
Insert here your thesis’ task.

Czech Technical University in Prague

Faculty of Information Technology

Department of Computer Science

Master’s thesis

Semi-Supervised Learning of Millions of

Astronomical Spectra

Bc. Andrej Palička

Supervisor: RNDr. Petr Škoda, CSc.

9th May 2016

Acknowledgements

I want to thank my supervisor, RNDr. Petr Škoda, for his guidance and sup-
port.
I also want to thank Ing. Ivan Šimeček, PhD. for accepting my request to be
my reviewer.
Last but not least, I want to thank my family and friends for supporting me
throught the whole ordeal. I could not have done it without you.
This research made use of the following libraries from the Scipy ecosystem:
Scipy, Numpy and Matplotlib.
This research made use of Astropy, a community-developed core Python pack-
age for Astronomy (Astropy Collaboration, 2013).
Access to computing and storage facilities owned by parties and projects con-
tributing to the National Grid Infrastructure MetaCentrum, provided under
the programme “Projects of Large Research, Development, and Innovations
Infrastructures” (CESNET LM2015042), is greatly appreciated. Specifically,
I would like to thank Mr. Petr Hanousek and Mr. Frantǐsek Dvořák for their
help with the Spark cluster.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive author-
ization (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on 9th May 2016 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2016 Andrej Palička. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Palička, Andrej. Semi-Supervised Learning of Millions of Astronomical Spec-
tra. Master’s thesis. Czech Technical University in Prague, Faculty of
Information Technology, 2016.

Abstrakt

Použili sme čiastočne riadené učenie na detekciu emisných spektier v arch́ıve
z observatória LAMOST za pomoci maśıvne paralelného prostredia Spark.
Implementovali sme aplikáciu, ktorá tieto spektrá predspracuje a aplikuje sériu
transformácii aby sme tieto dáta mohli použǐt na trénovanie modelov. Ďalej
sme implementovali algoritmy čiastočne riadeného učenia, založené na grafovej
reprezentácii dát, zvané Label Propagation a Label Spreading. tieto algoritmy
použ́ıvame na naučenie modelu, ktorý spektrá bude klasifikovať. Aplikovali
sme tieto algoritmy na podmnožinu arch́ıvu, ktorej vělkošt bola jeden milión
spektier.

Kĺıčová slova strojové učenie, čiastočne riadené učenie, astroinformatika,
hviezdy s emisnou krivkou, LAMOST

Abstract

We use semi-supervised learning to detect spectra with emission in an archive
from the LAMOST observatory using a massively parallel environment called
Spark. We have implemented a preprocessing application that would take
original raw spectra and apply series of transformations in order for them
to be usable for training models. We have also implemented graph-based

ix

semi-supervised algorithms Label Propagation and Label Spreading. We use
these to fit the models and then classify the spectra. We have applied these
algorithms to a subsample of the archive of size one million of spectra.

Keywords machine learning, semi-supervised learning, astroinformatics, emission-
line spectra, LAMOST

x

Contents

Introduction 1

Machine Learning . 1

Astroinformatics . 2

1 Semi-Supervised Learning 5

1.1 Supervised and Unsupervised Learning 5

1.2 Semi-Supervised Learning . 5

1.3 Assumptions for Semi-Supervised Learning 6

1.4 Classes of Semi-Supervised Learning 7

2 Massively Parallel Environments 15

2.1 MapReduce paradigm . 15

2.2 Spark . 18

3 Implementation 23

3.1 Data preprocessing module . 23

3.2 Graph models . 25

3.3 Problems and limitations we have encountered 32

4 Stellar spectra 35

4.1 The significance of a spectrum 35

4.2 Description of the dataset . 35

5 Experiments 41

5.1 Execution environment . 41

5.2 Data survey . 42

5.3 Experiments . 44

5.4 Classification results . 49

Conclusion 55

xi

Bibliography 57

A Acronyms 61

B Contents of enclosed CD 63

C Configuration files 65
C.1 Data preprocessing . 65
C.2 Graph job . 66

xii

List of Figures

1.1 Label Spreading visualisation . 9

2.1 MapReduce architecture. 16

4.1 Examples of spectra containing pure emission and an emission with
an absorption . 36

4.2 Examples of spectra containing an absorption line with an emission
(shell line) and a pure absorption 36

4.3 Details of spectra containing an absorption line with an emission
(shell line) and an emission with a central absorption 37

