
Insert here your thesis’ task.

Czech Technical University in Prague

Faculty of Information Technology

Department of Computer Science

Bachelor’s thesis

Application of Random Decision Forests in
Astroinformatics

Andrej Palička

Supervisor: RNDr. Petr Škoda, CSc.

12th May 2014

Acknowledgements

I would like to thank my supervisor, RNDr. Petr Škoda, CSc., for his help
and insight.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive author-
ization (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity. However,
all persons that makes use of the above license shall be obliged to grant a
license at least in the same scope as defined above with respect to each and
every work that is created (wholly or in part) based on the Work, by modi-
fying the Work, by combining the Work with another work, by including the
Work in a collection of works or by adapting the Work (including translation),
and at the same time make available the source code of such work at least in a
way and scope that are comparable to the way and scope in which the source
code of the Work is made available.

In Prague on 12th May 2014 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2014 Andrej Palička. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Palička, Andrej. Application of Random Decision Forests in Astroinformatics.
Bachelor’s thesis. Czech Technical University in Prague, Faculty of Informa-
tion Technology, 2014.

Abstrakt

V tejto bakalárskej práci sme skúmali algoritmus strojového učenia zvaný
náhodné rozhodovacie lesy (Random Decision Forest) a jeho účinnosť na as-
tronomických dátach. Ukážeme prehľad existujúcich imeplementácii a algor-
itmov, ktoré sa hodia na veľké dáta. Implementovali sme aplikáciu, ktorá
zabalila niekoľko implementáci RF do jedného balíku a z ktorého sa môžu
spúšťať jedným príkazom. Experimentovali sme na klasifikačných aj regres-
ných problémoch a porovnali sme výsledky týchto experimentov s ďalšími
algoritmami strojového učenia. Tieto experimenty sme vykonali ako na zná-
mych dátach z UCI repozitória, tak na astronomických problémoch, špeciálne
na klasifikácii spektier. Výsledky týchto experimentov sú veľmi prespektívne.

Klíčová slova rozhodovacie stromy, rozhodovacie lesy, vyťažovanie znalostí
z dát, astroinformatika

Abstract

In this bachelor’s thesis we examine a machine learning model called the
Random Decision Forest and its performance on astronomical problems. We
present an overview of existing implementations and algorithms that are suit-
able for Big Data. We wrapped several implementations of RDF into one

ix

package that can be run with a single command. We conducted experiments
on both classification and regression problems and compared the results with
other data mining algorithms. The experiments were performed on some well
known data sets from the UCI repository and on some astrophysical problems,
particularly spectra classification. The outcomes of the experiments show very
promising results.

Keywords decision trees, decision forests, data mining, astroinformatics

x

Contents

Introduction 1

1 Knowledge discovery, data mining and astroinformatics 3
1.1 Data mining methods . 4
1.2 Data set . 5
1.3 Model validation and scoring 5
1.4 Astroinformatics . 6

2 Decision trees 7
2.1 Splitting the nodes . 7
2.2 Stopping criteria and pruning 10
2.3 Testing the data . 11
2.4 Decision trees algorithms . 11
2.5 Performance and scalability . 12
2.6 Advantages and disadvantages 14

3 Random Decision Forests and Random Ferns 15
3.1 Number of trees and their diversity 15
3.2 Bagging . 17
3.3 Random Ferns . 18
3.4 RDF algorithms and implementations 19

4 Random Decision Forest wrapper 25
4.1 Included implementations . 25
4.2 Integrating libraries . 26
4.3 Additional features . 27

5 Experiments 29
5.1 Astronomical experiments . 29
5.2 Common machine learning data sets 36

xi

5.3 Experiment outcome and conclusion 36

Conclusion 39

Bibliography 41

A Acronyms 47

B Wrapper usage documentation and file format 49

C Contents of enclosed CD 53

xii

List of Figures

5.1 Examples of spectra containing pure emission and an emission with
an absorption . 30

5.2 Examples of spectra containing an absorption line with an emission
(shell line) and a pure absorption 30

5.3 Details of spectra containing an absorption line with an emission
(shell line) and an emission with a central absorption 31

xiii

List of Tables

3.1 An example of CUDA graphic card specifications 23

5.1 Performance of H2O implementation on raw data 31
5.2 Performance of scikit implementation on raw data 32
5.3 Performance of cudaTree implementation on raw data 32
5.4 The confusion matrix for a forest of size 2000 on raw data 32
5.5 Performance of H2O implementation on binned data 33
5.6 Performance of scikit implementation on binned data 33
5.7 Performance of cudaTree implementation on binned data 33
5.8 The confusion matrix for a forest of size 2000 on binned data . . . 34
5.9 Performance of H2O implementation on extracted features 34
5.10 Performance of scikit implementation on extracted features 34
5.11 Performance of cudaTree implementation on extracted features . . 35
5.12 The confusion matrix for a forest of size 2000 on extracted features 35
5.13 Comparison of several machine learning algorithms on the data . . 35
5.14 Performance of scikit implementation on redshift prediction 36
5.15 Performance comparison on UCI data sets 36

xv

Introduction

Machine learning has become a phenomenon in recent years. Many businesses,
institutes or organizations are increasingly more dependent on getting know-
ledge from data they managed to gather through their endeavors. One field
that could highly benefit from machine learning is astroinformatics. Astro-
nomical surveys generate terabytes of data during one session. This amount
of data requires an unconventional approach in terms of storage, analysis and
evaluation.

Random Decision Forest [10] is an ensemble model that has proven to be
successful on data, that contain large amount of features and instances. In
this thesis we attempt to describe this model and its properties. We also make
a survey of some of the available RDF algorithms and implementations, with
regard to their performance on big data. We will implement a package, that
wraps around several RDF implementations. We will perform tests both on
data sets in the UCI repository [3] and on astronomical data.

We introduce common data mining and machine learning concepts and
techniques in chapter 1. Chapter 2 discusses the basic block of the RDF: the
Decision Trees. Since some distributed RDF algorithms require parallel tree
building process we also examine some scalable approaches to the induction
of Decision Trees. Chapter 3 defines the RDF, examines some of their proper-
ties, and provides examples of both serial and parallel implementations of the
algorithm. We implement a wrapper that binds several RDF implementations
together and we describe it in chapter 4. In chapter 5 we show results from our
experiments with the Random Decision Forest model on astronomical data as
well as on some common data sets.

1

Chapter 1
Knowledge discovery, data

mining and astroinformatics

Knowledge discovery from databases (KDD) is an interactive and iterative
“process of identifying valid, novel, potentially useful, and ultimately under-
standable patterns in data” [2, 18]. Data mining (DM) is usually defined as a
process where “intelligent methods are applied to extract data patterns” [20]
and is merely a step in the process of KDD, however these two terms are often
used synonymically. The KDD consists of these steps [20]:

Data cleaning: removing noise and incorrect data

Data integration: combination of different data sources

Data selection: selection of relevant data

Data transformation: transformation of data into a format that is suitable
for data mining

Data mining: applying DM algorithms

Pattern evaluation: evaluating the patterns that the DM process extracted
and selecting those, that are relevant for our goal

Knowledge presentation: transforming of extracted knowledge into a form
that a user can understand

Data mining process involves building models based on some data. These
models then help to extract patterns and relationships that are hidden inside
the data. DM algorithms consist of a mix of three components [18]:

The model: The model consists of a function and a representational form.
The function determines what the model will do, e.g. classification or

3

1. Knowledge discovery, data mining and astroinformatics

regression. The representational form means how the model will rep-
resent the data, e.g. a decision tree or a density function. The model
contains parameters that are determined from the data.

The preference criterion: it computes a quality of model and helps to
choose the model over others. It is usually a goodness-of-fit function
of the model to the data.

The search algorithm: The function used when the model is constructed
and fitted to the data.

This thesis concerns itself with a model that is represented in the form of
a decision forest with a function capable of both classification and regression.
The search algorithms are from a family of heuristic functions and a preference
criterion is a generalization error.

1.1 Data mining methods
A machine learning algorithm tries to learn a certain function that either
describes the data in some way, or tries to predict an outcome. We recognize
these basic methods of data mining [17]:

Classification This method maps the data set to a known finite set con-
taining the labels. An example of classification is a model that decides
whether a certain email message is a spam or not.

Regression: This method tries to predict a value of some numeric variable.
An example of a regression may be prediction of redshifts based from
the spectra.

Clustering: This method describes the data and tries to find a previously
unknown finite set of categories the data would fall in. These categories
can overlap each other, if certain data belong to multiple categories. An
example of clustering may be discovering kinds of stars from spectra.

Summarization: This method attempts to find a compact description of
data. It may simply mean calculating some statistical properties like
means for each field, or it could mean something more complex, like
discovering functional relationships between attributes.

Dependency modeling: This method tries to find dependencies between
variables.

Change and deviation detection: This method detects data, that are in
some way different than previously measured data. This includes finding
outliers, which are data that are in some way different from the majority.
It is useful for finding data that are worthy of further examination.

4

1.2. Data set

A learning can either be supervised or unsupervised. A supervised learn-
ing means that we have a training data set, where the relationships between
variables and their outcomes are already known. These data sets usually come
either from historical data (such as weather patterns), or were labeled by hu-
mans specifically for the purpose of serving as a testing set. This can however
bring bias and noise to the set. An unsupervised learning means, that the
model is built from the data, that were not evaluated by anyone and where
the relationships are unknown. The model has to discover these relationships
and their possible outcomes by itself.

1.2 Data set

A data set is a collection of data. It can take form of a CSV file, FITS
file, image, sound wave, etc. Machine learning algorithms however usually
work with a data set represented as a table, where each column represents a
variable and each row represents a datum. A member of the data set is again
a collection of values that represent its respective variable. A variable may be
either categorical (discrete), or numerical (continuous).

