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Abstrakt

Astronómia je zdrojom vělkého množstva dát vhodných pre efekt́ıvne spracov-
anie za pomoci poč́ıtačov. Zamerali sme sa na data miningový algoritmus sam-
oorganizujuce sa mapy a skúmali sme jeho možné využitie pre spracovávanie
vělkých astronomických dat. Zvolili sme najlepšie spomedzi skúmaných im-
plementácii a prepojili ich do jednotnej zapuzdrenej aplikácie. Na vylaďovanie
algoritmov sme použili známe data sety z úložisťa UCI, následne sme sa zamer-
ali na klasifikáciu hviezd na základe charakteristiky ich spektier. Samoorgan-
izujuce sa mapy sa ukázali ako vhodný nástroj pre klasifikáciu. Využit́ım mod-
elu učenia bez učitěla umožňujú rozpoznávanie skuṕın spektier vymykajúcich
sa normálu a dokážu odhalǐt skryté, človekom len ťažko postrehnutělné črty.

Kĺıčová slova Samoorganizujúce se mapy, Astroinformatika, Data mining,
Umelá inteligencia, neuronové siete, Učenie bez učitěla, Astronomická spek-
troskopia, Big Data
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Abstract

The astronomy is source of big amount of data with possibility to be effectively
examined by computer. For this purpose we focused on the machine learning
algorithm called self-organizing Maps and its use on big astronomical data.
We chose the best from considered implementations and wrapped tham in
one user-friendly application. For scaling of algorithm we used well known
data sets from the UCI repository and then concerned ourselves particularly
with the classification of stars based on their spectral characteristics. The
self-organizing maps are excelent tool for clustering data in a new way. The
unsupervised learning paradigm enabled us to find the groups of self-similar
outliers and hidden patterns in data that are hardly possible to find by eye.
The algorithm shows very promising results.

Keywords Self-organizing maps, Astroinformatics, Data mining, Artificial
intelligence, Neural networks, Unsupervised learning, Astronomical spectro-
scopy, Big Data
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Introduction

From ancient times people were excited by knowledge. They were amazed
by changing, but regularly periodic motions of stars on heaven and tried to
find logic in infinitely remote space. They even built gigantic monuments to
predict behaviour of cosmic bodies.

In centuries the science of astronomy has developed to form of complex
science with lot of branches. As almost everything in the world, the process of
modernization has not avoided this field. Now it is hardly to imagine, how it
would be without using computational technologies. The computers became
a thing of great significance. With its help, the big volume of astronomical
data can be automatically processed, so instead of weeks of hard work, the
data can be processed in scale of seconds.

However, sometimes the raw computing power is not enough. The intelli-
gence and pattern recognition of human eye is irreplaceable. But what does it
mean? Is it possible to find human resources for clustering of stellar spectra?
What would it cost and would the received data even suitable for use and
error-free?

This is the task we want to look on in this theses. More precisely we de-
cided to make closer look on promising method of data mining: Self-organizing
map (SOM) and examine its possible use in astronomy for stellar spectra clas-
sification.

The thesis is divided in following chapters:

Astronomy
The brief introduction into terms as astroinformatics, astronomical spec-
troscopy and in astronomy broadly used file format FITS.

Knowledge discovery
This is a theoretical introduction of Computer science fields, that are im-
portant to be acquaint with before reading following chapters. First the
data mining is discussed, then we look deeper inside to neural networks
and its learning paradigms.
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Introduction

Self-organizing maps
The closer look to the self-organizing maps (SOM), the type of neural
networks. We discuss about its origin and aplications, look deeper into
its inner structure and present the possibility of its visualization and
error measurments.

Data sets
Introduction of the data sets that we used for testing and introduction
of technics we used for their pre-processing.

Implementations
In this chapter are discussed several implementations of SOM algorithm.
We mention their pro and contra. We also show some ideas how to boost
the speed of the computation and discuss the possibility of parallelization
(also using GPU).

Wrapping application
Description of architecture of wrapping application and several imple-
mented features.

Tests
selected comparison tests of SOM implementations, used algorithms and
features with focusing on astoinformatics problem, clustering of stellar
spectra.

Other unsupervised methods
Introduction of other interesting algorithms that use unsupervised learn-
ing paradigm. Discussion about their possibilities for parallelization.
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Chapter 1

Astronomy

1.1 Astroinformatics

Astroinformatics raised from natural need for interdisciplinary discipline, in
which are represented aspect of astronomy, computer science and information
technology. [32] It aims to enrich traditionally used methods of astronomy by
finding new reliable and effective ways for processing of massive and complex
data sets that can lead to better understanding of nature of astronomical
objects.

Astroinformatics is using a new scientific methodology, where the new
discoveries results often from outliers, founded by technique of machine learn-
ing and data mining, while benefiting from long-term skills of astronomy of
building well-documented astronomical catalogs, automatically processed tele-
scopes and satellite archives.

1.2 Astronomical spectroscopy

Spectroscopy is one of the most important astronomical tools, it studies the
spectra of stars and other objects in the Universe dispersed according the
wavelengths of their light. [26] This study allows to determine their charac-
teristics as chemical compositions, radial velocities, relative motion or physical
properties such as temperature or density.

Using Doppler shift can be measured dark matter Using a Doppler shift
can be in spectroscopy measured dark matter content of galaxy, characteristics
of Binary stars or exoplanets, the mass of galaxies or universe expansion rate.

1.3 FITS format

Flexible Image Transport System (FITS) is an open standard digital file format.[10]
It is highly used in astronomy as it can store almost every type of data. Many

3



1. Astronomy

telescopes use it as a default storage format for their observations. [5]
FITS is interesting for a way how it stores data. The file consists of two

parts. At the beginning it has a header containing meta-data. This part of the
file is stored as ASCII text so it is easy readable also by human. It contains
all important information about origin, coordinates, history of the data, etc.
In the second part is a image itself stored in binary form.