4.4 An example of a spectrum from LAMOST archive plotted against
a spectrum of the same star from CCD700. Note that it depicts
less finer details than CCD700 spectra. 38

4.5 Spectra of the same star plotted against each other. The spectrum
from CCD700 has been resampled. 39

5.1 Structuring of the data after a PCA decomposition. 43
5.2 Structuring of the data after a TSNE embedding. 43
5.3 Dependency of the accuracy of Label Propagation with regards to

the number of neighbours. 44
5.4 Dependency of the accuracy of Label Spreading with regards to

the number of neighbours. 45
5.5 Dependency of the accuracy of Label Spreading on α. 46
5.6 Time dependency on the size of the data for preprocessing. 48
5.7 Time dependency on the size of the data for Label Propagation. . 49
5.8 Time dependency on the size of the data for Label Spreading. . . . 50
5.9 Classification visualised by PCA. 51
5.10 Classification visualised by TSNE. 51
5.11 Examples of detected spectra. 53

xiii

List of Tables

5.1 F1 score of Label Propagation for different number of neighbours.
Bold k is the one with the best F1 score. 45

5.2 Classificaiton performance of Label Spreading for different number
of neighbours. Bold k is the one with the best F1 score. 46

5.3 Classification performance of Label Spreading for different value of
α. 47

5.4 Time scalability of preprocessing 47
5.5 Time scalability of Label Propagation 48
5.6 Time scalability of Label Spreading 49

xv

Introduction

We live in an era when every imaginable area of human endeavour produces
and consumes huge amount of data. This data need to be stored, processed
and most important, presented in a way we can use to make decisions, gain
insight into some problem or discover new knowledge.

Algorithms and systems have been developed to help with all of the afore-
mentioned problems. We now have distributed file systems, such as HDFS,
distributed databases, such as Hbase or Cassandra. We can process large
amount of data using paradigms such as MapReduce. Libraries such as Sparks’
MLlib help discover relationship between the data and create models on top
of them.

This diploma thesis concerns itself primarily with the machine learning
part of knowledge engineering. We use it to process and classify large amounts
of stellar spectra in an automated way.

Machine Learning

Machine learning is a field of computer science whose primary aim is to design
algorithms, that allow computers to learn patterns and relationships in data
without the need for a human to explicitly define this knowledge. They build
models that attempt to capture some knowledge hidden in the data. This
includes classifying data into some predetermined classes, detecting outliers,
finding clusters or transforming the features of the data to be more useful for
subsequent machine learning tasks.

There are two main classes of machine learning algorithms:

Supervised These algorithms have some prior knowledge about the data,
that was supplied by some external means. This is usually done by
a human domain expert. Main representatives are the classification
tasks, where the models classify data into some predefined, finite set of
classes and regression tasks, which infer output of a real-valued function.

1

Introduction

An example of a regression task would be a model, that would infer
a temperature based on features such as time of a day, humidity and
cloudiness. An example of a classification is a task that would simply
say if it is cold, mellow or hot outside.

Unsupervised These algorithms do not have any prior knowledge of the
data. It attempts to discover these relationships itself. This is by defin-
ition a much harder task than supervised learning, however it can po-
tentially lead to much more interesting results. Example tasks are clus-
tering, automated feature selection or outlier detection.

These classes do have some specific subclasses that group similarly-working
algorithms together. One particular subclass is a semi-supervised learning,
which we further explore in this thesis. It is a group of algorithms designed
to work on datasets, that have very few labelled data points compared to the
amount of unlabelled points.

Astroinformatics

Astroinformatics is an interdisciplinary field combining astronomy and inform-
atics. Its’ main purpose is to devise new ways on how to store the scientific
data from astronomical measurements, transform them and present them to
both scientists and general public [1]. The greatest representative of this field
and sort-of-a umbrella project is the Virtual Observatory [2].

Virtual Observatory is a collection of various databases, tools and proto-
cols. It attempts to unify the various data formats, protocols and processes so
that astronomers and astronomical institutions and societies can more easily
collaborate and access each other’s data.