1.3 Model validation and scoring

After a model is fitted over some data we have to determine how it will perform
when used to analyze data it has not seen yet. This is usually done by splitting
the original set into a separate testing and training set. We first train the
model with the testing set and then assess its performance by running a test
over the training set and comparing the results of the testing run with what
the true results in the testing set. There are several scoring measures that
estimate how well the model did on the testing set. A simple measure that can
be used for classification would be one that computes a ratio of the correctly
classified data out of all the data. A more advanced measure is for example
the F1 measure, which defined as

F1 = 2 ∗ precision ∗ recall
precision + recall

where precision signifies the fraction of correctly identified objects out of all
that were identified and the recall means fraction of correctly identified objects
of one class out of all the objects of the class. However this measure can only
be used in a binary classification. In case more than two classes are present,
one has to perform this measure for each class separately by considering that
particular class as class one and all the other classes as class two.

If the model performs a regression, however, it has to use a different metric.
A mean squared error is usually used.

5

1. Knowledge discovery, data mining and astroinformatics

1.4 Astroinformatics
Astroinformatics is a new discipline, that attempts to apply concepts from
computer science and machine learning on astronomical problems. Modern
astronomy now is producing terabytes or even petabytes of data [7], with
more to come in the future. For example the LSST will, upon its completion,
generate half a petabyte of data every month [4] that will require processing
and analyzing.

6

Chapter 2
Decision trees

Decision trees are a group of supervised data mining methods, that use a tree-
like structure to analyze data. They can perform either a classification of data,
or a regression of data. The inner nodes of a decision tree represent testing
on input attributes. [43] Terminal nodes in a classification tree represent the
possible classes of tested objects. In a regression tree they represent predicted
values for a given branch. Terminal nodes can either contain single values, or
a probability vector of values [36].

The process of growing the decision tree is called an induction. Induction
of an ideal decision tree is known to be NP-complete [23], so we have to use
a heuristical approach for real-world applications. The induction consists of
selecting the training data set, determining the splits at each nodes, choosing a
stopping criterion and pruning of the tree. The methods we choose to perform
these processes with directly affect the performance of the tree.

Traditionally [8, 32], the induction of a DT is performed in a recursive
fashion, which is fine for small data, but tends to fail on big data problems.
Therefore algorithms that are designed for big data use breadth-first approach
[28, 5].

2.1 Splitting the nodes

Splitting is generally the costliest and most important phase of the induction.
For each internal node, the inductor examines the input attributes in attempt
to find the best split, i.e. at least one attribute, upon which it would branch
the node.

An attribute may be either categorical (discrete) or numerical (continu-
ous). Evaluating categorical attributes is generally straightforward, the easiest
solution is to just create a branch for each possible value. A more complex
one is to group several values together and to create a branch for each value.
We can use this to create binary decision trees.

7

2. Decision trees

Additional steps must be taken when dealing with numerical attributes
[32]. In this case the node is branched according to some threshold value or
values which we need to find. At first, the data must be sorted based on the
attribute. We’ll mark those sorted values as {v1..vm}. Each value vi is then
used as a discrete value by the splitting criteria to determine the best split
between two values vi and vi+1. Evaluating numerical attributes is much more
costly that the evaluation of categorical attributes due to the need of sorting.

To determine how to split the nodes in the tree, we need to evaluate
splitting criteria. There are essentially two types of splitting criteria:

• Univariate

• Multivariate

The univariate splitting criteria split the node according to the value of one
attribute, while the multivariate criteria split the node on multiple attributes.

2.1.1 Univariate criteria

There are several categories of univariate criteria, such as impurity-based,
normalized impurity-based or binary criteria. [37]

Impurity-based criteria

Impurity-based criteria use an impurity measure, which is a function φ:[0, 1]k− >
R. For an input feature X with k discrete values distributed with probability
P = (p1, . . . , pk), φ(P) satisfies the following conditions [37]:

1. φ(P) ≥ 0

2. It is minimum if ∃i such that pi = 1

3. It is maximum if ∀i, 1 ≤ i ≤ k, pi = 1/k

4. It is symmetric with respect to components of P.

5. It is smooth (differentiable everywhere) in its range.

The goodness-of-split due to discrete attribute ai is defined as reduction in
impurity of the target attribute after partitioning S according to the values
vi,j ∈ dom(ai):

∆φ(ai, S) = φ(Py(S))−
|dom(ai)|∑
j=1

|σai = vi,jS|
|S|

∗ φ (Py (σai = vi,jS))

8

2.1. Splitting the nodes

Information Gain Information gain uses an entropy of the input attributes
as the impurity measure. The entropy of a set D is defined as:

Entropy (y, S) =
∑

cj∈dom(y)
−
|σy=cjS|
|S|

∗ log2
|σy=cjS|
|S|

Because of the attributes of the entropy, it tends to favor attributes with a
lot of values. This can turn out to be problematic, for example if we include
attributes that are unique for each specimen, such as their ID [44]. This can
be remedied by using a gain ratio instead. It normalizes the information gain
against the number of values of the feature.

Gini index The Gini index measures the divergences between the probab-
ility distributions of the target attributes values [37]. It was popularized by
the CART algorithm [8]. It is defined as follows:

Gini (y, S) = 1−
∑

cj∈dom(y)

(
|σy=cjS|
|S|

)2

Binary criteria

Binary criteria are used to create binary trees. Binary criteria divide the
domain of the input attribute into two subdomains. Let β(ai, d1, d2, S) be a
binary criterion value for attribute ai over the data set S that divides it into
two mutually exclusive and exhaustive subdomains d1 and d2. The binary
criterion attempts to find the maximum value for the split, while satisfying the
conditions for d1 and d2. An example of binary criterion is a twoing criterion.
It was suggested in [8] after discovering that the Gini index performs badly
when encountering wide domains. The twoing criterion is defined as

twoing(ai, S, d1, d2) = 0.25 ∗ |σai∈d1S|
|S|

∗ |σai∈d2S|
|S|

∗ ∑
c1∈dom(y)

∣∣∣∣ |σai∈d1∧y=ci
S|

|σai∈d1S|
− |σai∈d2∧y=ci

S|
|σai∈d2S|

∣∣∣∣
2

Regression criteria

We have to use different criteria in regression, because we are dealing with
continuous target values, instead of discrete. An example of criterion that is
used for regression is minimization of a mean-square error. It minimizes the
square of the error between what is predicted and what should be the actual
result. It is defined as:

MSE (y, pred) = 1
|dom(y)| ∗

∑
cj∈dom(y)

(cj − pred)2

9

2. Decision trees

2.1.2 Multivariate criteria

Although multivariate criteria are more effective than univariate, they are
much more difficult to implement. They are usually based around finding the
best linear combination of the attributes. Methods for finding this combina-
tion include:

• Neural trees [41]

• Hill climbing [8]

• Linear programming

2.2 Stopping criteria and pruning

Stopping criteria tell the inducer when to stop splitting the nodes. Upon
fulfilling the stopping criteria, the node is assigned the output label instead
of splitting. There are various conditions and their combinations that can be
used as the criteria, such as reaching the maximum tree depth, not gaining any
significant information from the splitting criteria or not having enough cases
in nodes. Choosing the right stopping criteria is vital for the tree, because
choosing very strict criteria may lead to an underfit tree. Making the criteria
too benevolent, however, leads to overfitting the tree and losing information
about the relationship between various attributes. To provide a solution, [8]
introduced a pruning algorithm, that allows the tree to overfit and then prunes
it to remove branches that cause the tree to lose generality.

2.2.1 Pruning

Cost-complexity pruning This is a pruning method suggested by [8]. The
pruning is executed in two phases. In the first phase, we produce a sequence
of trees T0, T1, T2, . . . , Tk, were T0 is the initial unpruned tree obtained by
the induction and Tk is a tree consisting only of the root node. Each tree is
obtained by replacing one or more subtrees in its predecessor by leaves. To
determine which subtree to remove, we calculate an increase in error rate per
pruned leaf by

α = err(pruned(T, t), S)− err(T, S)
|leaves(T)| − |leaves(err(pruned(T, t))|

where err is an error rate for given tree T and set S, pruned is a pruned tree
from T without subtree t and leaves is a number of leaves in T .

In the second phase, we compute the generalization error for each tree Ti,
and select the tree with the lowest error

10

2.3. Testing the data

Reduced-Error Pruning This method was introduced by [33]. We per-
form a test run on the original tree and check for each non-leaf node, whether
replacing it with the most common class would reduce the error rate. This
process continues, until we cannot reduce the error rate any more.

2.3 Testing the data

Once the tree induction process is complete, we can begin with testing the
unknown data. Beginning at the root node, each entry from the data is tested
based on the attributes the node represents and then passed into the subtree,
where the process repeats itself. Once it reaches the leaf node, it is assigned
the outcome that is in the node. In case there is more than one outcome in
the node, it is either chosen randomly, or with a probability determined by
their distribution.

2.4 Decision trees algorithms

A general decision tree induction algorithm usually looks like this:
Algorithm 1: BuildTree
Data:
• data set S

• features vector X

• output class Y

Output: tree T
1 begin
2 if stopping criterion then
3 return
4 end
5 foreach x in X do
6 compute gain from splitting on x if computed gain is the largest

so far then
7 save the attribute
8 end
9 end

10 Split on the attribute with the largest gain
11 Apply recursively on each node gained by the split
12 return current node
13 end

11

2. Decision trees

ID3 It is a very simple decision tree algorithm proposed by Quinlan in [35].
It uses information gain as a splitting criterion. The induction stops either
when all the data belong to a single value, or when the information gain is less
than some threshold or equal to zero. The algorithm fails on missing attributes
and cannot handle numerical attributes. It does not perform pruning.

C4.5 An improved version of the ID3 algorithm [32] that solves many of its
problems. Instead of the information gain, it uses a gain ratio. The algorithm
performs error-based pruning, handles missing values through corrected gain
ratio criteria and can learn from data sets that contain numeric attributes.
The growing can stop when the number of instances to be split is below
certain threshold. Both ID3 and C4.5 cannot handle target labels that contain
continuous values.

CART Introduced in [8]. CART produces binary trees. What makes this
algorithm significant and useful is that it handles both continuous and discrete
output features and thus is capable of both classification and regression. It
uses twoing criteria for classification and cost-complexity pruning. For regres-
sion it tries to minimize the prediction squared error. Users can enhance its
accuracy by providing probability distribution a priori, and it can consider
missclassification cost.