The image can be classical two dimensional, but it can be also a one
dimensional spectrum, usual spectrum, data cube or some other much more
complex structure.
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Chapter 2

Knowledge discovery

2.1 Data mining

Data mining is field of computer science involving methods of artificial intelli-
gence, statistics and machine learning. It refers to the systematic application
of statistical methods to a data set with the aim of new patterns identifica-
tion. It also involves processing of very large data sets, which can no longer be
processed manually. To process the big data the efficient methods should be
used. In this case, it is needed to take special care for their time and memory
complexity.

The term data mining is sometimes used for so-called ”Knowledge Discov-
ery in Databases (KDD)”.[16] KDD includes both steps, pre-processing and
analysis. Actually, the data mining refers just to second one.

Data mining does not mean just collection, storage and processing of large
amounts of data. Mainly it refers to the extraction of previously unknown
knowledge that are potentially useful, to determine certain regularities and
hidden relationships in datasets. It helps to solve problems, that are not
deterministically solvable in polynomial time (NP problems). There is no
guarantee that the solution is optimal. However, if using a good model, it can
be very similar to it.

2.2 Artificial neural networks

Artificial neural networks (ANN) were invented by Warren McCulloch and
Walter Pitts (1943). [28] It is type of computational model based on math-
ematics and algorithms inspired by nature. It resembles processes in neural
cortex of human or animal brain, by modeling cognitive operations at ele-
mentary basis, signals that are transmitted among neurons and creations and
destruction of connection among them.

More formally ANN are massively parallel computational system with the
ability to preserve information and enable its further processing. They re-

5



2. Knowledge discovery

semble human learning in way it stores knowledge, via preserving them in
inter-neural connections (synapses).

The base of neural network is neuron. Basically it can have several inputs
coming from other neurons outputs or from outer environment. The opera-
tion that neuron use for transmission of inputs to output is called activation
function. It used to be very simple. Actually, the combination of more simple
elements is what makes the ANN complex. To compute activation value the
connection weights are used. The weights are representations of inter-neural
connection strength. 2.1

Figure 2.1: Model of artificial neuron. [18]

Prevailingly, the ANN used to be organized in layers. This approach sig-
nificantly ease the program implementation and mathematical description of
network. Usually it consists of input and output layer that communicate with
environment. Optionally the one or more hidden layers can be included.

The main advantage of neural network is its ability to learn. It works
like the black box. The output is created for every input, without response on
inner structure of network. It is important to realize than ANN have ability of
generalization, so they can manage the inputs they have never been in contact
before.

2.3 Learning paradigms

In data mining we recognize two types of learning.[31] They are characterized
by a way they gain information. It can be with a teacher (supervised) or by
itself (unsupervised).

2.3.1 Supervised learning

The philosophy of supervised learning is the presence of supervisor during
whole process of learning (training). It is needed to have data that have a
corresponded correct output to each of inputs. The learning itself looks like
following: The input data are given to a model input layer. The model trans-
forms them to output, which is compared with the proper input. The com-
parison of the outputs is an error, that is consequently used by transforming
the model in the way, it corresponds to given data better.

6



2.4. Self-organization

The supervised learning paradigm is used for example in neural networks
by back-propagation or by stochastic learning in random forest entropy count-
ing.

2.3.2 Unsupervised learning

This type of learning paradigm does not need any output data. That is why
it is often used in case we do not have sufficiently correct output or when
it is not possible or very hard to create it. The model using unsupervised
learning handles input data, based on the inner concepts. So it is able to find
hidden structures and connections in data and compose a model which finds
the statistical regularities in them and create their compact and expressive
description. Such a data are easier for understanding and characterization
then the raw one.

Since unsupervised learning used unlabeled data, there is not exact error
measurement system to evaluate the solution. But there exists some methods
of reliability measurement.

2.3.2.1 Competitive learning

Competitive learning is a type of unsupervised learning using the winner-take-
all approach. From neurons that get signal, the most activated is selected as
a winner. The winner neuron is set to value 1, all others to 0. Consequently
only the weight with connection to winning neuron are updated.

2.4 Self-organization

Self-organization is a spontaneous creation of structures and system functions.
[20] The self-organizing systems can reconfigure themself to changing envir-
onment, so they can flexible react to the new arising tasks without need to
be specially trained for them. It gives them big amount of robustness and
adaptiveness, what makes them ideal for solving of non-stationary or very
large domain problems, which solution is not fixed or unknown. The special
engineered system is capable to find a structure and connection in data space
and help to solve many non trivial problems.

7





Chapter 3

Self-organizing map

Self-organizing Map (SOM) is a special type of artificial neural networks using
paradigm of unsupervised learning. It is a computing method for mapping of
multi-dimensional space into two dimensional lattice. It converts the statistic-
ally non linear connections among multi-dimensional data to simple relations
visualized in low dimensional space. This is reached by using combination
of two subsystems of different nature. [23] The winner-takes-all approach
combining with plasticity control. The plasticity control is guaranteed by
Neighborhood function that manage spreading of activation to best matching
neuron neighborhood. It helps to create and maintain the topological organiz-
ation of neuron. The use of these approaches together has created an effective
and robust self-organizing system.

The SOM was first presented by Teuvo Kohonen, a professor of the Academy
of Finland in work [22]. That is a reason why it is sometimes called Kohonen
SOM.

”The algorithm of SOM is more similar to real brain, than other classical
neural networks. It grew out of neural network models of associative memory
and adaptive learning. The main stimuli to creation was to explain the spatial
organization of brain’s function in the cerebral cortex. It was not the first
algorithm using power of self-organization. The idea was used by Von der
Malsburg (1973) in spatially ordered line detectors and by Amari (1980) in
neural field model. Nonetheless, the self-organization power of both algorithms
was unsatisfactory.”[23]

The SOM is used to reduce dimensions of data and visualize them in hu-
man readable way. The problem with more dimensions is that people can not
effectively imagine more than three dimensional data, so there exist the tech-
niques that help us understand them. The SOM reducing of dimensionality
usually creates 1 or 2 dimensional lattice, which recognizes the similarities of
the data and groups the similar data together. Eventually it mediates two
things, reduction of dimensionality and display of similarities.
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3. Self-organizing map

3.1 Applications

The SOMs were used for solving of broad scale of problems. it posses four
important properties[14]:

1. Approximation of the Input Space
By feature map we can find a prototype of input space. The good-
ness of approximation can be measured by quantization error presented
in[odkaz].