Observatory in Ondřejov is one such institution. They have build a VO-
Cloud [3], a system for running data processing jobs on archives of stellar
spectra. They expose their archives through a VO-based Simple Spectral Ac-
cess Protocol, which allows an easy access to spectra. One of their goals is to
identify Be stars and their types. VOCloud already has some modules, that
allow for building models that could classify specra into these types, how-
ever they are not designed for large archives with millions of spectra. This
was not an issue initially, however they have managed to obtain data from a
newly-built Chinese observatory LAMOST. These archives contain hundreds
of gigabytes of spectra, totalling to several millions of individual measure-
ments.

Therefore the goal of this thesis is to design an application that could deal
with large amount of data and that would scale with the increase of size. One
of the specifics of our problem is that we have a small training set that was
already labelled for our previous experiments, however the dataset we need
to classify is much, much larger. For this we have decided to explore the

2

Astroinformatics

field of semi-supervised learning. The algorithms of this type are designed to
deal with exactly this issue. Specifically, we implement and use distributed
versions of two graph-based algorithms, called Label Propagation and Label
Spreading.

We also implement a data processing module, that somewhat mirrors some
of the capabilities of existing Ondřejov subsystems, such as VOCloud and
spectra retrieval service, Datalink. The motivation for this was that these
systems were not designed for such amount of data. Our module not only
parses the spectra in FITS or VOTABLE data format, it also performs a
rebinning into wavelength scale, cuts the spectra at user-specified wavelengths,
resamples them in case they come from different sources and ultimately stores
them in a format that is usable for subsequent analysis.

To deal with the amount of data we went with state-of-the-art technolo-
gies. We use Spark as our distributed engine. It improves on the traditional
MapReduce algorithm in several ways, which are described later in the thesis.
Nevertheless, we still use a file system built on Hadoop, HDFS to store our
data.

3

Chapter 1

Semi-Supervised Learning

In this chapter, we shall explore the theory behind semi-supervised learning
and make a survey of commonly used algorithms. We shall begin with a brief
description of supervised and unsupervised learning, so that we may better
understand, how semi-supervised learning builds on top of these.

1.1 Supervised and Unsupervised Learning

Supervised learning is a class of machine learning algorithms, where we have
a priori information about the nature of our data. Let us have a space X
from which we sample n vectors, producing a sequence X = (xi) , i ≤ 0 ≤ n.
Let us also define sequence of labels, sampled from Y, Y = (yi) , 0 ≤ i ≤ n.
Supervised learning then attempts to estimate a distribution of p(y|x). If Y
is a discrete space we say we perform classification, because we are assigning
classes to vectors. If it is continuous, we are doing regression, because we are
estimating an output of a continuous function. Supervised learning builds the
model by minimising the error of the output.

Unsupervised learning, on the other hand, has no prior information about
the structure of the data. It operates only with the information from the X
itself. The goal of unsupervised learning is to estimate the density of X , which
is not always feasible. Therefore, we usually attempt to achieve simpler goals,
such as clustering, outlier detection or feature selection.

1.2 Semi-Supervised Learning

Let X = (x0, . . . , xn) be our dataset. Then Xl = (x0, . . . , xm) and Xu =
(xm+1, . . . , xn) be sequences of identically-sized vectors sampled from X . Then
let Y = (y0, . . . , ym) be a set of known labels and Y = (ym+1, . . . , yn) a set of
unknown labels, where yi is a label for xi. This is how semi-supervised data
set usually looks like. This resembles a supervised learning in that we have

5

1. Semi-Supervised Learning

labelled data, however with an addition of also having unlabelled data, which
may help us estimate the distribution of the data set more preciselly.

There is, however, another possible variant of semi-supervised learning.
Here, we are not using labelled data, but merely some constraints. These
constraints may link some points, that share the same label, or they may
reveal the actual number of classes. This resembles unsupervised learning,
however with some a priori information about the data.

We may also differentiate between semi-supervised algorithms by the goal
they are trying to achieve. Transducive methods seek to only label the un-
labelled data Xu. Inductive methods, on the other hand, attempts to find a
mapping f : X → Y, that predicts a class to any point x from X .

So how exactly may semi-supervised learning help us? If we want semi-
supervised learning to bring us any improvement over supervised methods, we
need to make sure that the information about the distribution of the data that
Xu carries, p(x) is useful in inferring the labels, p(y|x). Several assumptions
should be met, for semi-supervised learning to work.