2.4.1 Complexity analysis

We will examine the time complexity of a binary decision tree, using a uni-
variate splitting criterion, that has been built on a data set of s samples with
f features. During each step of the iteration, the tree has to evaluate each of
the f features to find the best split. Assuming we presorted the feature lists
before the induction and assuming on average balanced partitioning at each
node, we have to search through f log(s) samples at each node. Summing it
over each node, we end up with complexity of O(fs log(s)).

2.5 Performance and scalability

Traditional approaches to induction do not scale well for big data. Since
they are usually built in a recursive fashion and require the data to be in
the memory all the time, the system may run out of memory [25]. Another
issue that has to be solved is the evaluation of attributes. As mentioned, the
evaluation of numerical attributes is quite costly, because it involves sorting
of all the values and then finding the best split. Many scalable algorithms
try to speed up this process by pre-sorting the data [28, 39], while others try
to first pre-process them, as is the case with SPDT, which builds histograms
from those attributes[5]. Splitting on discrete attributes, while easier than

12

2.5. Performance and scalability

splitting on numerical attributes, is not without its own problems. Search
for a good split involves searching through subsets of the whole set of possible
attributes, which in naive implementation would mean searching and selecting
2n possibilities, where n is the number of items in the set. Thus this also
requires a quick algorithm [28].

To further overcome these limitations, we can parallelize the induction
process, distributing it across several computing nodes. While this makes an
implementation of the DT much more complicated, it allows for huge data
sets, thus improving the accuracy of the tree.

2.5.1 Types of parallelism

There are several strategies for parallelization of DT using task parallelism,
data parallelism or hybrid parallelism. [1]

Task parallelism. When using task parallelism, we distribute the decision
nodes across several processors. The induction process starts on a single pro-
cessor, which then proceeds with the induction as in the serial approach. When
the number of decision nodes reaches the number of available processors, they
are distributed among them. Then, each processor continues in the induc-
tion of the subtree with the assigned node as its root. The subtrees are then
merged together as they are completed. An example of this approach is a
parallel implementation of C4.5 algorithm in [15].

This approach has its disadvantages. The load on each processor is imbal-
anced, because each subtree can take considerably different time to construct.
This could be countered by splitting the subtrees further, after some pro-
cessor finished its task. Moreover, each processor needs to have access to the
full data set, meaning it either has to be copied to each processor, or the
processors have to access it from a central location, creating a great amount
of communication.

Data parallelism. In data parallelism, the data, instead of the tree nodes,
are split among the processors. The processors construct each node together,
locally evaluating the data they were assigned. Because the processors have to
communicate and share their split evaluations each time a new node is created
the data parallelism generates a lot of communication on the network. The
data can either be split vertically or horizontally.

In a vertical split, each processor receives every record and its label, but
only a distinct set of input attributes. When deciding where to split, it takes
into account only the set of attributes it received. Each processor supplies
the best split from its local attributes. From these local splits the best one is
picked. The vertical split strategy can still suffer from load imbalance, because
continuous attributes usually take longer to evaluate.

13

2. Decision trees

When using a horizontal split, each processor is assigned a distinct set
of the records, but with full set of attributes. Each processor then examines
possible splits based on the data it received and then communicates its findings
with the other processors. They then work together to find the best global
split.

Hybrid parallelism. This is a combination of the data and task parallelism.
It tries to combine the low communication overhead of the task parallelism
with the lower memory requirements and processing amount of the data par-
allelism. The nodes that would have to cover large amount of examples use
data parallelism to lower the load balance of each node. On the other hand,
nodes, that cover few examples can be effectively distributed among several
processors without significant memory overhead and thus eliminating costly
interprocessor communication.

2.5.2 Streaming Parallel Decision Tree

Streaming Parallel Decision Tree (SPDT) is a state-of-the-art parallel Decision
Tree algorithm. It can handle streaming data as well as traditional batch
processing. It deals with large data sets by partitioning this data horizontally
across several worker processors and building histograms out of them. The
master processor then merges these histograms and uses them to find the best
splitting point [5].

2.6 Advantages and disadvantages
As we can see, one of the main advantages of a DT is its simplicity and
intuitiveness. They can be used on all sorts of data, both for classification and
for regression. They allow for errors in data and, with some improvements,
can handle missing values well [37, 43]. Decision trees can be converted to
a set of rules just by following branches from the root node to a leaf node.
Some are capable of handling both numeric and categorical values and some
algorithms can be used both for classification and regression.

On the other hand, non-parallel decision trees do not perform well on high
dimensional data. They are also sensitive to noise and irrelevant attributes
and they easily overfit or underfit.

14

Chapter 3
Random Decision Forests and

Random Ferns

RDF is an ensemble classification method using K decision tree classifiers
h(x,Φk), k = 1 . . .K, where x is the input data and Φk are independent identic-
ally distributed random vectors [6]. The random vector Φk represents the
randomness that is injected into each DT and its nature and content is de-
pendent on a concrete use. The randomness is usually introduced by randomly
sampling the subset of input features and/or by bagging. After finishing the
run in each tree, they vote for the final result, which will be chosen as the
final class that will be assigned to that data entry.

As with the Decision Trees, the performance of the RDF is directly affected
by several factors such as the number of the trees, the means of introducing
randomness into the induction, the voting process or the induction of the trees
themselves.

3.1 Number of trees and their diversity

It can be shown, that by adding more trees, the error rate does not increase
or decrease infinitely, but converges to a limiting value. Suppose we have an
ensemble of classifiers h1(x), h2(x), . . . , hK(x). Define function mg(X, Y) as:

mg(X, Y) = avgkI(hk(X) = Y)−maxI(hk(X) = j)

It gives an amount by which an average number of votes for the right class
exceeds the average number of votes for any other class.

Define generalization error as PE∗ = PX,Y (mg(X, Y) < 0). In decision
forests, the above mentioned classifier hk(X) = hk(X,Φk). By applying
the Strong Law of Large Numbers, we can conclude, that by increasing the
number of trees, the generalization error PE∗ of all sequences of h1(X,Φk),

15

3. Random Decision Forests and Random Ferns

h2(X,Φk), . . . , hK(X,Φk) almost surely converge to [10]:

PX,Y (PΦ(h(X,Φ) = Y)−maxPΦ(h(X,Φ) = j))

This implies that there is a threshold for the number of trees in the forest,
above which the trees provide only small or nonexistent improvement to the
accuracy [6].

To gain the best performance, the trees have to diverse, i. e. have small
correlation between each other. In practice, this is usually hard to achieve,
because they also have to be accurate, because having a lot of weak and
diverse trees would bring down the accuracy of the whole forest. To achieve an
accurate forest, we have to find a compromise between diversity and accuracy
by combining both weak and strong learners [44]. This is where the feature
selection and bagging help, because it assures that the individual trees are
built by considering different features and data.

The strength of the forest can be measured in the bias-variance-covariance
decomposition. Given T as number of trees, hi as a prediction of a single tree
and f as the correct value, they are defined as follows:

Bias It describes the expected value of the error of each tree. An average of
the bias of the forest is defined as:

bias(H) = 1
T

T∑
i=1

= E(hi)− f

Variance How different are the predictions of individual trees from an aver-
age prediction of all trees. An average of the variance of the forest is
defined as:

variance(H) = 1
T

T∑
i=1

= E(hi − E(hi))2

Covariance It is an approximation of the correlation between trees. It de-
scribes how different are the predictions of two different trees. An aver-
age of the covariance is defined as:

covariance(H) = 1
T (T − 1)

T∑
i=1

T∑
j=1|j 6=i

= E(hi − E(hi))E(hj − E(hj))

An error of the whole forest is then defined as:

err(H) = bias(H)2 + 1
T
variance(H) +

(
1− 1

T

)
covariance(H)

16

3.2. Bagging

3.1.1 Forest pruning

To improve the performance of the forest, we can prune the forest, not unlike
we did with individual trees as described in section 2.2.1 — in RDF, we call
this process the selection. To do this, we need to define selection criteria and
selection method.

Selection criteria divide into filters and wrappers. Filtering criteria select
trees a priori, not taking into account the combined accuracy of the subset.
Wrapper criteria select trees a posteriori, by optimizing the combined per-
formance of the subset [24]. Wrapper criteria are generally better for building
optimized subset of classifiers out of an existing set. Methods of selection
may be based on several approaches. One of the simplest methods usually
use simple rules based upon some metric of individual classifiers. An example
of these may be a method that would select n most accurate trees out of all,
or select n most accurate trees for each class. These methods usually do not
require much computational power, but since they do not explore different
subsets of classifiers, they may not find the best suboptimal result [24].

Methods that are more advanced, but still fast and simple to implement
are Sequential Forward Selection (SFS) and Sequential Backwards Selection
(SBS). They both iteratively build sub-optimal subset of the ensemble by
searching through the ensemble and selecting classifiers according to some
given criterion. They differ in what they do after the selection. SFS starts
with an empty set of classifiers and in each iteration, tests each tree and selects
one, that would most improve the performance of the whole subset. SBS, on
the other hand, starts with the full subset of the ensemble and at each step of
the iteration, removes the classifier that drags the whole performance down
the most. [6] The process stops either when the accuracy of the subset reaches
a certain threshold, or after a number of iterations [38].

3.2 Bagging
One of the techniques that is used in the RDF is bootstrap aggregating. For
each sampled instance Tk of the training set T , k = 1, 2, . . . ,K we randomly
sample a training set with replacement from the original training set. It has the
same size as the original and because it was sampled with replacement, some
of the instances may appear more than once, while some may be completely
excluded. [34]. During the induction the bagging is used in two ways. One
is for the induction of the trees, where each tree is induced from a different
sample. The second is to give ongoing estimates about the generalization
error, strength, correlation or variable importance.

The most common out-of-bag estimate is the estimate of the generalization
error. Suppose we have a classifier hk which was trained on the training set Tk
sampled from T . Then for each y,x from the training set T we aggregate those
classifiers, that do not contain the given instance and let those classifiers vote

17

3. Random Decision Forests and Random Ferns

for the right results. The out-of-bag error rate is the average of error rates all
such aggregate classifiers on the training set [9].