2. Topological Ordering
Spatial locations of a neurons are similar to particular domain of in-
put pattern. Use of other words, the input vectors near to each other
in resolving output grid are supposed to have a short distance in n-
dimensional space too.

3. Density Matching
Input vectors that are chosen from space with higher density are mapped
onto larger part of lattice, so the output resolution of this vectors is
higher then a resolution of vectors from lower density regions.

4. Feature Selection
If input space is a non-linear distribution, the SOM is able to select a
set of best features for its approximation. The SOM can be viewed as a
non-linear generalization of PCA.

3.2 Network architecture

The map consists of two layers. The input layer is consisting of neurons, which
number is equivalent to input data space. Second layer also called output
layer or feature map is ordered in topological structure usually rectangular or
hexagonal two dimensional lattice. All neurons (called also reference vectors)
of lattice are connected by lateral connections. This connections are important
for topology preserving and neuron neighborhood recognition.

In the Fig. 3.1 are displayed the connections among input and output
layers. In this example is a network compounds from two dimensional input
layer and square interconnected lattice output layer. The every neuron of
output layer is connected to all neurons from input. Every such connection
has its own weight value, from which the weight matrix is created.

3.3 Best matching unit

Best matching unit (BMU) is the label for neuron with a weight vector closest
to the input vector. Such a neuron plays important role in process of weight
actualization.

10



3.4. Neighborhood function

Figure 3.1: SOM topology [8]

The distance among neurons can be computed by any metric. The most
common used is the Euclidean. 3.1. But also some other metric can be used,
for example Manhattan.

d(p,q) = d(q,p) =
√

(q1 − p1)2 + (q2 − p2)2 + · · ·+ (qn − pn)2 =

√√√√ n∑
i=1

(qi − pi)2

(3.1)

3.4 Neighborhood function

The neighborhood function is important part of SOM. It is responsible for
topology preserving ability of map. The topological relations of input space
are so maintained.

The neighborhood function is specified by the radius σ. It is a distance
from neuron to the other neurons in its surrounding, in which they are consider
as neighboring.

For a neighborhood function is often used the Gaussian function

t = 1, 2, 3

Θ(t) = exp

(
− dist2

2σ2(t)

)
(3.2)

or discrete computational easy bubble function. On figure 3.2 is displayed
a Gaussian (a) respectively bubble function (b).

11



3. Self-organizing map

Figure 3.2: Possible neighborhood functions [21]

3.5 Learning process

During the training, the input vectors are selected in random order. All vectors
are iteratively used multiple times to expose impact to the model. The time
t is defined as discrete variable, increasing with every step in which the one
input vector is processed.

Consequently the competition starts and BMU is found. The weight of
BMU and its neighboring neurons are transforming in order to be more similar
to input. The learning ratio L is used to count effect of transformation. It is
chosen from interval L ∈ (0; 1〉 by learning rate function L.The L is usually
decreasing in time. Such defined function leads map to converge to final state.
There are several possible learning rate functions. For example exponential
3.3, inverse time 3.4 or linear 3.5 function, where the letter L0, is the learning
rate of the lattice at time t0 and the Greek letter lambda λ denotes a whole
time constant.

t = 1, 2, 3

L(t) = L0 exp
(
−t
λ

)
(3.3)

t = 1, 2, 3

L(t) = L0
c

c+ t
, c =

λ

100.0

(3.4)

t = 1, 2, 3

L(t) = L0 (1.0− t/λ)
(3.5)

Similarly the neighborhood radius sigma is shrinking over time 3.6.

t = 1, 2, 3

σ(t) = σ0 exp

(
−t
λ

)
(3.6)

12



3.6. Algorithm

Such defined decrease rates are cosing a regular positioning of neurons at
the beginning and its fine centering at the end.

3.6 Algorithm

1. Initialization
Weights of each neuron of the grid are initialized to small random value.

2. Input Selection
The random vector from input space is selected. It is recommended to
iterate through all vector multiple times. The random order of every
such iteration can stay the same.

3. Activation
Is the most computationally expensive part of algorithm. During this
phase is counted a distance from input vector to all neurons on grid and
a best matching one is selected and activated(BMU).

4. Counting of Neighborhood Radius
In this phase is counted the radius, which takes informing size of radius
of the map. By increasing time it is diminished and at the end it is
usually in size of only one neuron.

5. Weights actualization
The part of the algorithm in which the actual map is changing. The
weights are changed for every neuron i that is within a neighborhood
radius from BMU. The new value of weights Wij is counted for every
synapse j according to the following formula.

j = 1, , nWij(t) =Wij(t+ 1) + Θ(t, i)L(t)(Vj(t)−Wij(t)) (3.7)

6. Iteration
Return to point two, until there are vectors in input.

3.7 Visualization

3.7.1 U-Matrix

Unified Distance Matrix (U-Matrix) is important tool for visualization con-
nections in SOM. It is created by visualization of output neurons, in such a
way that new value of neuron is a sum of distances to its neighboring neurons.
The acquired values are displayed in a color scale. The neurons that are close
together used to have light color the more widely separated are darker. From
Fig. 3.3 it is easy to predict two main clusters within data. They are the
lighter areas of same color bordered by darker line.

13



3. Self-organizing map

Figure 3.3: Example of U-Matrix

3.7.2 Map of activation

Map of activation visualize output neurons. Every neuron is colored in order
how many of input vectors activate it. It can be used for example to determine
a data density. After redistributing of input data by its source can be for every
of the parts separately created map. Obtained maps can be compared and
similarity among sources detected.

3.8 Errors measurements

In unsupervised learning algorithm it is not possible to define absolutely ob-
jective measure of errors. Nevertheless it is possible to measure its reliability
by following methods[15].