1.3 Assumptions for Semi-Supervised Learning

1.3.1 The smoothness assumption

The smoothness assumption states that if two points xi and xj are close in
a high-density region, then their respective outputs yi and yj should also
be close [4].

If this assumption would not hold, our data would resemble a random
mess, where it would be impossible to find a general decision boundary.

This assumption is a slight modification of a rule from supervised learn-
ing, which considers only the distance between two points. It assumes that
the target value smoothly changes with the distance. This is sufficient for
supervised learning, because we have complete information about the training
data. With semi-supervised learning, we also need to consider the density of
a region, because it allows us to make assumptions on data for which we have
no target value.

This applies for both classification, and for regression. For classification it
simply means that their classes are most likely the same, whereas in regression
it would mean that the outputs are close relative to the function that generated
them.

1.3.2 The cluster assumption

The cluster assumption states: If two data points xi and xj belong to the
same cluster, then they likely share the same class.

Let’s say we have run a clustering algorithm on our training data and
have discovered, that the data are neatly organized in clusters. We then

6

1.4. Classes of Semi-Supervised Learning

might look at the majority of labelled data in each cluster and proclaim, that
each unlabelled data point in that cluster shares the same class. This would of
course be a naive approach, but it has been used in some early SSL algorithms.

This assumption might seem like a special version of the smoothness as-
sumption from Section 1.3.1. It can be formulated as a low-density separa-
tion assumption: The decision boundary lies in a low-density region [4].

To illustrate how it connects to the the smoothness assumption consider
this. The decision boundary that lies in the low-density region separates
different clusters (high-density regions). We assume that data points in these
high-density regions share the same class and thus the assumption still stands.
If however this was not the case and we would put a decision boundary through
a cluster, it would divide the points in that cluster into two different classes.
This would break the first assumption, since there would be points that are
close to each other, but that were classified as a different class.

1.3.3 The manifold assumption

The manifold assumption states that the (high-dimensional) data lie on a
low-dimensional manifold [4]. This assumption helps to deal with the so-
called curse of dimensionality. With the growing number of dimensions, the
volume of space and amount of data needed for sound statistical analysis grow
exponentially. Algorithms then have a problem with estimating densities of
each dimension or with computing pairwise distances between data points, as
they become less clear with more dimensions.

By assuming that even though the data are high-dimensional but they lie
on some lower-dimensional manifold, they can operate in the lower-dimensional
space.

1.3.4 Transduction

Transduction is based on Vapnik’s principle. It states that when we try to
solve a problem, we should not attempt to solve a more difficult problem in
the process. In the domain of machine learning it means, that when we try to
find labels for unlabelled points Xu, we should not try to estimate the entire
density of X in order to do so.

Inductive learning indeed does estimate the whole probability density, try-
ing to find a function fi : X → Y that would work generally for all x. Trans-
duction, on the other hands, only seeks to find a function ft : Xu → Y.

1.4 Classes of Semi-Supervised Learning

There are multiple ways of classifying the semi-supervised models. We have
chosen the taxonomy according to [4], as it models quite closely how different
algorithms actually work.

7

1. Semi-Supervised Learning

1.4.1 Graph-Based Models

Let G = (V,E) be a graph with weighted edges representing our data. Nodes
represent the data points and the weights of edges the pairwise similarities
between the neighbouring data points. Since the data need not be a graph,
what constitutes neighbourship is open to discussion and is left for the concrete
implementation to solve. One of the simplest methods would be to to apply
K-nearest neighbours on the data and use those neighbours for incidence.

Now let w : V × V− > R be the similarity function, which takes two data
points represented as nodes and computes their similarity. Similarity should
be a positive, symmetric function. Then let us define an adjacency matrix
W ∈ R|V |,|V |:

Wi,j =

{
w(e) if e = (i, j) ∈ E
0 otherwise

1.4.1.1 Label Propagation

Label propagation is an algorithm that leverages the graph representation
of data to fit a model. It is a transductive algorithm, however an inductive
version can be derived. Labels are encoded as a one-hot variable, so that
we may support multi-class classification. The algorithm basically computes
weights for labels for each data point based on the distance to its’ neighbours.
Note that in this version of the algorithm, the initial labels do not change and
are reset to their original value in each step, however this may vary in the
implementation. A basic pseudocode is provided in Algorithm 1:

