using IVOA’s SIAP protocol, ‘‘availability’’ to
return VOSI availability information on the service, and so forth).

The actual functionality, based on the internal representations
and performing the computations or queries necessary to fulfill
the incoming query, is provided by cores; the most common one
is the dbCore, which generates a database query from incoming
parameters. For example, here is a simple service definition giving
both a web form and an IVOA cone search service on the table
sketched above, allowing an additional constraint on a column
named mv.

<service id="cone" allowed="scs.xml,form">
<dbCore queriedTable="main">

<FEED source="//scs#coreDescs"/>
<condDesc buildFrom="mv"/>

</dbCore>
<outputTable verbLevel="20"/>

</service>

To actually run the services defined in this way, DaCHS has
a built-in server component that, during development, is usually
operated in its debug mode by executing

gavo serve debug

The services can now be used, with the access URLs derived
from file system paths to the RDs, XML ids within them and ren-
derer names using a simple scheme. Tomake the services discover-
able, however, a publication step is necessary, either locally to the
portal page or globally to the VO Registry. A sensible publication
also needs carefully written and comprehensive metadata. Within
a resource descriptor, metadata comes in dedicated metadata ele-
ments, typically at the head of the resource descriptor, for instance:

<resource schema="arihip">
<meta name="title"

>ARIHIP astrometric catalogue</meta>
<meta name="description">

The catalogue ARIHIP has been...
</meta>
<meta name="creator.name"

>Wielen, R....</meta>
<meta name="subject">Catalogs</meta>...
<meta name="coverage">

<meta name="profile">AllSky ICRS</meta>
<meta name="waveband">Optical</meta>

</meta>
<meta name="_longdoc" format="rst">

The ARIHIP Catalogue is a suitable...
</meta>
<meta name="source">2001VeARI..40....1W</meta>

For a full publication to the VO, a VOResource (Plante et al.,
2008) record needs to be created. This is an XML fragment
conforming to a set of XML schema files and collecting a
comprehensive and standard set of service metadata. Once the
metadata is specified, DaCHS creates those automatically, where
capabilities and interfaces declared depend on the renderer
used — for instance, the form renderer yields capabilities with
interfaces of typevr:WebBrowser, while thessap.xml renderer
capabilities of type ssap:SimpleSpectralAccess. All this is
largely transparent to the operator.

Since publications should not happen accidentally, they are
two-step processes, in which first one or more publish elements
are added in the service element as shown above:

<publish render="scs.xml" sets="ivo_managed"/>
<publish render="form"

sets="ivo_managed,local"/>
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— meaning that the form-based browser interface is adver-
tised both on the portal (‘‘local’’) and to the VO as a whole
(‘‘ivo_managed’’), whereas the cone search interface that requires
a specialized client can only be located through the VO Registry.

After that,

gavo pub arihip/q

actually adds the services and data collections marked for publica-
tion with the resource descriptor to the set of resources reported
to the Registry (where arihip here is an operator-chosen path
component) or on the portal page. This extra step is non-trivial in
that it tests the completeness and, in part, formal correctness of the
metadata that goes into the resource record.

The VOResource records generated by DaCHS need to become
part of the VO Registry at this point. This happens when a
searchable registry harvests it as discussed in Demleitner et al.
(2014). To facilitate this harvesting, DaCHS supports the OAI-PMH
(Lagoze, 2002) protocol employed by VO registries and thus lets
operators run a publishing registry. Once a DaCHS instance is
public and some server-global metadata is specified, it can self-
register at the registry of registries (Plante, 2007), after which no
further operator intervention is necessary for the dissemination of
new or updated registry records.

3. The metadata model

Metadata is the central concept in DaCHS. However, due to
a combination of considerations involving re-use of concepts
presumably already known to the operator, appropriateness of
representation, and ease of implementation, there are several
different sources of metadata within DaCHS.

First, there is the usual column metadata like name, type, UCD,
description, and the like. Here, DaCHS largely follows the model of
VOTable’s FIELD and PARAM elements, adding some attributes as
necessary (e.g., suggested table heading, relative importance, hints
for value formatting, tags of pertaining table notes).