3.8.1 Quantization error

By SOM the data space is quantized into finite number of output vectors.
The vector quantization is used to compress data, to remove noise, etc. The
(quadratic) quantization error is a squared distance between the input data
i and its BMU neuron x. For distance d(i, x) and n input vectors can be
quantization error counted like in equation 3.8.

Errquant =

∑n
i=1 d(i, x)2

n
(3.8)
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3.8. Errors measurements

3.8.2 Measure of organization

It measures if a resulting map preserves topology. The neighboring neurons
in the input space should be projected on the same or neighboring neuron of
the map. Various procedures exists how to measure it. For example measure
of the distance between all neurons examines if the nearest one is also the
neighboring one. This method can be used to detect various twists, butterfly
effects, rotations and mirrorings of the map.
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Chapter 4

Data sets

The final application will be prevailingly used for spectral analysis. However
for basic functionality tests we chose some well known data. For scaling of
algorithms and time measuring, we used bigger astronomical data set.

4.1 Iris data

The most popular data set from UCI Repository [11] It is composed of 150
instances, 4 attributes each. Instances are categorized in three classes: Iris
Setosa, Iris Versicolour, Iris Virginica. The class Setosa is fully separated.
The two remaining intersect each other a bit. 4.1

The small size of data is not suitable for time measuring, however a well
known data set is ideal for testing if a algorithm works properly.

The raw Iris data have attribute values in various intervals. To make all
attributes equal in weight, they must be normalized. For normalization we
used equation 4.1, where j is the concrete attribute and max(j) resp. min(j)
is a maximal resp. minimal value of this attribute for every instance of data
set i. Such a data have values in interval 〈0, 1〉. For testing we used only the
normalized Iris data.

normDataij =
dataij −min(j)

max(j)−min(j)
(4.1)
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4. Data sets

Figure 4.1: Basic visualizations of Iris data set.

4.2 Stellar spectra

This data set contains 1696 spectra of Be and normal stars from archive of the
Astronomical Institute of the Academy of Sciences of the Czech Republic in
Ondřejov.[12] The spectra were obtained with coudè spectrograph of Ondřejov
Observatory 2m telescope. The data are divided into four classes dependent
on shape of Hα line (see Fig. 4.2).and one special class containing outliers,
spectra with some sort of oddity.

Figure 4.2: Characteristic shapes of spectra.

Originally, every spectrum was stored in separate FITS file containing in-
formation in 1997 points. The points were not distributed homogeneously for
all spectra. The first points of spectra were in interval 〈622.266, 626.965 nm〉.
The lasts in interval 〈673, 504, 678.193 nm〉. Also the spacings between two
neighboring points were heterogeneous.

To arrange data in usable shape we convert it into CSV file format. To
eliminate the heterogeneous distribution of data we used the method of data
binning: We set 1863 points in interval 〈626.975, 673.500 nm〉 with 0.025 nm
length of step and linearly approximated the values for every spectrum. (For
better understanding See the Fig. 4.3.) The data itself are a little noisy so we
assumed the used method of linear binning is sufficient for approximating of
values.
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4.2. Stellar spectra

We used unnormalized data for testing, becouse the normalization is not
needed. We need to look at every spectrum as whole, so we want the bigger
values have a bigger impact for a result of classification.

Figure 4.3: Linear data binning
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Chapter 5

Implementations

The SOM algorithm has been implemented in many variants. It posses sev-
eral attributes that in case of changing, have a considerable effect on the
output. It makes the algorithm very sensible and any incorrect changing of
implementation can make it unstable, topologically incorrect or bad oriented.

5.1 Requirements

When choosing the proper implementation of SOM algorithm, we had to con-
sider the conditions under which it is going to be used.

As a data in astronomy can be really huge [4], the scalability of the al-
gorithm was the main aspects we had to deal with. We had to consider its
time performance and ability to process theoretically unbounded size of data.

Also we had to take in mind the environment under which it will be ex-
ecuted. It is Linux based cloud web server VO-Cloud (also named after its
first application VO-KOREL)[29], place where astronomers can in familiar and
friendly interface conduct their computationally intensive experiments and use
post-processed outputs and visualizations.

For better understanding and ability to read information from SOM output
grid, it is necessary to find a way how to visualize it. However, raw visualiza-
tion of grid is not sufficient. For spectral analyses astronomers need to be as
well in touch with input data. So there is a need for another visualization of
high dimensional input vectors that would display their connections to BMUs
in grid.

Whole application should have user friendly environment. It should be
configurable by one easy-readable file and executed by a single command.

We consider following open-sourced implementations of algorithm:
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5. Implementations

5.2 Rapid Miner

Rapid Miner is widely used data mining tool developed by Technical Univer-
sity of Dortmund[6].It offers big variety of data mining algorithms and user
friendly interface. The earlier versions and core of the application are available
under open-source license. The SOM algorithm implemented in Rapid Miner

allows to change only a small number of attributes. It use immutable toroidal
topology of map and linear learning rate function that are not possible to
change.

There exist some enriching plug-ins, however the Java based environment
showed to be insufficient for bigger data. We encountered a low memory limits
and it is not very time efficient as shown in comparing tests (see Tab.7.1 ).

5.3 WEKA

Waikato Environment for Knowledge Analysis developed by University of
Waikato has a plug-in providing implementations of Classification algorithms[7].
It use hight quality Kohonens SOM PAK algorithm [24]implemented in Java en-
vironment. We decided not to use this implementation for same reason as
Rapid Miner.

5.4 SOM PAK

The SOM PAK is a collection of tools for the correct application of the SOM.
This original program package was created by the SOM Programming Team
of the Helsinki University of Technology with consideration for large problems
and incomplete data. Program is available for download at [24]under free
license for science. The distribution includes also reference guide.

We decided to use this implementation, because it is created by using a
pure C language code, what makes it very light-weight and speed oriented.
Also we have chosen it for its reliability (It was developed by team led by
Professor Teuvo Kohonen, inventor of SOM and it exceeded 1500 literature
references by year 1995) and its interesting selectable features.