Algorithm 1: Label Propagation

Data: W : weighted adjacency matrix, Y : (y0, . . . , ym, 0, . . . , 0︸ ︷︷ ︸
n−m

)

Result: Ŷ : label weights for each input point
1 begin
2 compute a degree matrix Di,i ←

∑n
j=0Wi,j

3 construct a probabilistic transition matrix P ← D−1W

4 Ŷ (0) ← Y

5 while Ŷ not converged to Ŷ (∞) do

6 Ŷ (i+1) ← PŶ (i), the matrix multiplication is computed for each
part of one-hot variable separately

7 set the labelled part of Ŷ (i+1) back to the original values

8 return Ŷ (∞)

8

1.4. Classes of Semi-Supervised Learning

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

Outer Labeled

Inner Labeled

Unlabeled

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

Outer Learned

Inner Learned

Figure 1.1: Label Spreading visualisation [5]

1.4.1.2 Label Spreading

A similar algorithm to label propagation is the label spreading. This al-
gorithm, uses the normalized graph Laplacian L to propagate the label in-
formation across the graph. It also allows the labels to retain some partial in-
formation from the initial labelling. The pseudocode is shown in Algorithm 2.

Algorithm 2: Label Spreading

Data: W : weighted adjacency matrix, Wi,i = 0;
Y : (y0, . . . , ym, 0, . . . , 0︸ ︷︷ ︸

n−m

);

α: alpha ∈ [0, 1) a ratio of how much the Laplacean and original
labelling will influence the result
Result: Ŷ : label weights for each input point

1 begin
2 Di,i ←

∑n
j=0Wi,j

3 L ← D−
1
2WD−

1
2

4 Ŷ (0) ← Y

5 while Ŷ not converged to Ŷ (∞) do

6 Ŷ (i+1) ← αLŶ (i) + (1− α)Ŷ (0)

7 return Ŷ (∞)

1.4.1.3 Inductive setting

The algorithms above clearly work as transductive algorithms, since they do
not build a general model. However it is possible to extend them to be able

9

1. Semi-Supervised Learning

to classify unseen examples as well.

Say we receive a new point, x. We can then use the same similarity function
w, that we have used in the initial graph construction, to find its’ adjacent
points. They we weight the label of each adjacent point by the distance and
then simply normalise the result by the sum of the distances. Notice, that if
we are using k-neighbours as our similarity function, then the induction is the
same as KNN classification. This yields the following formula:

ŷ =

∑
j w(x, xj)yj∑
j w(x, xj)

1.4.2 Low-Density Separation Models

In low-density separation, we attempt to place a decision boundary in an area
of low density. Thus it is directly implementing the low-density separation
assumption (Section 1.3.2).

A classic algorithm is the Transductive Support Vector Machine. Unlike
the standard SVM, which maximises the margin of hyperplanes with regards
only to the labelled data, the TSVM maximises the margin relative to all the
data, both labelled and unlabelled.

Let’s consider Y = {−1, 1}, therefore each yi may only become 1 or −1.
We shall later show how it is possible to generalise this model for multiple
classes. We are searching for two parallel hyperplanes h1 : wx + b = 1 and
h−1 : wx + b = −1 with the greatest distance 2

||w|| between them, which is
the margin. The decision boundary then lies in the middle between these two
hyperplanes, its’ formula being h : wx + b = 0. Hyperplanes h1 and h−1 are
called supporting hyperplanes and any vectors x that satisfy their equation
are called supporting vectors. Note that in constrast with the standard SVM,
where x is taken only from the labelled data Xl, in the TSVM we maximise
the margin over all the data X.

1.4.2.1 Hard-margin

When the data are linearly separable, this leads to a nicely defined decision
boundary. The following should hold for labels yi:{

1 for wx+ b ≥ 1

−1 for wx+ b < 1

This is called a hard-margin problem, as there is no ambiguity about where
the margin should be.

10

1.4. Classes of Semi-Supervised Learning

In terms of an optimisation problem, it could be written as:

min SVM(ym+1, . . . , yn, w, b) =
||w||

2
s. t. ∀i, 0 ≤ i ≤ m : yi (wxi + b) ≥ 1

∀i,m+ 1 ≤ i ≤ n : yi (wxi + b) ≥ 1

∀i,m+ 1 ≤ i ≤ n : yi ∈ {−1, 1}

Therefore, we are looking for w, b and for labels of the unlabelled data so with
the maximal margin. Here, the cluster assumption really comes into play,
as we assume that the clusters in the data correspond to the labels. This
assumption allows us to also use the unlabelled data for finding the decision
boundary.