Second, there is metadata on the space–time coordinates
(STC11). This includes information on the frame of sets of
coordinates within tables as well as the roles (‘‘declination’’,
‘‘error in proper motion in declination’’) played by the columns.
DaCHS employs a slightly enhanced version of STC-S12 for their
specification. The introduction of a special handling for this kind
of metadata may be vindicated by pointing out that STC-S is also
used to convey space–time coverage in RDs and that a key-value
representation would be too tedious for human input.

It should be noted that role assignment in other DaCHS-
supported VO data models, in particular the spectral data
model (SDM; McDowell et al., 2011), so far relies on the utype13
attributes within column metadata. In the context of ongoing
attempts to rationalize data model handling in the VO, we expect
to develop a unified method to express relations between data
models and tables as well as additional model-specific metadata
in the future, which should leave STC as less of a special case.
We expect, however, to keep special handling for this kind of
metadata. This is mainly because of its highly structured nature,
the prolific occurrence of references, and the tight coupling to
individual pieces of data.

11 The IVOA has a data model for expressing space–time coordinates, their
derivatives, and ancillary metadata; see Rots (2007).
12 STC-S (Rots et al., 2013), the ‘‘S’’ standing for ‘‘string’’, is a technique in which
space–time coordinates organized according to IVOA’s STC data model are written
as flat strings.
13 VOTable’s utype attribute was introduced to allow linking entities from data
models to elements with VOTable. See Graham et al. (2013) for a discussion of
current practices around utypes.
Fig. 2. A part of the metadata structure of a resource object within DaCHS.

The third and most interesting class of metadata is the ‘‘open’’
metadata. It is used to hold most of the VOResource metadata like
title, author, technical contact, related resources or test queries
(Hanisch, 2007; Plante et al., 2008), as well as locally-used meta-
data (like detailed documentation, usage hints, or table notes).

Several objects can hold metadata in DaCHS: the whole data
center, the resource descriptor, tables, services, and data collec-
tions. Between those, metadata can be inherited, in the sense that
a piece of metadata requested for a table is first looked up there,
then in the table’s resource descriptor, and finally in the data center
metadata. This is convenient as it allows setting sensible defaults
for items that are typically constant for a data center (the publisher,
say) or a resource container (e.g., creator), while still being able to
override them in subordinate objects as necessary.

Each meta structure is a labeled tree, where each node con-
tains a single string, can have an unlimited number of outgo-
ing edges, and labels on edges need not be unique. The labels on
the edges are called metadata atoms; concatenating the atoms
along a path with dots yields conventional metadata labels like
‘‘curation.publisher.ivo-id’’ as used, e.g., in Hanisch (2007).

Fig. 2 shows a part of such a metadata tree containing resource
metadata as defined by Hanisch (2007). The reader may take a
moment to appreciate the complications of this structure, such as
multiple edges with identical labels and inner nodes with values.

This data structure can be fairly straightforwardly mapped to
an XML instance document, which is by design: Many pieces
of this metadata are used in the creation of the XML-serialized
registry records. We refrained from using full DOM trees in
the representation for several reasons. From an implementation
perspective, our representation is more lightweight; additional
logic would be required anyway to provide metadata inheritance;
we do not want embedded fragments of VOResource XML with
all the intricacies of namespaces in DaCHS’ resource descriptors;
and, this data structure is used to hold more than just VOResource
metadata.

Table notes, for instance, aremetadata on tables. In this scheme,
a note consists of the note text in a node with the incoming
edge labeled note, and there needs to be exactly one outgoing
edge labeled tag, the node of which contains the note symbol as
referenced in the column definitions and used as footnote marks
in rendered tables.

This example illustrates two additional requirements that we
encountered in applications of DaCHS’ metadata mechanism:
Firstly, table notes may require markup, e.g., for definition lists,
enumerations, or simply paragraphs. Secondly, certain pieces
of metadata depend on others, as in this case a note text is
meaningless without the tag.
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To satisfy the first requirement, metadata content may be
either literal (in which no reformatting takes place in usage),
plain (which reflows text in paragraphs separated by an
empty line on input), and rst, which interprets the content as
ReStructuredText (Goodger, 2010), formatting it according to the
format of the embedding document. This also implies that in
DaCHS’ metadata component all nodes exclusively contain strings.