5.5 Our implementation

For better understanding of a inner structures of SOM algorithm, we decided
to create our own implementation. We aimed to make it as fast as possible in
a way it could be complementary to SOM PAK algorithm. For performance reas-
ons we chose a language C++. The implementation was inspired by algorithm
from [13].It uses exponential learning rate function, Gaussian neighborhood
function and rectangular shaped lattice, but it is easily extensible for any pos-
sible feature.
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5.5. Our implementation

We experimented with several boosting methods:

For a distance measurement it is sufficient to use square of Euclidean distance.
With such a implementation, we spare callings of square root function without
any effect to computation as we use the distances only for comparison and it
is evident that if x > y than x2 > y2 is also valid.

Standard algorithm iterate through the whole lattice, when determining the
neurons in BMU neighborhood. It is redundant, as a neighborhood radius
at the end of training decrease to the size of one. To avoid unnecessary
iterations we used the BFS (Breadth-first search) algorithm. This algorithm
is not so friendly for compiler optimization, so we tried to find the best possible
combination of both approaches.

It is important to remark that such a optimization become less evident with
increasing size of input vector. It is so, because of increasing time consuming
by actual weight adjusting.

The most time expensive part of algorithm is function for finding BMU.
This function time complexity is O(mapSizeX ∗ mapSizeY ∗ dim), where
mapSizeX and mapSizeY represent sizes of mapping grid and dim is a di-
mension of input vector. This function is called for every input vector in each
iteration.

To boost speed of BMU finding, we consider following algorithms:

5.5.1 Spatial access methods

It exists a group of methods for finding a closest point in n-dimensional
space. For example structures as r-tree or k-d tree (short for k-dimensional
tree). Using these methods we can decrease the number of comparisons
among neurons in one BMU finding from usual O(mapSizeX ∗mapSizeY ) to
O(log(mapSizeX ∗mapSizeY )).

Unfortunately, as mentioned in [19], the real speed boost gained by al-
gorithm is quickly diminished by increasing number of input vector dimen-
sions. This makes it not suitable for high-dimensional astronomical data.

5.5.2 Probing algorithm

It is the algorithm based on gradient descent search approach. It was presented
in article written by J. Lampinen and E. Oja [25].[29] Algorithm consists of
two step.

1. Choose the one neuron from SOM lattice as a candidate.

2. Examine its grid neighbors and compare its distances to an input vector.
While it exists closest neuron, make it new candidate and iterate the
whole process, otherwise terminate the search.
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5. Implementations

For better results it is recommended to repeat whole procedure 2–6 times.

The algorithm is not a general purpose nearest neighbor method, since
there is no way to assure that the result is the true nearest neighbor. How-
ever, as mentioned in the article, the real goal of the self-organizing is not
to find the exact nearest neighbors but to develop a topological feature map.
The algorithm will make errors in finding the closest reference vector to an
input vector, but in such a consistent way, that it will not disturb the self-
organization.

The algorithm designed in such a way does not suffer from any slow-down
in high dimensions and offers significant speed boost for large grids. That are
reasons, we tried to implement the algorithm.

For choosing of initialization neuron we use random strategy and Fried-
man’s algorithm for finding the nearest neighbor [17]. Friedman’s algorithm
chooses the neuron that is the closest in projection using one random dimen-
sion.

5.6 Parallel implementations

The increasing number of data naturally arises the question of parallelization.
In this section we discuss three possible approaches of parallel implementa-
tions.

5.6.1 MapReduce

The MapReduce programming paradigm is commonly used when handling big
data. The idea consists of dividing problem into more same small subproblems,
that are distributed into separate devices. The solutions are consecutively sent
to main machine. It combines them in some way to get a final result.

The SOM algorithm has an iterative nature. Every step is directly de-
pendent on the values computed in previous one. It makes the classical SOM
algorithm inappropriate for MapReduce.

However, it exists variants of SOM adapting to the MapReduce. We refer
about it later in chapter 8

5.6.2 Thread parallelism

The SOM algorithm has naturally parallel character. It makes it ideal for
thread based parallelism. Parallelization can be used for redistributing work
of BMU finding as well as weight actualization. We parallelized the imple-
mentation using OpenMP directives.
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5.6. Parallel implementations

5.6.3 GPU

Similarly as a thread parallelism, the SOM is very suitable for use on Graphics
processing units. It was achieved the speedup factor about eighty six (com-
pared to CPU) with NVIDIA’s CUDA architecture on a Tesla C1060 GPU.[27]
This implementation of SOM is quite straightforward. The challenging part
is to fit it for a very large map sizes or large number of attributes that would
be to big for a memory of single device. In this case it would be needed to
split the data according to the memory availability and make computations
independently for all of the blocks.
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Chapter 6

Wrapping application

The application is controlled by a python script reading of the configurating
information from a single user written file. For implementation of wrapper we
chose the Python as it seems to be an ideal language for making such a job,
because of its simple and clear syntax. All computationally expensive and
critical parts are implemented in C/C++. This language is a logical choice as
the application is meant to be used on a big amount of data.

The application used has a following characteristics:

• From the user view looks the application very simple6.1.

• The making of changes, adding new or removing existing features and
implementations is very easy to do.

The final application consist of tree main parts.

1. Data pre-processing
The data files are convert to the form used by algorithms.

2. Core application
The selected algorithms are performing computations on input data sets.

3. Output post-processing
The result data files are used for error counting and visualizations cre-
ating.

6.1 Configuration File

Configuration file is in a JSON format. It helps the user to define proper input
files, it gives him a possibility to choose, which output files will be generated,
and set the parameters of SOM algorithm. Furthermore it gives him possibility
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6. Wrapping application

Figure 6.1: Outer look of application

to choose which output files will be generated and set the algorithm to run in
the parallel mode.

The complete guide for input parameters can be find in Appendix C.