3.3 Random Ferns

Random Ferns [29, 30] is an ensemble model inspired by Random Decision
Forest, that uses structures called ferns instead of trees for classification. Each
contains a set of binary features that are considered to be independent of each
other. Ferns classify using a Naïve Bayes Classifier with their respective set
of features as a input feature vector.

3.3.1 Naïve and Semi-naïve Bayes Classification

Let c be a set of classes and let p be a set of binary input features. A
Bayes Classifier attempts to find such a class ci, that the probability P (C =
ci|f1, f2, . . . , fn) will be maximal. By applying the Bayes theorem we get:

P (C = ci|f1, f2, . . . , fn) = P (f1, f2, . . . , fn|C = ci)P (C = ci)
P (f1, f2, . . . , fn)

We can ignore the denominator, because it is constant for all ci and only scales
the result, and we also assume that P (C) has uniform distribution [29]. The
problem is then reduced to finding only the probability P (f1, f2, . . . , fn|C =
ci). This is computationally unfeasible, because it would require to compute
2N possibilities for each class. A Naïve Bayes Classification assumes, that all
features in the set are totally independent from each other, which means that
the equation

P (f1, f2, . . . , fn|C = ci) =
N∏
j=1

P (fj |C = ci)

which removes the complexity constraint but almost always is not true. This
deeply affects the accuracy of the classifier, because it ignores any kind of
relationship between the features. To rectify this problem, Random Ferns
uses approach called Semi-naïve Bayes Classification and groups features into
M groups called ferns. Each fern has size S = N

M and is defined as Fk ={
fσ(k,1), fσ(k,2), . . . , fσ(k,S)

}
, where σk,l is a random permutation function with

a range [1, N].
Ferns can be considered to be simplified trees. To transform a tree to a

fern we have to follow these steps:

1. Transform all non-binary features into binary

2. Modify tree in such a way, that on each level, it will evaluate the same
test.

18

3.4. RDF algorithms and implementations

3. Remove the hierarchical structure of the tree, creating only a sequence
of test to be performed.

3.4 RDF algorithms and implementations

The classic RDF algorithm, called Forest-RI was introduced by Breiman in [10].
It serves as a basis for all the other random forest algorithms. It builds n trees
using a modified CART algorithm, where each node is built using m randomly
selected features. Breiman suggests using blog2 |A|)+1c as the number of fea-
tures, where A is the input features vector. Neither the trees nor the forest are
pruned. The algorithm also computes an out of bag error. The complexity of
the Random Forest induction is O(N tree_complexity), where tree_complexity
is the complexity of the tree induction.
Algorithm 2: FOREST-RI
Data:
• data set S

• feature vector X

• output class Y

• number of trees N

Output: a Random Forest classifier F
1 begin
2 for i = 0 to N do
3 s, st = bag(S)
4 x = choose random input vector of size m from X
5 t = buildtree(s, x, Y)
6 add t to F
7 return F

3.4.1 Parallelization

The parallelization of both the induction and the testing is possible. Because
the induction of the random forest is based on building of large amount of
trees, it is very costly for data with millions of records and many dimensions.
That makes the induction of decision forest a viable candidate for attempts
on parallel implementation.

One way to parallelize the induction process is to simply divide the process
between the available processors.

A popular approach to parallelization of the Random Forest is to use the
MapReduce model [25, 21]. MapReduce is a programming model for parallel

19

3. Random Decision Forests and Random Ferns

processing of large data sets across several processors [16]. One processor is
designated to be a master and is assigned other processors, called workers.
These work on problems assigned by the master. A MapReduce process has
two basic steps:

Map: In this step, the master divides the data among the workers and sends
the data to them. Each worker can then either process the data, or
become a master itself, divide the data again and send them to another
set of workers, or process the data and send the partial result to the
master.

Reduce: The master combines and processes the data it received from the
worker nodes during the Map step. This can either happen locally on
the master processor, or it can again parallelize it and let the workers
do it.

A naive approach to the induction of Random Forest in MapReduce would
be to partition data across the workers and in the Map function build the tree
from the data block. The majority voting would take place in the Reduce
step. However, because the size of the data set may be too big even after
partitioning a more clever way has to be taken.

One possible approach [25] in implementing the Random Forest on MapRe-
duce model is based on the SPDT algorithm [5]. This algorithm generates K
trees in a breadth-first fashion. It first partitions the training data set into
data blocks and distributes them across the workers. Each worker receives a
constant number of data blocks. The trees are built by bagging from all the
records. The indices of samples used for the creation of the trees are stored
in a bagging table, that contains a column for each tree. The table is also
distributed to each worker.

The induction runs in parallel on each worker. The trees are built breadth-
first instead of recursively, which means that at each step of an iteration, one
level of nodes is created for all the trees.

In the Map function, each worker calculates local histograms of features
for each tree. It does so by iterating through the data set, checking each
record against the bagging table. If the column for the current tree contains
the record, the histogram is updated from it. After all the workers finish the
mapping procedure, they send a tuple of (treeIdk, histk) back to the master.
This process is described in algorithm 3.

The master then begins the Reduce step, where each reducer receives all
the histograms that belong to their respective tree. Reducers first merge their
local histograms into a global histogram for one tree. Then for each node they
either mark the node as leaf, if the stopping criteria are met, or decide on a
splitting point and split the node. They send back the newly created nodes
along with the tree ID back to the master. After all the receivers finish their
jobs, the master updates the forest with the newly created nodes. The process

20

3.4. RDF algorithms and implementations

Algorithm 3: Map step
Data:
• Training data set D

• forest model F

• and bagging table T

Output: a tuple of (treeIdk, histk)
1 begin
2 foreach record d in D do
3 foreach tree k in F do
4 if T contains d for tree k and tree k is not fully grown then
5 update(histk, d)

6 foreach tree k in F do
7 Emit((treeIDk, histk))

finishes after all trees are fully built. We provide a pseudocode of this process
in algorithm 4.

Algorithm 4: Reduce step
Data:
• an ID of a tree k

• Vk, set of all histograms for the tree k

Output: List of splits for all the nodes in the current level for tree
nodes k

1 begin
2 globalHistogramk = merge(Vk)
3 foreach node n in k do
4 nodeHist = globalHistogramk(n) splitConditions =

calculateSplit(textitnodeHist) if stopping
critera(textitnodeHist) then

5 nodesi = leaf(splitConditions)
6 else
7 nodesi = split(splitConditions)

8 Emit((treeIDk, histk))

21

3. Random Decision Forests and Random Ferns

3.4.2 Parallelization using the GPU

Modern GPUs are based on a massively parallel architecture, consisting of
a high number of computing cores. Although these cores are usually slower
than the ones used in a general purpose CPU the architecture of a GPU is
designed to allow for a high throughput and massive parallelism. Therefore,
they may provide significant boost for applications that benefit from such a
highly parallel environment, such as Random Decision Forests. However, there
has not been much research done in this field, with only a few studies being
published [40, 19, 26].

CUDA architecture overview: There are two competing frameworks,
that are used for a GPU programming: a proprietary CUDA 1 from NVIDIA
and OpenCL 2. We provide an overview of an implementation based on the
CUDA technology [19]. A CUDA enabled GPU consists of several cores, also
called Shader Processors (SP). Each of these cores has its own private memory
and registers. Eight SPs form a Streaming Multiprocessor (SM). This SM
also has its own memory, shared between SPs belonging to the same SM. SMs
together form a GPU, which has a global memory, texture memory and a
constant memory. These memories are accessible from all the SPs.

A CUDA program has two kinds of code: the sequential code, that runs on
a host CPU and a CUDA code, called a kernel, that runs on the GPU. Before
a kernel can be executed on a GPU, the required data has to be transferred
to the unit. Each instance of a kernel runs on its own GPU thread. These
threads are organized into blocks, which run on a SM and blocks into grids,
which represent kernels.

Implementations: An implementation of Random Decision Forests, called
cudaRF, was introduced in [19]. In this implementation, each tree of the
forest is built using one thread. Since it is impossible to use recursion in a
CUDA kernel, the trees have to be built iteratively. The data reading and
preprocessing has to be done on a CPU, the resulting arrays are then sent
to the GPU. The host then launches kernel that builds trees on the GPU in
parallel. The trees are then kept in the GPU memory for querying. The kernel
also computes statistics about the forest, such as out-of-bag error or variable
importance. The testing also happens in parallel, where each tree of the forest
is assigned to a thread and votes on the instances.

A more recent implementation, CudaTree [26], allows for breadth-first task
parallelism and depth-first data parallelism, or their combination. In the
depth-first mode each CUDA thread block processes a subset of the data set
for each feature and determines the best split for each node. All the threads

1http://www.nvidia.com/object/cuda_home_new.html
2https://www.khronos.org/opencl/

22

http://www.nvidia.com/object/cuda_home_new.html
https://www.khronos.org/opencl/

3.4. RDF algorithms and implementations

Specifications/Type GeForce GTX 760 GeForce GTX Titan TESLA K20 TESLA K40
Computing cores 1152 2880 2496 2880
Memory 2048 MiB 6144 MiB 5 GB 12 GB

Table 3.1: An example of CUDA graphic card specifications

work on single node. In the breadth-first mode, a whole level of nodes is
constructed in parallel. This implementation also supports a hybrid more.
The induction first stars in a depth-first fashion, but after reaching a certain
depth it switches over to breadth-first.

As we mentioned, one of the advantages of computing on a GPU is GPUs
inherent massive throughput and parallelism. A GPU is designed specifically
to run hundreds or thousands of computational tasks at once. It however has
its disadvantages:

• The need to transfer the data from the CPU to the GPU — this creates
some overhead before the computation starts and may prove to be a
bottleneck

• A limited memory — as of 2014, the typical size of a memory of a recent
GPU is from two to six gigabytes, with professional GPUs having five
to twelve . This is enough for smaller data sets, but it will be a problem
when one tries to induct a forest for larger data sets. This can be solved
either by iteratively transferring data between CPU and GPU, which
slow down the whole process, or by creating a GPGPU grid.

• A GPU provides significant boost only when the task requires such
massive parallelism. Because the data transfers between the CPU and
GPU have some overhead and the GPU cores are slower than the CPU
as well as designed specifically for massive parallelism, the task needs to
be appropriate and the implementation optimized for it.