The second requirement is covered by a primitive type system
for the nodes (rather than their content), which essentially
constrains the children of a given node, for instance ‘‘note-
typed nodes must have a tag child’’ or ‘‘news meta items must
have author and date children’’. Assigning types to well-known
metadata items also enables easy input, type-specific formatting,
and defaulting where sensible. Examples where these become
relevant include url (optionally having a title child), relation
(having a relationship type and the related resource), logo
(which, formatted to HTML, yields an img element), bibcode
(which, formatted to HTML, yields links to bibliographic services),
and info (which are turned into VOTable INFO elements as
appropriate).

A difficult design decision was whether and how to put
constraints onmeta structures. This is particularly importantwhen
meta structures are serialized into VOResource metadata, where
adherence to the cardinality rules and content constraints implied
by the schema determines the validity of the resource records and
hence the validity of the entire OAI-PMH interface.

We opted against enforcing any constraints during metadata
construction. The most important reason is that we wanted to
enable custom metadata under operator control, as this facilitates
straightforward extensibility as well as flexible communication
between various pieces of operator-provided artifacts (embedded
code, HTML templates, and the like). Also incremental creation of
meta structures is much easier if unconstrained temporary results
are allowed.

On the other hand, it turned out to be highly inconvenient to
diagnose and debug badmetadata structures by schema-validating
the finished resource records. We therefore introduced a simple
specification language that constrains cardinalities of meta items.
For the service object, this might look like this:

title(1), creationDate(1), description(1),
subject, referenceURL(1), shortName(!)

—meaning that exactly one each of title, creationDate, description,
referenceURL must be present somewhere in the service’s
inheritance tree, one or more of subject must be present, and,
as expressed by the exclamation point, exactly one shortName
must be in the object’s own metadata. This list is not interpreted
as exhaustive, i.e., meta keys not mentioned in this list are
simply ignored by the validator. The specifications are checked on
demand, typically by executing the val subcommand, or before a
resource is published to the registry.

No constraints are possible on the node content. While this has
not been missed for simple types (e.g., text vs. integer vs. float),
violation of constraints imposed by controlled vocabularies has
been an issue. As an instructive example, consider SSAP’s creation
type, which has to contain one of seven keywords, some of which
are long and mixed case, like ‘‘spectralExtraction’’, as specified
in Tody et al. (2012). Weighing the increased complexity in
the constraint language against our experience that vocabulary
mismatches can quickly be diagnosed by inspecting schema
validator outputs, we still decided not to add enumerations of
allowed values to the constraint language.

A weak point of the validation-on-demand scheme used
by DaCHS is that as the resource descriptors are edited after
publication, records may become invalid, since resource records
are generated from the descriptions at harvest time, while the OAI-
PMH timestamp remains fixed at the timegavo pubwas executed
(which we do to avoid needlessly announcing changed resource
records to harvesting registries when registry-irrelevant edits are
made to an RD). This can be particularly insidious in the presence
of incremental harvestingwhere the old, correct recordwill still be
present in some registries, while others might have performed a
full re-harvest in the meantime and discarded the nowmalformed
record. This situation can only occur if operators fail to re-run
gavo pub after doing registry-relevant edits — which in practice
happens more often than we would like. No good solution for this
type of problem exists at that point.

4. Resource descriptor techniques

In DaCHS’ philosophy, the information required to publish po-
tentially heterogeneous data over standard protocols is collected in
one XML file, the resource descriptor. Typically, a data center will
have one resource descriptor per data collection. A single DaCHS
server can expose services from arbitrarily many RDs.

As an indicator for the extent of such descriptions, the sizes
of the RDs of services currently active in GAVO’s Heidelberg data
center vary between 50 lines where essentially only metadata and
a service description is necessary, and 1700 lines for resourceswith
many tables, long notes, and wide integration test coverage.14

Rather than discussing the mapping between the model from
Fig. 1 and the actual XML elements and attributes in an RD – for
that, we refer the reader to Demleitner (2013, 2014) –, we want
to present two case studies how the concept of RDs aids the data
collection-neutral implementation of VO protocols.