6.2 Input of data

Input data can be in CSV format. The FITS format can be converted using
included conversion programm. The data sets can be separated in arbitrary
number of files. They common size has no limitations as the files are read
sequentially. However, the average time of running is slightly bigger when
using more files, as a data have to be for each iteration repeatedly read from
the disk.

Optionally, it can be added the file containing data classes and names. It
is option that can help recognize quality of chosen algorithm (by visualizating
it). This data files should be equivalent to main data in a way how they are
separated in files and rows.

It is important to add, that class and name data are not used in training
phase of algorithm. They are exclusively used for visualization.

6.3 Core application

In this phase the SOM algorithm is executed. The concrete implementation
is chosen according to configuration file defined by user. As each of the imple-
mentations contains some specific features, it does not support every possible
combination of input parameters.

This is usually the most time-consuming part of algorithm. After termin-
ating, it outputs a trained map of feature vectors.
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6.4. Post-processing

6.4 Post-processing

The post-processing phase is common for all used algorithms. All of the files
creating in this step are stored in the file ”results”.

6.4.1 Errors

The program counts the quadratic quantization error. In variant with inform-
ation about classes it is also counted error that reflects how many of the input
data vectors associate with a neuron that associate with more input vectors
of another class. This error can be helpful while scaling the algorithm.

6.4.2 Visualization Matrices

The output matrices are visualized by program Gnuplot. The program cre-
ates usual U-Matrix and a matrix created by plotting information about data
(optionally also with classes) in a way they associate with neurons (we called
it association matrix).

6.4.3 Web visualizations

To add a interactivity in output visualization we created a small web applic-
ation that enable interactively plotting of spectra for spectral classification.
It is also possible to examine artificial spectra of feature vectors and find a
spectra associated to them as well as examining the relations in visualized
matrices.

For plotting of spectra we uses JavaScript library dygraphs.[2] Other
interactivity is created by using PHP and HTML. The variable parts of HTML and
PHP code are generated in post-processing via C program.
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Chapter 7

Tests

In this chapter we show some of the test, we used for choosing of implement-
ations and scaling of algorithm.

We focused mainly on run-time measurement and on the impact of spared
time on quality of the solution. The quality can be compared using visualized
matrices or quadratic quantization error. It is important to note that the
value of quantization error is not an absolute, rather a relative indicator of
quality, as it is strongly dependable on data set characteristic and size of the
neuron lattice.

We decided to add just the most important tests, as adding of visualiza-
tions in the text of thesis is very space consuming.

When not stated otherwise, the test were performed on Pentium(R) Dual-
Core CPU T4400, 2.20GHz.

7.1 Comparing of implementations

When choosing implementations for wrapper aplication we tested several al-
ternatives. We focused mainly on time of running and also on quality of
results.

While the quality was comparable, the time performance differs a lot. As
we expected, the C/C++ written implementations showed to be faster. We
trained a map of size 30x30 using stellar spectra data set, eight iterations of
data and neighborhood radius of size 30. For results of time measurement see
Tab.7.1.

31



7. Tests

learning rate function time [s]

Rapid Miner linear 215

WEKA linear 202

SOM PAK inverse time 116

SOM PAK linear 103

Our Implementation exponential 68

Table 7.1: Time comparison of implementations

7.2 Learning rate functions

In this test we compared learning rates function of algorithms used in wrapper
application. For testing on Iris data was used 10x10 grid, ten iterations and
neighborhood radius of size 10. For testing on stellar spectra were used same
parameters as in section above.

Both implementation show the high performance of clustering. The test
reveals a different nature of algorithms in SOM PAK vs. our implementation.
Our algorithms deploys input data more regularly over the whole area of lat-
tice, whereas the SOM PAK implementations grouped them denser into clusters.
This is the reason for differences in measured error rates (see Tab.7.2). The
lower error in our implementation is caused by less number of input vectors
associated to one neuron so it can be better approximated.

To summarize we can say that our implementation uses more flexible grid
and can recognize finer differences in data set, however sometimes it can be
more useful to use more stable SOM PAK implementation.

In Figures 7.1 7.2 7.3 you can see the association matrices from the Iris

data experiment, similar results were obtained on stellar spectra data set.

learning rate
function

quant. error
(iris)

quant. error
(stellar spectra)

SOM PAK inverse time 0.035 104.19

SOM PAK linear 0.018 86.92

Our Implem. exponential 0.005 7.78

Table 7.2: Time comparison of implementations

7.3 Data binning

It is rare to find data that are ready for training without any form of pre-
processing. So the Spectra data set needed to unify the values of light wavelength.
We achieved it by using the technique of linear data binning in Section 4.2.
After its application the quality of self-organization rapidly increased.
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7.3. Data binning

Figure 7.1: Association matrix of Iris data set after using exponential learn-
ing rate function.

Figure 7.2: Association matrix of Iris data set after using linear learning
rate function.

The experiment was conducted on the reduced stellar spectra set (we omit-
ted fifth group of outliers). We used exponential learning rate function with
starting value 1.0, eight iterations of learning cycle and Gaussian neighbor-
hood function. For illustration you can see association matrices of the raw
data in Fig. 7.4 and of the binned in Fig. 7.4. Comparing the figures, it is
clearly visible that the binned input vectors are classified much more precisely.
The whole quantization error decreased from 12.70 to 2.99 when using binned
data.
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7. Tests

Figure 7.3: Association matrix of Iris data set after using inverse time learn-
ing rate function.

Figure 7.4: Association matrix of raw data.

7.4 Outliers classification

One of the advantages of unsupervised learning paradigm against the super-
vised is its ability to find previously undefined classes of data. For example in
astronomy, finding the group of spectra with similarly odd features can lead to
interesting discoveries of new atypical or yet not observed groups of objects.

For experiment we used same parameters as in previous section, except
the data set that contains also fifth group of outliers.

The experiment confirmed SOMs ability of organization and clustering.
The outliers are grouped in four main clusters (see Fig. 7.6). Each of them
contain the spectra of the same characteristic. In the Fig. 7.7 there is an
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7.5. Timing Test of Functions Determining Neighborhood

Figure 7.5: Association matrix of binned data.

average representative of each cluster marked with corresponding letter.