23

Chapter 4
Random Decision Forest

wrapper

To simplify the testing with various Random Decision Forest implementations
in a computing environment, we developed a package, that wraps around
these different implementations and libraries. The wrapper should accept a
single parameter file, that defines parameters such as locations of data sets and
actions to be performed on them, forest and tree configurations and others. It
also had to be easily extensible, so that more implementations of the algorithm
could be added over time. An additional requirement was, that it should
accept data sets in a CSV format as well as in a binary table in a FITS
format.

The wrapper itself is written in the Python language. The language was
chosen, because it is a powerful scripting language with an easily understand-
able syntax and there is an implementation of Random Forests in Python
[31]. We have used Python version 3, but because we wanted to have at least
a limited support for implementations running on older versions, we tried to
keep the core backwards-compatible.

4.1 Included implementations

H2O: It is a machine learning framework developed specifically for Big Data.
It implements various machine learning models, such as Deep Learning,
K-means or Random Decision Forests, in a scalable manner. It can form
clouds with other H2O instances running on the same network or with
their addresses specified in an input file. It is possible to communicate
with an existing cloud using either its REST API, or through a R con-
sole. During the testing, the H2O platform showed favorable speed of
the induction and accuracy of the model. This Random Forest imple-
mentation is implemented in two ways: a Single Node, where the forest

25

4. Random Decision Forest wrapper

is built only on a single computing node and a distributed version, where
it is built in the entire cloud. We chose only the single node version for
the wrapper, because the distributed version is still in beta version and
missing some features.

One of the drawbacks is that is builds only in-memory models. They
cannot be serialized and thus we can run tests only if the H2O instance,
where the model was built, has not been shut down or restarted. The
single node Random Forest is also missing a regression mode, which is
however included in the distributed version.

Scikit-learn: This is a Python library, that contains various machine learning
algorithms, as well as a number of supporting algorithms and methods
for scoring, handling data sets and others [31]. We have included this
library, because it delivers high-quality implementations of algorithms
and is highly regarded among machine learning community. The library
supports parallelism only over shared memory and cannot be used for
distributed computing. The package is still in active development, with
more features coming in every release. The interface of scikit’s models
have become standard in the Python community and other independent
libraries try to keep true to it for increased interoperability.

A library built specifically for astronomical data mining, astroML [42],
has been built on top of the scikit library. It supports retrieving data
from sky survey databases (such as SDSS), plotting of data and several
domain-specific applications of machine learning algorithms.

cudaTree: An implementation of the Random Forest model running on the
GPGPU platform CUDA. It is implemented in the Python language,
using the PyCUDA package as a means to communicate with the GPU.
It supports similar interface as RDFs from the scikit-learn library, but
with less features. Among the missing features are x-validation and
out-of-bag score.

4.2 Integrating libraries

We defined two wrapper classes, that bridge the interface our wrapper is using
with the interface of the implementations. To set a standard interface, we
defined base classes base_wrapper and base_forest.

The base_wrapper class serves as a main gateway with the underlying im-
plementation. It provides an interface to import data from a CSV file and train
a forest. The import_data method accepts a path to the file and a Boolean
flag that signals if the data have a header. After importing the file, it returns a
key, that identifies the file to the wrapper. The train_forest method serves
for inducing a forest. It accepts a key to the data set as its argument and

26

4.3. Additional features

returns an instance of a subclass of a base_forest. The base_forest sup-
ports scoring on a testing set, prediction, and getting an out-of-bag scores.
To integrate a library, one has to subclass these two base classes and provide
their own implementations of aforementioned methods.

4.3 Additional features
The wrapper supports training of Random Forest models, their scoring and
running predictions. It supports data sets in CSV format, and can convert
data sets in FITS binary tables into one. It supports scoring through x-
validation, out-of-bag score and scoring with a separate training and testing
data set. It also supports preprocessing of the features of the spectra extracted
from the FITS files by binning them by their wavelength.

4.3.1 FITS handling

The FITS files contain the measured spectra in a binary table. Each FITS file
corresponds to one measurement. The conversion process maps each column
in the binary table to a column in a CSV file. However, because of noise and
other factors, there can be small errors in wavelengths in each spectra. In
practice, this would mean that the spectra would not be aligned horizontally.
We need to perform data binning to deal with these errors.

Binning A binning groups values, that are near each other to one bin, using
a central value as a new one. It is an approximation of what the actual value
may have been on a given wavelength. As a result, it reduces the length of
the feature vector. When done on multiple rows, we first determine the max-
imal first wavelength, first_max, from the set and minimal last wavelength,
last_min, from the set. These will serve as the starting and ending points of
the binned wavelengths. We then choose a difference step between the indi-
vidual wavelengths that will be in the binned data. Then, for each spectrum,
we iterate over values between first_max and last_min with step. For each
record in the spectrum, we have to find the first that has a wavelength greater
than the wavelength of the current bin, next_x. Then we approximate the
intensity measured over that wavelength by determining the relative position
of the bin between the next_x and the previous wavelength and multiplying
the intensity on the previous wavelength by it.

4.3.2 Model validation, scoring and testing

We support scoring by separate train and test sets and a k-fold x-validation. If
the implementation of the Random Forest supports it, we also provide interface
for accessing the out-of-bag score and matrix. If the user did not provide any
test set, but wishes to perform the scoring, we support separating the original

27

4. Random Decision Forest wrapper

training set into two separate sets with a ratio defined by the user. When the
user requests an x-validation, the wrapper either uses the x-validation of the
implementation, or if the implementation does not support it out-of-the-box,
it uses a built-in implementation. When using the built-in implementation,
the wrapper generates k pairs of training and testing files, from which models
are built in turn. After an x-validation is done, the wrapper returns a mean of
the vector generated by the x-validation process. This process however does
not work on earlier Python versions older than version 3. This is because of
the difference between handling strings in IO.

28

Chapter 5
Experiments

We explored the performance on classification and regression problems of both
astronomical and common data sets used for machine learning. We used im-
plementations of Random Forests that are included in the wrapper described
in Chapter 4. We include results for various number of trees with different
implementations. We also include a comparison with other supervised ma-
chine learning algorithms, namely k-NN, Support Vector machines and Deep
Learning Neural Networks.

5.1 Astronomical experiments

We conducted two experiments on astronomical data. We measured the classi-
fication performance and speed of Random Forest on classification of Be stars
spectra. We classified data, extracted from the FITS files “as they were”,
and then with various preprocessing transformations applied, such as binning
and feature extraction [11]. For a regression experiments, we chose the stand-
ard problem of predicting redshifts. It is a well known problem [14, 13, 12] that
is commonly used for bench-marking regressive machine learning algorithms.

5.1.1 The DAME grid

“DAME (DAta Mining & Exploration) is an innovative, general purpose, Web-
based, distributed data mining infrastructure specialized in Massive Data Sets
exploration with machine learning methods.” [27] We have used its web ap-
plication DAMEWare for some of the experiments. The model training and
testing runs in a grid and they started to offer several GPU implementations
of some of the algorithms. It does not, however, contain any implementation
of Random Forests, so we used it only to build models for comparison. Unfor-
tunately, we were unable to run all the experiments there, due to its lack of
models and capabilities. We have used an implementation of SVM and Neural
Networks in some of our experiments.

29

5. Experiments

6300 6400 6500 6600 6700

1

2

3

4

5

6

6300 6400 6500 6600 67000.8

1.0

1.2

1.4

1.6

1.8

2.0

Figure 5.1: Examples of spectra with pure emission (left) and an emission
with an absorption(right)

6300 6400 6500 6600 6700

0.5

1.0

1.5

2.0

2.5

3.0

3.5

6300 6400 6500 6600 6700

0.6

0.7

0.8

0.9

1.0

Figure 5.2: Examples of spectra containing an absorption line with an emission
(left) and pure absorption (right)

5.1.2 Spectra classification

In this experiment, we tested the performance of Random Forests on Be
stars spectra classification. Be stars are “hot, rapidly rotating B-type stars
with equatorial gaseous disk producing prominent emission Hα lines in their
spectrum.”[11] Their emission lines come essentially in these different shapes:

• a pure emission (Figure 5.1.2)

• an emission with a central absorption(Figure 5.1)

• an absorption line with an emission also called a shell line(Figure 5.1.2)

We provide details of the profiles for the an emission with a central absorption
and an absorption line with an emission to illustrate the fine difference between
them in Figure 5.3.

We first explored the performance on data extracted from the FITS files
that were provided by the Ondřejov observatory. Although they do not rep-
resent the raw spectra as they were measured, because they had undergone
continuum normalization when they were retrieved from the database, we will

30

5.1. Astronomical experiments

6550 6560 6570 6580

0.5

1.0

1.5

2.0

2.5

3.0

3.5

6550 6560 6570 6580

1.0

1.5

2.0

2.5

3.0

Figure 5.3: Details of spectra containing an absorption line with an emission
(left) and an emission with a central absorption (right)

refer to them as raw data, because we have not done any preprocessing on
them specifically for this test. The original data set consists of 1593 FITS files,
each containing a binary table with measured values. These values come in
a tuple (wavelength, intensity), which represents an intensity of emission at a
certain wavelength. In addition to the three types we mentioned, the data set
also contains non-Be stars, that have pure absorption (Figure 5.2). We’ve con-
verted these FITS files into one CSV file, that can be imported into machine
learning frameworks. We did not do any data transformations and prepro-
cessing, besides the conversion. The data set has 1997 input features, most of
them are however irrelevant for the classification, as they either contain noise
or values that do not create the characteristic shapes. The data set has 1594
rows, but we had to split it into separate training and testing data sets with
two thirds of the rows going into the new training set and the rest into the
testing set. We have also excluded the out-of-bag score and the x-validation
for the cudaTree implementation for reasons described in section 4.3.2.

trees out-of-bag x-validation train-test set time
1 88.95 % 87.82 % 91.06 % 1.1
10 91.35 % 93.34 % 96.00 % 11
50 94.10 % 93.72 % 95.06 % 36.43
100 94.10 % 93.81 % 95.24 % 85.41
500 94.28 % 93.91 % 95.06 % 428.23
1000 94.19 % 94.01 % 95.06 % 781
2000 94.18 % 94.10 % 94.67 % 1456