The term ‘‘collection-neutral’’ here is crucial — probably the
single most challenging problem in DaCHS’ development and
hence the evolution of the definition of RDs has been how to
enable optimal use of DaCHS’ facilities while keeping constraints
on data published and operator-defined aspects of service behavior
minimal. Given that RDs are written in XML, this translates into
mechanisms to re-use and customize subtrees of XML elements.
A natural choice for a technology achieving this might seem XSLT,
and if we started DaCHS from scratch, XSLT would perhaps play an
important role. Historically, though, it took a while until we could
state the problem in this form, and so DaCHS now offers custom
facilities for this kind of metaprogramming.

One of those is the mixins discussed above. In the current
implementation, mixins are largely formulated using a more basic
mechanism employing STREAM elements (while all immediate
XML names DaCHS defines are mixed-case, metaprogramming
element names are written all upper-case), which, at the lowest
level, is just a sequence of XML parser events. To allow
customization, they support string substitution with macros,
inspired by TEX (though much less expressive). For instance, one
could define

<STREAM id="valWithError">
<column name="\basename"

description="\basedesc"
ucd="\baseucd"/>

<column name="err_\basename"
description="Error in

\decapitalize{\basedesc}"
ucd="stat.error;\baseucd"/>

</STREAM>

14 Most resource descriptors active in GAVO’s data center are available in a public
version control system for inspection and review; a good entry point to this resource
is the cross reference at http://docs.g-vo.org/DaCHS/elemref.html.

http://docs.g-vo.org/DaCHS/elemref.html
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This streamcanbe replayed several times in anRD,where all the
macro names not otherwise defined must be ‘‘bound’’ using XML
attributes when replaying; this might look like

<FEED source="valWithError" basename="mag_v"
baseucd="phot.mag;em.opt.V">
<basedesc>The magnitude in the Johnson
V band, as obtained with the ABC telescope’s
1967 V filter.</basedesc>

</FEED>

— basedesc can be written as an element since DaCHS does not
distinguish unique elements with string content and attributes.
Thedecapitalizemacro used in the streamhas not been bound,
as built-inmacros (in this case lowercasing the first character of its
argument) ‘‘shine through’’ the bindings when replaying.

While this basic mechanism may appear rather plain, it
supports a surprising breadth of applications, in particular when
combined with LOOP, which inserts multiple copies of an element
into an RD, where macro bindings may be taken from a table or
computed using Python code.

An older facility still supported but not recommended for
new projects is the original attribute — this references an
element in some RD, essentially turns it into a stream, and
then replays it into the element that contains original. While
this mimics inheritance known from conventional object-oriented
languages fairlywell, it turned out that this systemhad threemajor
drawbacks in RDs. Firstly, there is amismatch between inheritance
and the largely declarative structures in RDs, which frequently
made re-use awkward. Secondly, we never found a satisfying
syntax for allowing changes of nodes further down the subtree
being copied. Thirdly, andmost importantly, the source objects for
original need to be complete, valid DaCHS objects, as they are
parsed by the normal RD parser. Useful RD metaprogramming, in
contrast, frequently calls for node sets or incomplete objects to be
moved around. Streams can do this, original cannot.

While streams solved many of the metaprogramming issues
we had, more effort is still needed to regularize several important
use cases, most of which have to do with element selection; an
example are renderer-specific condition descriptors, where, for
instance, an HTML form interface will present a free-text field
allowing object entry for position selection, where a cone search
needs separate RA and DEC inputs. To allow sharing the same
core for both renderers, condition descriptors can declare what
renderer names they should or should not be used for. Having some
general selection in DaCHS’ metaprogramming language could
obviate the need for this ad-hoc construct. However, details of
such a general selection element, in particular the language the
conditions are written in, are non-trivial to define. This results in
some rather ugly and ad-hoc DaCHS features at this point.