1.4.2.2 Soft-margin

However in reality, data are rarely linearly separable and neatly organised in
clusters. The usually contain outliers, or the low-density space disappears in
some places.

There are several ways of dealing with this. We can introduce a slack
variable, also called a hinge loss. This variable sets the tolerance of SVM to
having data points with a particular label on the wrong side of the boundary.

1.4.2.3 Kernel trick

Another option would be to use kernel trick. Kernel trick transforms the
input data into a higher dimensional space, where the data may be linearly
separable.

Note, that despite its’ name, the TSVM can also be used as an inductive
model by using it as a standard SVM.For any additional data points we may
want to classify, that were not part of the original unlabelled data, we compute
on which side of the decision boundary the data point belongs.

1.4.3 Generative Models

Generative models attempt to estimate the joint probability distribution P (x, y).
This allows the model to generate data points from this distribution, but it
also serves as an intermediate step for computing the conditional distribution
of P (y|x). This distribution can be computed using the Bayes theorem.[6]

To model the joint probability P (x, y), the algorithms actually has to
estimate the conditional probability P (x|y). This is done by estimating over
P (x|y, θ), where θ represents the paramters of the model. Similarly we need

11

1. Semi-Supervised Learning

to estimate P (y) by modelling P (y|π).

P (y|x) =
P (y) ∗ P (x|y)∑Y
y (P (x|yi) ∗ P (yi))

Then to get the model for the marginal P (x):

P (x) =
∑
y

P (y)P (x|y, θ)

The problem with the generative models is that they are trying to estimate
the distribution behind X, which is generally nontrivial. Instead of trying
to directly estimate P (y|x), the algorithms in this class waste resources on
estimating P (x, y), which we may not ultimately need if we do not wish to be
able to generate data points.

An example of such algorithm is a expectation–maximization algorithm,
which attempts to find parameters of a given model. We assume this model
is the one that generated our training and testing set.

Recently [7] a new algorithm was proposed that uses deep learning neural
networks to estimate these parameters. These networks can discover hidden
relationships in the data very well thanks to having multiple layers of neurons.
However their drawback is that they require a lot of training data and the
training process is quite resource-hungry.

1.4.4 Change of Representation models

Change of representation methods modify the input space. They operate in
two steps:

1. Perform an unsupervised step. Here we change the representation of the
data, modify the distances or metrics or apply similar transformation to
the data.

2. Perform a supervised step using leveraging the change in the first step.
This is usually a semi-supervised algorithm for which it was needed to
transform the input data.

These algorithms are often an extension or modification of algorithms from
previous classes. They implement the smoothness assumption, because they
are trying to enhance the small distances in high-density regions.

1.4.5 Self-training scheme

Self-training scheme is simplest approach to semi-supervised learning. Here
we train a model using some standard classification algorithm, such as decision
trees, or SVM on only the labeled data. Then we classify the unlabeled data

12

1.4. Classes of Semi-Supervised Learning

and gather the predicted labels along with whatever confidence the algorithm
uses for choosing the labels, be it a probability, likelihood or any other metric.
Then we take a number of the most highly rated newly labeled samples and
add them to the training set. Then we iterate the process with the new
training set.

13

Chapter 2

Massively Parallel Environments

In this chapter, we shall describe the implementation part of the thesis. We
shall also describe the working environment and techniques paradigmes we
have used for the implementation.

2.1 MapReduce paradigm

MapReduce [8] is a distributed design pattern. It is loosely inspired by ele-
mentary functional programming functions Map and Reduce, although the
semantics and the functionality slightly differs. Map accepts a key for which
it returns a value. Keys and their respective values are then sent to the Reduce
function as a tuple, which processes the result.

Many distributed jobs follow the same principle: take a large dataset and
apply some transformations to it producing a derived dataset. Both input
and output dataset are basically a collection of key-value pairs. Many of these
computations can be divided into three main steps:

Map Map function is implemented by the user. It takes a K-V pair and
applies a transformation to it. Return a intermediary K-V result. The
MapReduce engine will group the data under the same key.