Figure 7.6: Four main clusters of outliers.

7.5 Timing Test of Functions Determining
Neighborhood

We implemented two functions for determining Neighborhood. The algorithms
are mentioned in 5.5. As we assumed, the time gain of BFS algorithm is not
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7. Tests

Figure 7.7: Average representatives of outliers clusters.

evident when using with high dimensional vectors. Actually, it is even a bit
slower.

The most visible advantage of BFS is at the end of algorithm, when the
size of neighborhood radius shrink. We tried to find ideal ratio of algorithm
combination, so it gives the best performance.

For testing we used Iris data set, exponential learning rate function,
lattice of size 50 x 50 and for easier measurement of time, 1000 iterations over
data. In this measurement we are interested only in time performance. The
1000 iteration over 150 vectors means the same as for example 10 iteration
over 15000. The results are plotted in Fig. 7.8. The ratio is labeled in percents.
For example the ratio 10% means, that we used standard algorithm for first
ten percent of time and BFS for the rest.

The application is mainly created for highly dimensional data, so we de-
cided to set the stable ratio of 100%. Although we showed the tiny time gain
while training low dimensional data it is too small to have visible effect.

7.6 Probing Algorithm

In this test we compared classical and probing algorithm. We used lattice of
30x30 with initial size of neighborhood 30, exponential learning rate function
and 8 iterations of SOM algorithm.

We combined algorithms in various ratios, starting with classical algorithm
and ending with probing. However, the quality of trained map when using
probing algorithm (does not matter, how many percent) was clearly worst (see
Fig. 7.9 resp. 7.10 for classical resp. probing algorithm) In this example we
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7.6. Probing Algorithm

Figure 7.8: running times for different ratios of functions determining neigh-
borhood.

used four iteration of algorithm.1).

We tested random and Friedman’s strategy for choosing initialization neuron.
Both of them showed the result of same quality. On the contrary increasing
number of iteration boost the resulting organization of map. Naturally more
iterations consume a longer period of time (Classical version: 57.9s, 1 iter-
ation: 13.1s, 4 iterations: 20.8s, 10 iterations: 31.1s). Observations suggest
that a quality of solution is proportional to running time, so the probing al-
gorithm is good alternative, in case we prefer time sparing and do not need
highest quality or in case we have an easy separable and predictable data set.

Figure 7.9: Association matrix after using of classical algorithm.

1Do not confuse inside iteration of probing algorithm with iteration of SOM.
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7. Tests

Figure 7.10: Association matrix after using of probing algorithm.

7.7 Parallel implementations

For testing of acceleration of parallel algorithm we used stellar data trained
using map of size 30x30 in eight iterations. For performance measurment we
used 12-core computional cluster STAR [3].

After parallelization of part where BMU is found, the algorithm using
10 threads accelerated almost four times. For the information about other
number of threads see a graphs on Fig. 7.11, The red line in the image (a) is
a run-time of training in seconds, in the image (b) is showed how much is a
parallel implementation faster than sequential.

We can count that unparallelized part of algorithm takes now something
around 3.5 seconds (app. 18% of run-time), while the time of BMU finding
becomes only 1.5 seconds (using 10 threads). So we decided to parallelize also
the second most time consuming part, the weight actualization.

By parallelizing weight actualization we get the time of unparallelized part
only something about 0.6 seconds (app. 3%). The measured times and accel-
erations for other number of threads is marked by blue line in graphs.

By comparing both lines we can see that acceleration of full parallel al-
gorithm is not very significant for small number of threads. We assumed it is
caused by initialization cost of openMP library.

It is interesting to notice that by using 10 threads and the equivalent
parameters, we could process over 2.5 million spectra in one hour.
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7.7. Parallel implementations

Figure 7.11: Measures of parallel implementations.

39





Chapter 8

Other unsupervised methods

In this section we try to compare the SOM algorithm with other methods
using unsupervised learning paradigm. It is impossible to set the tests that
would objectively compare their performance and suitability. In unsupervised
learning we lack unified objective output as every method is using its own
strategy of approximation of solution.

However we can compare the ways how the algorithms handle data and
we can discuss its feasibility for massive parallel environment.

8.0.1 GSOM

Growing self-organizing maps (GSOM) is a variant of SOM solving the di-
lemma of choosing appropriate grid size. It usually starts with only a few
nodes and dynamically adds a new one (see Fig 8.1).

This technique can better fit the data space as it develops in shapes de-
pending on the structure of clusters. [9]

Unfortunately the irregular shape of map condemns the GSOM for being
very hard to parallelized.

Figure 8.1: Various strategies of GSOM growing.
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8. Other unsupervised methods

8.0.2 CSOM

Concurrent self-organizing maps (CSOM) [30] are a collection of more small
SOM. Every small map use the usual SOM algorithm, however it is only
partially unsupervised learning method as every map is trained using only
exact class of data. After such training the input vectors are classified by the
map in which they reach minimal quantization error.

The advantage of CSOM is its great possibility for parallelization also by
using of MapReduce paradigm. The maps can be easily divided among nodes
in cluster. In the reduce phase of algorithm would be simply chosen the result
with minimal quantization error.

The possible implementation for GPU would be very similar to SOM al-
gorithm. Even it would not encounter the problems with large maps as a map
in CSOM used to be very small.

By using a CSOM we loose the unsupervised learning advantage of finding
previously unknown features, but it has a nice ability for classification of
evenly distributed classes.

We assumed this technique could be confusing when using over classes
containing data of different densities. For example an input vector belonging
to spare class, which is close to the dense one can be easily miss-classified.

8.0.3 K-means clustering

K-means clustering is like SOM a method of vector quantization. The input
parameter of the algorithm K is a number of clusters that are expected. It is
needed to set it at the beginning, so when the number of clusters is unknown,
it is needed to start the algorithm multiple times and find the best result (for
example using quantization error).