5. Case study 1: SSAP

The Simple Spectral Access Protocol (Tody et al., 2012)
conceptually is comparatively simple: There is onemain operation,
queryData, with a single-table result listing metadata for datasets
matching a set of query parameters, expressed using about a
dozen protocol-specified and arbitrarily many operator-definable
parameters.

However, protocol details add several complications. In addi-
tion to responding to the simple data discovery query, the ser-
vice also has to declare metadata on the parameters supported by
it in a specific format. A wealth of metadata must or should be
represented in the response document in either VOTable PARAMs
or the response table. Some of the protocol-defined parameters
map poorly to many sorts of data collections (e.g., POS to spec-
tra of model atmospheres), and most parameters in turn can sup-
port some syntax or have a relatively complex domain. As an
example for the latter, we mention the FORMAT query parameter,
which allows specifying constraints on the format of the datasets
returned. While it could simply contain a MIME-type, special val-
ues like ‘‘compliant’’ – for result datasets serialized into one of the
forms given in McDowell et al. (2011) –, ‘‘graphic’’, or even ‘‘meta-
data’’, as well as combinations of those, must be appropriately pro-
cessed. Finally, there are some special validity requirements like
the declaration of an XML namespace for the fixed prefix ssa that
is not used in the XML; this latter requirement is due to a now-
deprecated convention for data model identifiers.

In consequence, supporting SSAP in DaCHS relies on a fairly
complex combination of definitions in system resource descriptors
– primarily, the //ssap builtin resource descriptor – and a
substantial amount of code in the server runtime.

The first step to support SSAP was the definition of the mixins
for the tables, i.e., the columns and table parameters making up
the metadata collection. We distinguish two cases; in mixin terms
these are //ssap#hcd and //ssap#mixc. The first of these
is for publishing ‘‘homogeneous’’ collections of data, in which
all datasets originate from the same instrument and indeed the
same creator. Consequently, metadata items like the creation type,
typical errors, the bibliographic reference or the spectral resolution
are table parameters serialized into VOTable PARAM elements. The
table itself only has about 20 SSAP-related columns.

The mixc mixin is for a ‘‘mixed’’ data collection comprised of
spectra frommultiple instruments or frommultiple observing pro-
grams. In this, information kept in table-global parameters within
hcd tables nowmoves into each rowwithin the table. This roughly
doubles the number of columns (and obviously the effort to fill
them from the datasets as well). Both mixins are accompanied by
rowmaker procedures to fill the tables in a controlled fashion; their
parameter lists double as dataset metadata checklists for the oper-
ators.

Other arrangements (e.g., constant instrument data, varying
creator data) are of course possiblewithout code changes by simply
writing an RD deriving from the built-in //ssap RD. However, it is
not clear to us yet that the implementation effort for suchmixins is
worth themoderate savings in space and themoderate gain in data
normalization. If a consistent extraction of constant columns into
VOTable params were required, we propose this should be done in
the VOTable formatting code.

The SSAP service parameters come in the form of a stream,
where the code is written in a way that it is irrelevant whether
some piece of metadata is in the database table or kept in a table
parameter. Implementing those service parameters requires some
extra effort, though. About 30 lines of RD are required for support
of the BAND parameter, as it can contain a floating-point range as
well as a string to be compared against bandpass metadata. More
than 50 lines of RD code are necessary to implement standards-
compliant behavior of FORMAT.

For the remaining parameters, generic code was sufficient. The
informal specification of what should be supported for the syntax
of the parameter values is sometimes called ‘‘PQL’’ or ‘‘Parameter
Query Language’’ and basically allows ranges and some sorts of
enumerations, plus essentially free additional metadata which
we consistently ignore. It turned out to translate into relatively
involved code (about 700 lines of Python and another 120 lines of
support objects in an RD).

The built-in //ssap resource descriptor itself has about 800
lines pertaining to SSAP (some material in there deals with
generating datasets complyingwith the IVOA spectral datamodel).