Table 5.1: Performance of H2O implementation on raw data

The measured values show, that Random Forest started predicting the
data with a good precision early on. We also see, that beyond a certain
point, the accuracy stops increasing and reaches a certain limiting value. The
model managed to recognize important features, that shape the spectrum,

31

5. Experiments

trees/values out-of-bag x-validation train-test set time
1 40.40 % 88.67 % 90.11 % 2.04
10 90.72 % 94.18 % 94.87 % 2.52
50 94.38 % 94.65 % 94.87 % 3.86
100 93.91 % 94.38 % 94.68 % 5.95
500 93.81 % 93.91 % 94.87 % 21.45
1000 94.10 % 94.19 % 94.87 % 38.19
2000 94.19 % 93.91 % 95.25 % 74.65

Table 5.2: Performance of scikit implementation on raw data

trees/values train-test set time
1 11.40 % 3.03
10 94.48 % 3.56
50 94.48 % 3.98
100 95.81 % 4.46
500 94.48 % 7.78
1000 95.43 % 15.97
2000 95.43 % 30.20

Table 5.3: Performance of cudaTree implementation on raw data

actual/predicted 1 2 3 4 recall
1 46 12 0 0 0,79
2 5 24 2 0 0,78
3 0 0 384 0 1.0
4 0 8 9 6 0.26
precision 0.90 0.55 0.97 1.0

Table 5.4: The confusion matrix for a forest of size 2000 on raw data

even though they were not consistent through all the data. However, as we
see in the confusion matrix in table 5.4, the forest had problems to successfully
recognize members of the fourth category, the spectra that contain absorption
line with emission. It classified only a small fraction of them correctly, most
of them considering to be either pure absorption or an emission with central
absorption. Note, that even though H2O gave very similar results to the other
implementations in terms of accuracy, it took significantly longer time to train
the model than the rest. This may be due to more complex architecture and
generally more inefficient implementation on a single computer, because the
framework was intended to run on a distributed cloud.

Next we examine the performance of Random Forests on data, that have
been binned (by the process described in section 4.3.1). This aligns the data,

32

5.1. Astronomical experiments

making the feature columns more consistent, because they now correspond to
the exactly the same wavelength. As we predicted, this increased the accuracy
a little. It also decreased the time necessary to train the models.

trees out-of-bag x-validation train-test set time
1 93.51 % 91.32 % 92.39 % 3.91
10 95.78 % 93.34 % 97.34 % 5.74
50 97.52 % 97.01 % 97.56 % 42.04
100 97.75 % 97.83 % 98.09 % 85.59
500 98.21 % 98.12 % 98.09 % 468.53
1000 98.31 % 98.15 % 97.90 % 851.97
2000 98.31 % 98.06 % 97.71 % 1656.87

Table 5.5: Performance of H2O implementation on binned data

trees/values out-of-bag x-validation train-test set time
1 42.83 % 93.99 % 93.34 % 2.04
10 95.50 % 97.85 % 97.53 % 2.50
50 98.41 % 98.22 % 97.72 % 3.88
100 98.69 % 98.13 % 97.91 % 5.53
500 98.41 % 98.22 % 97.71 % 19.83
1000 98.31 % 98.31 % 97.71 % 35.63
2000 94.19 % 93.91 % 97.71 % 73.61

Table 5.6: Performance of scikit implementation on binned data

trees/values train-test set time
1 11.22 % 3.2
10 97.34 % 3.5
50 96.96 % 3.9
100 97.15 % 4.1
500 97.34 % 7.1
1000 97.34 % 13.44
2000 97.34 % 25,33

Table 5.7: Performance of cudaTree implementation on binned data

For the final test, we examined the performance of random forests on data
that had undergone feature extraction [11]. This feature extraction consists of
centering the data, applying the wavelet transform and an aggregation func-
tion. This greatly reduced the dimensionality of the data (in this case, it was
from 1997 features to 10) and increased the accuracy of the classification. We
see that the forest now correctly recognized most of the data and only confused

33

5. Experiments

actual/predicted 1 2 3 4 recall
1 52 7 0 0 0,79
2 5 63 0 0 0,92
3 0 0 384 0 1.0
4 0 0 0 15 1.0
precision 0.91 0.9 1.0 1.0

Table 5.8: The confusion matrix for a forest of size 2000 on binned data

some of the pure emission spectra with spectra containing central absorption
and vice-versa. The reduction in dimensionality significantly improved the
speed of the training. For comparison, in table 5.13 we provide performance

trees out-of-bag x-validation train-test set time
1 96.14 % 95.99 % 95.28 % 1.06
10 95.91 % 97.33 % 96.23 % 1.04
50 97.03 % 97.81 % 96.23 % 1.03
100 97.77 % 98.00 % 97.17 % 1.05
500 97.98 % 98.09 % 98.11 % 2.10
1000 97.98 % 98.19 % 98.11 % 4.16
2000 98.09 % 98.19 % 98.11 % 8.40

Table 5.9: Performance of H2O implementation on extracted features

trees/values out-of-bag x-validation train-test set time
1 41.98 % 96.76 % 96.32 % 0.01
10 96.85 % 98.09 % 97.87 % 0.11
50 98.38 % 98.28 % 98.07 % 0.15
100 98.47 % 98.47 % 98.26 % 0.24
500 98.57 % 98.76 % 97.87 % 0.99
1000 98.57 % 98.57 % 98.26 % 1.92
2000 98.66 % 98.57 % 98.26 % 3.74

Table 5.10: Performance of scikit implementation on extracted features

of several other machine learning algorithms on these data. We also include
the best score of Random Forests for each data set.

5.1.3 Redshift prediction

Redshift is a phenomenon that happens when an electromagnetic radiation
of an object increases its wavelength. In this case we are dealing with a
cosmological redshift, which determines how quickly galaxies move from each

34

5.1. Astronomical experiments

trees/values train-test set time
1 10.25 % 0.05
10 98.07 % 0.18
50 98.65 % 0.60
100 99.03 % 1.13
500 99.03 % 5.37
1000 98.65 % 7.48
2000 99.03 % 15.3

Table 5.11: Performance of cudaTree implementation on extracted features

actual/predicted 1 2 3 4 recall
1 51 2 0 0 0.96
2 2 63 2 0 0.94
3 0 0 381 0 1.0
4 0 0 2 14 1.0
precision 0.96 0.97 0.99 1.0

Table 5.12: The confusion matrix for a forest of size 2000 on extracted features

RDF DL SVM kNN
Raw Data 96.00 % 93.16 % 75.39 % 93.73 %
Binned Data 97.71 % 98.10 % 85.36 % 96.96 %
Extracted Data 99.03 % 98,87 % 95.83 % 95.74 %

Table 5.13: Comparison of several machine learning algorithms on the data

other and according to the Hubble’s law [22], also determines how far they are
from each other. This is used mainly do determine their distance and relative
position to us. Redshifts can be accurately measured by spectroscopy, however
these measurements take a lot of time and because of that, there is only a
small amount of measurements. On the other hand, photometry takes much
less time to take, however it doesn’t provide results that are as accurate as
spectroscopic. There is however a relationship between color indices measured
by photometry and the redshifts of space objects. Machine learning attempts
to model these relationships and predict redshifts form them.

The data set consists of 4 input attributes and an output continuous at-
tribute. It was taken from a Sloan Digital Sky Survey (SDSS) and contains
spectroscopic redshifts along with photometric color indices. The four features
are differences between the color bands of ultraviolet, green, red and infrared
and their redshift, while the output contains redshifts. The prediction in this
case is a predicted photometric redshift based on the colors.

35

5. Experiments

trees/values out-of-bag train-test set time
1 89.91 % 87.32 % 0.41
10 88.37% 92.81 % 1.30
50 92.93 % 92.97 % 5.25
100 92.97 % 93.20 % 10.03
500 93.13 % 93.30 % 46.64
1000 93.17 % 93.23 % 93.46
2000 92.96 % 93.43 % 185.10

Table 5.14: Performance of scikit implementation on redshift prediction

5.2 Common machine learning data sets

We have conducted experiments on these data sets from the UCI repository
[3] : ISOLET3, Adult4, Internet Advertisements 5. We have chosen these data
sets either for their high dimensionality, lots of samples, or both. We include
a table with best results on each data set. We have tested them with Random
Forest, Deep Learning, kNN and Support Vector Machine.

RDF DLNN SVM kNN
ISOLET 94.80 % 92.05 % 85.4 % 91.34 %
Adult 86.41 % 88.14 % 75.14 % 72.64 %
Ads 98.65 % 96.27 % 85.01% 94.09 %

Table 5.15: Performance comparison on UCI data sets

5.3 Experiment outcome and conclusion

From the measured values on all three experiments we see, that the GPU
implementation significantly decreased the time of the induction, in some cases
the speedup was more than three times compared to the time of the induction
by the scikit implementation, without decreasing the accuracy of the forest.
However for the data with the extracted features, the GPU took longer to grow
the forest than both H2O and scikit. This may be due to the overhead the use
of GPUs introduces, as explained in Section 3.4.2. We also see, that in the tests
on the raw and the binned data, the H2O had significantly worse time than
both scikit and cudaTree. However we expect that in case of a huge amount
of spectra, its ability to distribute data across several computing nodes and
build forests in a MapReduce environment would be necessary, because neither

3https://archive.ics.uci.edu/ml/datasets/ISOLET
4http://archive.ics.uci.edu/ml/datasets/Adult
5http://archive.ics.uci.edu/ml/datasets/Internet+Advertisements

36

https://archive.ics.uci.edu/ml/datasets/ISOLET
http://archive.ics.uci.edu/ml/datasets/Adult
http://archive.ics.uci.edu/ml/datasets/Internet+Advertisements

5.3. Experiment outcome and conclusion

scikit nor cudaTree are capable of distributed computing. Based on this, we
recommend using scikit when you do not have to use a cloud environment and
only resort to H2O when you need to process large data sets.

When compared with other machine learning algorithms, the Random
Forests outperformed other algorithms in accuracy on both raw data and
on extracted features. They were beaten only by the Deep Learning neural
network on binned data. We however did not try to optimize the parameters
of the other algorithms much, so it is very much possible their results could
improve a bit.