Shuffle Shuffle moves the values belonging to the same key. Simple imple-
mentations of shuffle may move the values belonging to the same key to
only one machine while more complex may further distribute the data to
more machines, keeping track of what is where. The shuffle is generally
the responsibility of the engine.

Reduce Reduce accepts a key and a collection of values belonging to the
same key. Generally an aggregation is then performed on these values,
producing a single value that is then returned for this key.

This is the foundation of a MapReduce paradigm. A master node orches-
trates the whole cluster. It takes care of data partitioning and tracks what is

15

2. Massively Parallel Environments

Input

Map 1

Map 2

Map 3

Reduce for key 1

Reduce for key 2

Reduce for key 3

Output

Partition data Map stage Shuffle stage Reduce stage

Figure 2.1: MapReduce architecture.

where. Formally, we recognise the mapper and reducer machines which run
their respective part. In practice however, the same machine may be used for
both Map and Reduce part. In fact, it is desirable for the master node to
shuffle the data in such a way that they need not move far from their original
machine, ideally staying on the same place.

From the above description it is clear, that MapReduce is great for prob-
lems that require large-scale transformations and aggregations of data, where
the data can be trivially separated into partitions and shipped to different ma-
chines. Typical MapReduce jobs are the ones that compute various metrics
over a dataset or query the dataset in batches.

MapReduce was also designed with reliability and robustness in mind.
It is meant to run on commodity hardware as opposed to supercomputers.
The results of all the intermediate computations are supposed to be either
replicated to multiple executor machines or stored on a distributed file system,
so that in case of failure of an executor machine the results can be retrieved
and computation restarted.

The main bottleneck of MapReduce is usually the shuffle part [9, 10].
This is because the data need to be sent over the network to the appropriate
machines and often stored in a persistent location, both for greater redundancy
and because they may not fit into the memory. The Map and Reduce parts
can also slow down the computation however, particularly when the values

16

2.1. MapReduce paradigm

are distributed among the different keys in a highly unequal way.
MapReduce in its’ basic form is not well suited for iterative algorithms or

when we need to repeatedly query the dataset. It also awkward to simulate
state in Map and Reduce operations.

2.1.1 Hadoop

One of the most commonly used implementations of MapReduce is Apache
Hadoop. It implements the MapReduce paradigm and exposes the API for
Java with bindings for other languages. It has these main components:

Hadoop Common This is a collection of common libraries that wrap the
functionality used in all the other components.

Hadoop MapReduce This is the MapReduce implementation itself. It is
composed of the execution engine as well as of the API’s that expose
the MapReduce functionality.

YARN The cluster manager. It allocates the resources to jobs, allows users
to submit their application and schedules them.

HDFS The distributed file system. It is tightly coupled with MapReduce
component as it uses it to load and store results.

While we do not directly use the MapReduce capabilities of Hadoop, we do
use HDFS as our data store. It is a fault-tolerant, distributed file system. A
HDFS cluster is composed of a single NameNode and multiple DataNodes [11].
A NameNode acts as a master server, keeping the metadata. The metadata
contain information about what files are stored on the filesystem and where
they are stored. NameNode also acts as a frontend, accepting the commands
from the user.

The files in HDFS are stored on DataNode, split into large blocks, usually
of size 64 or 128 MB. Each block is replicated amongst multiple DataNodes.
The DataNodes perform operations such as read or write on these blocks when
instructed by the NameNode.

The fact that HDFS splits the files into fairly large chunks is great when
one needs to store a huge file, however storing a large amount of small files
means that they will consume far more space than necessary. A common
solution is to create a SequenceFile, which is a file of key-value pairs, where
the key is a name of the original file and the value is its’ content.

Appart from HDFS we use YARN for submitting our jobs and for man-
aging the resources. There are several types of agents in a YARN cluster [12]:

ResourceManager There is one RM in the whole cluster. It keeps track of
resources across the whole cluster and schedules. It acts as a client for
the user.

17

2. Massively Parallel Environments

NodeManager The node manager is responsible for containers running on
the machine it is assigned to. It reports back to the ResourceManager.

ApplicationMaster The ApplicationMaster is a per-application agent. It
keeps track of what resources the application needs and requests them
from the ResourceManager. It also works in concert with the NodeM-
anager to which it reports the state of the job.