The actual service interface again requires Python code in the
form of a DaCHS renderer. The actual renderer can be shared
with the one for the Simple Image Access Protocol SIAP, as
error behavior and the like are defined analogously. The only
Python code necessary at that level was the representation of the
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Fig. 3. Information flow in datalink-governed data access, with DaCHS actors
sketched in. Items in parentheses are external. The datalink service proper (DaCHS
dlmeta renderer) receives one or more dataset identifiers originating from a
previous discovery step. From this, it creates a table of links to actual data products
relevant to the dataset, as well as a description of a data access service (in DaCHS,
there is at most one of those, exposed through the dlget renderer on the datalink
service). This allows access to processed (e.g., cutout, rebinned, etc.) versions of the
dataset.

SimpleDALRegExt (Plante et al., 2012) capability for SSAP services
and about 20 lines of relatively declarative code defining how to
produce VOResource XML for that capability.

Finally and in contrast to plain SIAP and SCS, SSAP requires
a custom core, for example in order to add the gratuitous ssa
namespace declarationmentioned above. The total code necessary
for the SSAP core is some 20 lines, although it looks much more
than that right now since it is still mergedwith an implementation
of a withdrawn proposal for a getData operation in SSAP.

6. Case study 2: datalink

Datalink (Dowler et al., 2013a) is an IVOA protocol currently in
development that abstracts dataset delivery by sitting between a
discovery query (e.g., using SIAP or TAP queries against Obscore
tables) and the actual dataset delivery. In a datalink-enabled
scheme, the discovery services may return direct links to results
of datalink services, or they may include information on what
datalink services can be used to retrieve data from the datasets
discovered. Datalink services themselves return a set of links to
resources related to the dataset (e.g., the file itself in various
formats, previews, raw or further reduced versions) as well as to
data access services (see Fig. 3).

This abstraction is very beneficial to DaCHS; part of the guiding
principles behind DaCHS is to touch the inputs as little as possible,
which, before datalink, frequently meant brittle solutions to serve
standards-compliant (e.g., SDM-compliant spectra) or processed
(e.g., cutout) datasets. Datalink now provides a clean framework
and lets operators easily define custom operations and complex
relationships in their resource descriptors, offloading the core
code.
Central to datalink is the concept of a dataset identifier (DID),
which is passed into the service to obtain the table of links and
services. Most of the DIDs used in the VO are assigned by the
publishers, and these are known as pubDIDs for short. PubDIDs
should be IVORNs, i.e., a URI with the schema ivo assigned to
a specific dataset by the operator. As IVORNs must resolve in
the registry (Plante et al., 2007), pubDIDs are typically built as a
combination of a registered resource and a query part identifying
the dataset itself. The standard pubDIDs of DaCHS consist of
the identifier for the product deliverer, having the data center
authority as the host part and a tilde as the local part, and a
query part giving the access reference, which is a key into the
product table. This product table (containing such information as
access restrictions, physical paths, or preview location) is part of
DaCHS’ subsystem do deal with possibly access-controlled files; by
using such access references in the pubDIDs, it is straightforward
to re-use as much of DaCHS’ built-in data product handling as
appropriate for a given task.

DaCHS’ datalink implementation relies on four new procedure
types. The first of these is a descriptor generator, which takes
a pubDID and generates a descriptor object from it; a default
implementation looks up the DaCHS’ product table and returns a
bare descriptor containing the content of thematching row, which
includes information like the physical location of the dataset (e.g., a
file path or aURL), theMIME type, and the owner and embargo date
for proprietary data.

Other predefined descriptor generators include one looking up
SSAP metadata and one reading the primary header of a FITS
file. Both expose this ancillary metadata in extra attributes of the
descriptor. Generating descriptors should be fast, as descriptors are
generated on each access to the datalink service.

The next procedure type is themetamaker. Metamakers receive
the descriptor and come up with either parameter definitions for
the embeddeddata access service or linkdefinitionswhich are later
turned into rows of the datalink table. While the meta makers for
specialized data products usually presume specialized descriptors,
DaCHS does not enforce type safety here.

These two components suffice for building the datalink
response. The dlmeta renderer formats the objects returned by
the meta makers into a VOTable and then delivers it to the client.