37

Conclusion

We have examined the machine learning model Random Decision Forest and
its performance on astronomical data and large data sets. We include a de-
scription of an algorithm of Random Forest that runs on a MapReduce model
and is able to scale for very large data sets. We also provide a survey of
implementations that run on a GPGPU platform.

We also implemented a Python package, that wraps several implementa-
tions of Random Forests and allows to train and test models with a run of a
single executable file. This implementation was tested on astronomical data,
as well as some larger data sets from the UCI repository. The RDF model has
shown that it is capable of precise classification and regression of data. We
have found, that on small data even smaller forests will do, however when the
size of the data increases, we need to use larger ensemble. Since the time of
induction of a tree is dependent on both size of the data set as well as on the
number of the features and the training time of a forest is linearly dependent
on the number of trees, training on bigger data becomes quickly unfeasible.
This calls for a efficient distributed implementation.

We will integrate the wrapper presented in this thesis in a cloud envir-
onment in Ondřejov observatory, so others can build models from their data.
For the future work, we would like to develop an efficient, scalable, massively
parallel implementation of the algorithm that could run on several computing
nodes, since most of today’s publicly available implementations are not meant
to analyze Big Data. The results have been presented at an international
conference called New challenges in astro- and environmental informatics in
the Big Data era6.

6https://bigdataconf.gothard.hu/indico/conferenceDisplay.py?confId=1

39

https://bigdataconf.gothard.hu/indico/conferenceDisplay.py?confId=1

Bibliography

[1] Amado, N.; Gama, J.; Silva, F.: Parallel Implementation of Decision
Tree Learning Algorithms. In Progress in Artificial Intelligence, Lecture
Notes in Computer Science, volume 2258, edited by P. Brazdil; A. Jorge,
Springer Berlin Heidelberg, 2001, ISBN 978-3-540-43030-8, pp. 6–13, doi:
10.1007/3-540-45329-6_4. Available from: http://dx.doi.org/10.1007/
3-540-45329-6_4

[2] Andrássyová, E.; Paralič, J.: KNOWLEDGE DISCOVERY IN DATA-
BASES: A COMPARISON OF DIFFERENT VIEWS. Journal of In-
formation and Organizational Sciences, volume 23, no. 2, 1999: pp. 95–
102.

[3] Bache, K.; Lichman, M.: UCI Machine Learning Repository. 2013. Avail-
able from: http://archive.ics.uci.edu/ml

[4] Becla, J.; Hanushevsky, A.; Nikolaev, S.; etc.: Designing a multi-petabyte
database for LSST. In Astronomical Telescopes and Instrumentation, In-
ternational Society for Optics and Photonics, 2006, pp. 62700R–62700R.

[5] Ben-Haim, Y.; Tom-Tov, E.: A streaming parallel decision tree algorithm.
The Journal of Machine Learning Research, volume 11, 2010: pp. 849–
872.

[6] Bernard, S.; Heutte, L.; Adam, S.: On the selection of decision trees
in Random Forests. In Neural Networks, 2009. IJCNN 2009. Interna-
tional Joint Conference on, June 2009, ISSN 1098-7576, pp. 302–307,
doi:10.1109/IJCNN.2009.5178693.

[7] Borne, K.: Scientific data mining in astronomy. arXiv preprint
arXiv:0911.0505, 2009.

[8] Breiman, L.: Classification and regression trees. Belmont, Calif:
Wadsworth International Group, 1984, ISBN 0412048418, 358 pp.

41

http://dx.doi.org/10.1007/3-540-45329-6_4
http://dx.doi.org/10.1007/3-540-45329-6_4
http://archive.ics.uci.edu/ml

Bibliography

[9] Breiman, L.: Out-of-bag estimation. Technical report, Citeseer, 1996.

[10] Breiman, L.: Random Forests. Machine Learning, volume 45, no. 1, 2001:
pp. 5–32, ISSN 0885-6125, doi:10.1023/A:1010933404324.

[11] Bromová, P.; Bařina, D.; Škoda, P.; etc.: Classification of Be Stars Using
Feature Extraction Based on Discrete Wavelet Transform. In Proceed-
ings of conferences Datakon and Znalosti 2013, VŠB-Technical University
of Ostrava, 2013, ISBN 978-80-248-3189-3, pp. 95–102. Available from:
http://www.fit.vutbr.cz/research/view_pub.php?id=10416

[12] Carliles, S.; Budavári, T.; Heinis, S.; etc.: Photometric Redshift Es-
timation on SDSS Data Using Random Forests. In Astronomical Data
Analysis Software and Systems (ADASS) XVII, ASP Conference Series,
volume 30, 2008, pp. 521–526.

[13] Carliles, S.; Budavári, T.; Heinis, S.; etc.: Random Forests for Photomet-
ric Redshifts. The Astrophysical Journal, volume 712, no. 1, 2010: p. 511.
Available from: http://stacks.iop.org/0004-637X/712/i=1/a=511

[14] Carrasco Kind, M.; Brunner, R. J.: TPZ: photometric redshift PDFs
and ancillary information by using prediction trees and random
forests. Monthly Notices of the Royal Astronomical Society, volume
432, no. 2, 2013: pp. 1483–1501, doi:10.1093/mnras/stt574, http:
//mnras.oxfordjournals.org/content/432/2/1483.full.pdf+html.
Available from: http://mnras.oxfordjournals.org/content/432/2/
1483.abstract

[15] Darlington, J.; Guo, Y.-k.; Sutiwaraphun, J.; etc.: Parallel induction al-
gorithms for data mining. In Advances in Intelligent Data Analysis Reas-
oning about Data, Lecture Notes in Computer Science, volume 1280, ed-
ited by X. Liu; P. Cohen; M. Berthold, Springer Berlin Heidelberg, 1997,
ISBN 978-3-540-63346-4, pp. 437–445, doi:10.1007/BFb0052860. Avail-
able from: http://dx.doi.org/10.1007/BFb0052860

[16] Dean, J.; Ghemawat, S.: MapReduce: simplified data processing on large
clusters. Communications of the ACM, volume 51, no. 1, 2008: pp. 107–
113.

[17] Fayyad, U.; Piatetsky-Shapiro, G.; Smyth, P.: From data mining to
knowledge discovery in databases. AI magazine, volume 17, no. 3, 1996:
p. 37.

[18] Fayyad, U.; Piatetsky-shapiro, G.; Smyth, P.; etc.: The KDD Process for
Extracting Useful Knowledge from Volumes of Data. Communications of
the ACM, volume 39, 1996: pp. 27–34.

42

http://www.fit.vutbr.cz/research/view_pub.php?id=10416
http://stacks.iop.org/0004-637X/712/i=1/a=511
http://mnras.oxfordjournals.org/content/432/2/1483.full.pdf+html
http://mnras.oxfordjournals.org/content/432/2/1483.full.pdf+html
http://mnras.oxfordjournals.org/content/432/2/1483.abstract
http://mnras.oxfordjournals.org/content/432/2/1483.abstract
http://dx.doi.org/10.1007/BFb0052860

Bibliography

[19] Grahn, H.; Lavesson, N.; Lapajne, M. H.; etc.: CudaRF: A CUDA-
based implementation of random forests. In Computer Systems and Ap-
plications (AICCSA), 2011 9th IEEE/ACS International Conference on,
IEEE, 2011, pp. 95–101.

[20] Han, J.; Kamber, M.; Pei, J.: Data mining: concepts and techniques.
Morgan kaufmann, 2006.

[21] Han, J.; Liu, Y.; Sun, X.: A scalable random forest algorithm based
on MapReduce. In Software Engineering and Service Science (ICSESS),
2013 4th IEEE International Conference on, IEEE, 2013, pp. 849–852.

[22] Hubble, E. P.: The observational approach to cosmology. Clarendon Press
Oxford, 1937.

[23] Hyafil, L.; Rivest, R. L.: Constructing optimal binary decision trees
is NP-complete. Information Processing Letters, volume 5, no. 1,
1976: pp. 15 – 17, ISSN 0020-0190, doi:http://dx.doi.org/10.1016/
0020-0190(76)90095-8. Available from: http://www.sciencedirect.com/
science/article/pii/0020019076900958

[24] Kulkarni, V.; Sinha, P.: Pruning of Random Forest classifiers: A
survey and future directions. In Data Science Engineering (ICDSE),
2012 International Conference on, July 2012, pp. 64–68, doi:10.1109/
ICDSE.2012.6282329.

[25] Li, B.; Chen, X.; Li, M.; etc.: Scalable Random Forests for Massive Data.
In Advances in Knowledge Discovery and Data Mining, Lecture Notes
in Computer Science, volume 7301, edited by P.-N. Tan; S. Chawla;
C. Ho; J. Bailey, Springer Berlin Heidelberg, 2012, ISBN 978-3-642-
30216-9, pp. 135–146, doi:10.1007/978-3-642-30217-6_12. Available from:
http://dx.doi.org/10.1007/978-3-642-30217-6_12

[26] Liao, Y.; Rubinsteyn, A.; Power, R.; etc.: Learning Random Forests on
the GPU. 2013.

[27] Longo, G.; Djorgovski, G. S.; Brescia, M.; etc.: DAME Web Applica-
tion Resource. online, 2014. Available from: http://dame.dsf.unina.it/
dameware.html

[28] Mehta, M.; Agrawal, R.; Rissanen, J.: SLIQ: A fast scalable classifier for
data mining. In Advances in Database Technology—EDBT’96, Springer,
1996, pp. 18–32.

[29] Ozuysal, M.; Calonder, M.; Lepetit, V.; etc.: Fast keypoint recognition
using random ferns. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, volume 32, no. 3, 2010: pp. 448–461.

43

http://www.sciencedirect.com/science/article/pii/0020019076900958
http://www.sciencedirect.com/science/article/pii/0020019076900958
http://dx.doi.org/10.1007/978-3-642-30217-6_12
http://dame.dsf.unina.it/dameware.html
http://dame.dsf.unina.it/dameware.html

Bibliography

[30] Ozuysal, M.; Fua, P.; Lepetit, V.: Fast keypoint recognition in ten lines
of code. In Computer Vision and Pattern Recognition, 2007. CVPR’07.
IEEE Conference on, IEEE, 2007, pp. 1–8.