The algorithm starts with random selection of k ”means”. To each of the
data inputs is found the nearest mean. From the data associated to neuron is
counted a centroid that becomes a new mean for next iteration. This step is
iterated until it reaches the convergence to a local minimum.

Possibility of parallelization are similar to SOM algorithm. Because of
its iterative nature it is not possible to use MapReduce paradigm, however
parallelization of nearest mean finding is easily implementable for threads or
for GPU.

8.0.4 DAME-grid

DAME (DAta Mining & Exploration)[1] is a web based data mining infrastruc-
ture developed to deal with massive and distributed datasets and perform
complex knowledge extraction task. It offers broad scale of machine learning
methods that can be examined via a web application DAMEWARE (Web Applic-
ation REsource of DAME).
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DAME offers many interesting algorithms of unsupervised learning. Self-
organizing maps with 2-stage clustering and also all above mentioned methods:
CSOM, GSOM and K-means.

We examined above mentioned methods, however only using low dimen-
sional Iris data as an upload of data of higher dimension failures permanently
without leaving any error message. It is probably because it is still in beta re-
lease. We appreciate the DAME project, especially its big variety of algorithms
(also implemented for GPU). We also liked a high number of parameters that
can be customized while doing experiments.
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Conclusion

This bachelor thesis provides a detail description of self-organizing map (SOM)
algorithm and its possibilities for solving problems in newly arisen science of
informatics. As a astronomy is source of large data sets we specially focused
on its performance under increasing number of data.

We compared several existing implementation of SOM, from which we
chose a C-written Kohonen implementation SOM PAK and wrapped it together
with our own created complementary parallel implementation in C++. This
application take special look for time effectivity and is able to process theor-
etically unlimited number of data files.

By making a tests using astronomical data sets, we found that SOM is
promising method, mainly for finding of previously unknown or in some way
odd spatial objects, what can eventually lead to discoveries that will help us
to understand the character of universe.

We also examined and tested several interesting boost possibilities and
heuristics for SOM algorithm, however we find out that most of them do not
work ideally for high dimensional data, but they can be interesting consider-
ation for making of experiments.

At the end we briefly discussed and compared several similar algorithms
and considered their feasibility for massively parallel environment.

The bachelor thesis was presented at the conference ”New challenges in
astro- and environmental informatics in the Big Data era” in Szombathely,
Hungary in May 2014.

Future

The created application is planned to be set for VO-Cloud environment. It
should be done easily as we have taken this into account during its devel-
opment. It also needs to be tested more properly and to be discussed with
astronomers to know their specific needs.

45



Conclusion

The application is easily modifiable so there could be arbitrarily added
new features or implementations.

In longer horizon it could be used on data obtained from LAMOST tele-
scope [4] in China that produces 4000 spectra in a single exposure and have
created catalog containing over two millions spectra.

Of course, the application do not have to be narrowed only for use in
astronomy, it is also possible to use it for objects recognition or classification
in others branches.
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Appendix A

Acronyms

ANN Artificial neural networks

BFS Breadth-first search

BMU Best matching unit

CSOM Concurrent self-organizing maps

DAME DAta Mining & Exploration

DAMEWARE Web Application REsource of DAME

FITS Flexible Image Transport System

GPU Graphics processing unit

HTML HyperText Markup Language

JSON JavaScript Object Notation

KDD Knowledge Discovery in Databases

k-d tree K-dimensional tree

LAMOST Large Sky Area Multi-Object Fiber Spectroscopic Telescope

NP-hard Non-deterministic Polynomial-time hard

PHP Hypertext Preprocessor

SOM Self-organizing map

U-Matrix Unified distance matrix

WEKA Waikato Environment for Knowledge Analysis
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Appendix B

CD contents

readme.txt......................brief description of the CD content
wrapper...............................created wrapping application

compile.sh................................script for compilation
config.json............................user configuration script
run.py.......................... script for running of application
bin...............................................all binary files
src...............................................all source files

web............................source files for web application
input.............................................sample inputs
result ................................. outputs from algorithms
som pak-3.1..................................SOM PAK library

misc.................................................miscellaneous
tests..............................................sample tests

text..............................................text of the thesis
latex..................................text of the thesis in latex
BP Lopatovsky Lukas 2014.pdf..........text of the thesis in pdf
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Appendix C
User manual

C.1 First run

1. Compile the application by running a compile script:

$> ./compile.sh

2. Insert data files into input folder Wrapper/input/.

3. Arbitrary change the user configuration file config.json.

4. Run the application:

$> python run.py

5. Look for a results in result file Wrapper/result.

6. Arbitrary run created web application by opening Wrapper/result/index.php
file in your browser.
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C. User manual

C.2 Parameters of configuration file

Name arbitrary name of the experiment.

Algorithm definition of algorithm

BMU ”normal” or ”probing” algorithm

Threads select number of computational threads (integer)

Data definition of data input

Path one or more paths to input files or whole directories.

File type ”csv” or ”fits”

Delimiter delimiter of csv file.

Columns columns in file or dimension of input vector.

Parameters SOM parameters

Topology ”rect” for rectangular, ”hex” for hexagonal

Neighborhood fcion ”gaussian” or ”bubble” function

Neighborhood radius size of initial neighborhood radius (integer)

Map size x horizontal size of SOM grid (integer)

Map size y vertical size of SOM grid (integer)

Iteration number of iterations over whole data set (integer)

Learning rate initial learning rate (float in interval 0–1)

Probing iter number of iterations of probing algorithm (integer,
used only if probing algorithm is selected)

Output selection of output files

Visualization values true or false, create visualization or not.

Error values true or false, count errors or not.

Web values true or false, create web application or not.

Optional info selection of optional functionality

Names values true or false, add files with data names or not (num-
ber of files and rows must be equivalent to input data)

Names path one or more paths to names files or whole directories

Classes values true or false, add files with classes or not (number
of files and rows must be equivalent to input data)

Classes path one or more paths to classes files or whole director-
ies
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