In DaCHS, datalink services typically have built-in support for
the data access services described. For that, there is the dlget
renderer, which implements the data access service defined by the
meta makers returning service parameters. Processing with this
renderer starts as for the dlmeta renderer but goes on to pass the
descriptor to a sequence of the third type of procedure, the data
functions. The first of those plays a special role in that it must add
a data attribute to the descriptor containing some representation
of the data accessed; this could be a lazy HDU list for FITS files or a
table of spectral/flux pairs for a spectrum.

The further data functions then perform operations defined by
the service parameters on this data, e.g., cutouts, recalibration,
or similar. This can happen on the actual data – DaCHS’ spectral
processing does this –, but the effect can also be to add processing
instructions. This latter option occurs for FITS files, where the data
functions handling cutouts just compute slices to be retrieved from
disk. This lazy evaluation saves pulling large files like cubes orwide
field images into memory just to throw away most of the data.

The final step of dlget processing is to call a data formatter,
the fourth procedure type for datalink support. This takes the
content of the descriptor’s data item and serializes it. The default
here is trivial: The renderer simply interprets the descriptor’s data
attribute as either a file or a pair of MIME type and content (as a
byte sequence) and delivers that to the user. In the case of spectral
processing, on the other hand, the data formatter serializes the
SDM-compliant table in the data attribute into any of VOTable,
FITS, CSV, or TSV according to the value of the FORMAT attribute.
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For special situations, data functions can shortcut the subse-
quent data functions and the data formatter. This allows the im-
plementation of a KIND parameter to the data processing service
admitting a value of header for FITS files; it will inspect the cur-
rent state of the data attribute and build a FITS header out of it,
which is then immediately rendered.

The implementation effort for datalink itself was rather mod-
erate, in particular not requiring large amounts of handling border
cases. The core datalink code is less than 600 lines of Python, about
half of which is embedded documentation. Code for handling spe-
cial data types – namely manipulation of spectra and generic FITS
arrays – is 800 lines of RD including documentation.

The whole system proves very flexible. For instance, it is
straightforward to implement delivery for simulated GAIA spectra
(Isasi et al., 2010) that came in archives of the GAIA-specific GBIN
format. For this, the only thing that needed changing with respect
to normal spectral datalink services was about 20 lines of RD
describing how to pull the spectral/flux pairs out of the database
table generated from the GBIN files.

Another example where datalink enables complex tasks
without changing the core code and still remaining compact was
a prototype service serving Echelle spectra in about 70 lines of RD.

Using the facilities, a datalink service doing standard cube
cutouts is about 20 lines of RD; by way of illustration, this is
a slightly abridged excerpt that implements such a cutout for
spectral FITS cubes:

<service id="d" allowed="dlget,dlmeta">
<meta name="title">Datalink service...
<datalinkCore>

<descriptorGenerator
procDef="//datalink#fits_genDesc"/>

<metaMaker
procDef="//datalink#fits_makeWCSParams"/>

<dataFunction
procDef="//datalink#fits_makeHDUList"/>

<FEED source=
"//datalink#fits_standardLambdaCutout"
spectralAxis="1" wavelengthUnit="’nm’"/>

<dataFunction
procDef="//datalink#fits_doWCSCutout"/>

<dataFormatter
procDef="//datalink#fits_formatHDUs"/>

</datalinkCore>
</service>

A datalink service with links to related datasets in different
resolutions and a TAP service containing the cubes in database
tables is less than 50 lines of RD.

7. Conclusion

DaCHS is a package offering an integrated suite of tools for
publishing data with a particular focus on streamlined metadata
handling from ingestion to service operation to the generation of
registry records. It was written with a view to enabling operators
to adapt upstream data to standard interface and implement
custom features, always attempting to obtain compliant-by-
default behavior.

The code is freely available under the GPL, ample documenta-
tion is provided at http://docs.g-vo.org/DaCHS, and we maintain
an APT repository, out of which DaCHS can be installed to a state
ready to start mapping data withinminutes on Debian and derived
systems. For further information and downloads, please refer to
http://soft.g-vo.org.
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