[31] Pedregosa, F.; Varoquaux, G.; Gramfort, A.; etc.: Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research, volume 12,
2011: pp. 2825–2830.

[32] Quinlan, J. R.: C4.5: Programs for Machine Learning, chapter 243-25.

[33] Quinlan, J. R.: Simplifying decision trees. International Journal of
Man-Machine Studies, volume 27, no. 3, 1987: pp. 221 – 234, ISSN
0020-7373, doi:http://dx.doi.org/10.1016/S0020-7373(87)80053-6. Avail-
able from: http://www.sciencedirect.com/science/article/pii/
S0020737387800536

[34] Quinlan, J. R.: Bagging, boosting, and C4.5. In AAAI/IAAI, Vol. 1,
1996, pp. 725–730.

[35] Quinlan, J. R.: Induction of Decision Trees. Journal, Year.

[36] Rokach, L.; Maimon, O.: Top-down induction of decision trees classifiers
- a survey. Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on, volume 35, no. 4, Nov 2005: pp. 476–
487, ISSN 1094-6977, doi:10.1109/TSMCC.2004.843247.

[37] Rokach, L.; Maimon, O.: Data Mining with Decision Trees: Theory and
Applications, Machine Perception and Artificial Intelligence, volume 69.
World Scientific Publishing Co. Pte. Ltd., 2008, ISBN 978-981-277-171-1.

[38] Roli, F.; Giacinto, G.; Vernazza, G.: Methods for designing multiple
classifier systems. In Multiple Classifier Systems, Springer, 2001, pp. 78–
87.

[39] Shafer, J.; Agrawal, R.; Mehta, M.: SPRINT: A scalable parallel classi
er for data mining. In Proc. 1996 Int. Conf. Very Large Data Bases,
Citeseer, 1996, pp. 544–555.

[40] Sharp, T.: Implementing decision trees and forests on a GPU. In Com-
puter Vision–ECCV 2008, Springer, 2008, pp. 595–608.

[41] Sirat, J. A.; Nadal, J.-P.: Neural trees: a new tool for clas-
sification. Network: Computation in Neural Systems, volume 1,
no. 4, 1990: pp. 423–438, doi:10.1088/0954-898X_1_4_003, http://
informahealthcare.com/doi/pdf/10.1088/0954-898X_1_4_003. Avail-
able from: http://informahealthcare.com/doi/abs/10.1088/0954-
898X_1_4_003

44

http://www.sciencedirect.com/science/article/pii/S0020737387800536
http://www.sciencedirect.com/science/article/pii/S0020737387800536
http://informahealthcare.com/doi/pdf/10.1088/0954-898X_1_4_003
http://informahealthcare.com/doi/pdf/10.1088/0954-898X_1_4_003
http://informahealthcare.com/doi/abs/10.1088/0954-898X_1_4_003
http://informahealthcare.com/doi/abs/10.1088/0954-898X_1_4_003

Bibliography

[42] Vanderplas, J.; Connolly, A.; Ivezić, Ž.; etc.: Introduction to as-
troML: Machine learning for astrophysics. In Conference on Intelli-
gent Data Understanding (CIDU), oct. 2012, pp. 47 –54, doi:10.1109/
CIDU.2012.6382200.

[43] Zhao, Y.; Zhang, Y.: Comparison of decision tree methods for finding act-
ive objects. Advances in Space Research, volume 41, no. 12, 2008: pp. 1955
– 1959, ISSN 0273-1177, doi:http://dx.doi.org/10.1016/j.asr.2007.07.020.
Available from: http://www.sciencedirect.com/science/article/
pii/S027311770700796X

[44] Zhou, Z.-H.: Ensemble Methods Foundations and Algorithms. Machine
Learning and Pattern Recognition, Chapman and Hall/CRC, 2012.

45

http://www.sciencedirect.com/science/article/pii/S027311770700796X
http://www.sciencedirect.com/science/article/pii/S027311770700796X

Appendix A
Acronyms

RDF Random decision forest

RF Random forest

DT Decision tree

SPDT Streaming Parallel Decision Tree

DL Deep Learning

DL Deep Learning Neural Network

SVM Support Vector Machine

kNN k-Nearest Neighbors

47

Appendix B
Wrapper usage documentation

and file format

The wrapper depends on following Python packages:

• scikit-learn

• numpy

• requests

• pandas

• cudaTree

The wrapper is designed to run under Python 3 or higher and does not of-
fer some functionality under lower versions. However, running the cudaTree
package is supported only under Python 2.7, due to the technical limitations
of the library. To run H2O, the user have to have Java installed. The H2O in-
stance can run prior to the execution of the wrapper, or if there is no instance
running, the wrapper will start it provided it finds an h2o.jar file in the root
folder of the wrapper. The wrapper is run by running the command python
3 runRF [input_file1, ...], which will run it in Python 3. For Python 2,
just change the initial command for python2. The wrapper is available on the
following git repository for public access:
https://github.com/palicand/random-forest-wrapper.

The wrapper requires at least one JSON files as an argument on the com-
mand line. It does not accept any other arguments or configuration files. The
wrapper considers each input file as a discrete experiment. We provide an
example of the input file and descriptions of its parameters.

name a name of the experiment, several output files created for the experi-
ment are named according to this option

49

https://github.com/palicand/random-forest-wrapper

B. Wrapper usage documentation and file format

trees a number of trees

implementation implementation to use, can be scikit or h2o

min_split minimal amount of classes in a node for it to be eligible for split

depth maximal depth of the tree

mode classification, regression or gpu

splitting_criterion ENTROPY or GINI

features number of features to consider in each tree, can be an integer of
“auto”. If “auto”, the wrapper will use sqrt(n_features) in as the number
of features to consider.

sample_ratio : a ratio by with to do bagging

bin_limit : how many bins for the histograms to create, only valid for H2O

seed : the initial seed for the random number generator

parallel : if the algorithm should run in parallel, can be 1 or 0

error_estimate : if we want the error estimate

ignore : a list of features to ignore, can be the name of the feature, if the
header was provided or its index

label : which column contains the label, see above for possible values

sampling : what sampling to use, can be RANDOM or STRATIFIED

run_test : if you want to do scoring test

create_test_set : if you want to create test set

test_set_ratio : what ratio to use when creating test set

compute_f1 : if you want to compute f1 score

compute_cf : if you want to compute confusion matrix

data_sets : must contain train_set, can contain score_set and prediction_set

path the path to the data set

file_type can be fits or CSV

delimiter if CSV, this is the delimiter

header if the file contains header

50

binning if fits, perform binning

cross_validation if present, the wrapper will perform cross-validation, folds
determines the number of folds

{
"name " : " spectra_binned " ,
" t r e e s " : 2000 ,
" implementation " : " s c i k i t " ,
" min_spl it " : 4 ,
"mode " : " c l a s s i f i c a t i o n " ,
" s p l i t t i n g_ c r i t e r i o n " : "ENTROPY" ,
" f e a t u r e s " : 44 ,
" depth " :2147483647 ,
" sample_ratio " : 6 7 ,
" b in_l imit " : 1 600 ,
" seed " :5364668453 ,
" p a r a l l e l " : 1 ,
" e r ror_est imate " : 1 ,
" i gno r e " : [" id "] ,
" l a b e l " : " c l a s s " ,
" sampling " : "RANDOM" ,
" run_test " : true ,
" c r ea te_tes t_set " : f a l s e ,
" t e s t_se t_ra t i o " : 0 . 6 7 ,
" compute_f1 " : true ,
" compute_cf " : true ,
" data_sets " :
{

" t ra in_se t " :
{

" path " : " proces sed_spect ra_tra in . csv " ,
" f i l e_ type " : " csv " ,
" d e l im i t e r " : " , " ,
" header " : true ,
" b inning " : f a l s e

} ,
" s core_set " :
{

" path " : " proces sed_spect ra_test . csv " ,
" f i l e_ type " : " csv " ,
" d e l im i t e r " : " , " ,
" header " : t rue

51

B. Wrapper usage documentation and file format

}
} ,
" c r o s s_va l i da t i on " :
{

" f o l d s " : 10
}

}

The wrapper will write its output to a file named result.json. Its root
object contains an array of objects, each named after an input file the wrapper
received at its command line. An example of the output file is provided below:

{
" sc ik i t_extracted_2000 . j son " :
{

" tra in ing_oob_scores " : [[2 0 0 0 ,
0 . 9875954198473282]] ,

" s c o r e " : [[" ex t rac ted_tes t . csv " ,
2000 , 0 . 9845261121856866]] ,

" t ra in ing_t ime " : [[2 0 0 0 , 4 . 4 5 2 0 2 6]] ,
" f1_score " : [[0 . 9622641509433962 ,

0 .9545454545454547 , 0 .9947780678851175 ,
0 . 9333333333333333]] ,

" xva l i d a t i on_pr e c i s i on " : [[2 0 0 0 ,
0 . 9809957445009652]] ,

" conf_matrix " : [[[5 1 , 2 , 0 , 0] ,
[2 , 63 , 2 , 0] , [0 , 0 , 381 , 0] , [0 , 0 , 2 , 1 4]]]

}
}

52

Appendix C
Contents of enclosed CD

readme.txt........................the file with CD contents description
src.......................................the directory of source codes

wrapper...wrapper sources
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

53

	Introduction
	Knowledge discovery, data mining and astroinformatics
	Data mining methods
	Data set
	Model validation and scoring
	Astroinformatics

	Decision trees
	Splitting the nodes
	Stopping criteria and pruning
	Testing the data
	Decision trees algorithms
	Performance and scalability
	Advantages and disadvantages

	Random Decision Forests and Random Ferns
	Number of trees and their diversity
	Bagging
	Random Ferns
	RDF algorithms and implementations

	Random Decision Forest wrapper
	Included implementations
	Integrating libraries
	Additional features

	Experiments
	Astronomical experiments
	Common machine learning data sets
	Experiment outcome and conclusion

	Conclusion
	Bibliography
	Acronyms
	Wrapper usage documentation and file format
	Contents of enclosed CD