The ResourceManager is further composed of two components:

Scheduler The scheduler assigns the resources to applications based on their
requirements. It performs no tracking of the application status and it
does not offer any redundancy in case of a job fails. It only takes into
account the declared requirements of each application.

ApplicationManager The application manager accepts submissions from
the the user. It determines where the ApplicationMaster will run and
also tracks the state of the execution.

2.2 Spark

Spark [13] is a distributed computing framework. It supports MapReduce
paradigm, but improves upon the strictly linear execution plan of the original
design. The basic building block is a Resilient Distributed Dataset (RDD).
RDD is a distributed collection, which is designed to be fault-tolerant and
supports many common functions applicable to collections, such as map, filter
or reduce.

2.2.1 RDD

RDD is created either by parallelising and existing local collection, or by read-
ing the data from some sort of data source, such as HDFS, S3 or a database.
It is also possible to parallelize a local file, this however must exist on all the
computing nodes. Creating an RDD in essence means partitioning the data
and assigning each partition to an executor node.

RDDs support two types of operations: transformations and actions. Trans-
formations are operations that act independetly on each element of the RDD
and return a new RDD. Such operations are for example map, which pro-
cesses the input value and outputs something else, or filter which removes
those elements from the collections, that do not satisfy a user-defined predic-
ate. Transformations can be chained and are executed in a lazy fashion.

Actions, on the other hand, are operations that aggregate the values in
the RDD and return a non-distributed, local result. Such operations are for
example reduce or collect.

18

2.2. Spark

By default, intermediary RDDs are not persisted, but instead, when an ac-
tion is applied on an RDD, all the transformations in the chain are performed.
This helps save memory and improves the resiliency of the computations in
case there was a node failure. However, if there were repeated actions per-
formed on the dataset, i. e. some sort of iterative algorithm, this would lead to
a performance degradation, as the transformations would need to be applied
in each iteration. For this reason, RDDs can be persisted in the memory or on
a filesystem, which forces the computation of the transformations and caches
the final result. Note, that the chain of the transformations is still kept, so
that the RDD could be recomputed in case of a failure.

An RDD may either be an unordered 1 collection of objects, kind of like a
multiset, or organised by a key. What operations are then available depends
on this, for example an RDD without a key does not support operations such
as aggregation by key. There are also some specialisations available based on
the type in the collection, e. g. and RDD with a numerical type has a function
for computing a sum of the values.

2.2.2 DataFrame

A higher-level abstraction over RDDs is a structure called DataFrame. It
is a table-like structure, where data are organised in rows and columns. It
is not unlike a table in relational databases, in that it has a pre-set schema
and supports various SQL-like commands. This allows Spark to somewhat
optimise the execution plans when executing operations on them.

A DataFrame may be created either directly from an RDD or from some
sort of data source. This may be for example a database, XML file, CSV file
or similar structured sources.

A disadvantage of DataFrames from a language point of view is that they
are not statically typed as oposed to RDDs. Even though they do store
information about they schema, it is not readily available and inferable just
from the type of a variable that refers to them. This makes them awkward to
work with when one is unfamiliar with their structure.

2.2.3 Execution model

A Spark application runs sequentially in a driver, until a parallel operation is
executed. Upon discovering such operation, Spark determines which variables
and methods from outer outer scope the operation needs and constructs a
closure over them. Computation itself is triggered once an action is reached,
or if the driver explicitly requests caching. Then a job is created and executed
in a distributed manner. Each job is comprised of several tasks.

1Although the RDD may be generally unordered, it is not unlikely for it keep the order
of the original source, e. g. if the RDD was read from a file, the data will be partitioned
while keeping the original ordering.

19

2. Massively Parallel Environments

Compared to the standard MapReduce flow, Sparks does not execute the
stages in batch, but whenever possible chaines them and simply feeds the
result of a transformation to the next step. By doing this it avoids expensive
persisting of the results, unless the programmer explicitly asks for it. It also
makes sharing state across executors easier by enabling broadcast variables.
These are values that are broadcasted to each executor. All of these features
make Spark more useful for iterative algorithms than MapReduce.

The degree of parallelism of each job is given by a number of partitions
of an RDD it is executed on. Each partition therefore contains a slice of the
data contained in the RDD. To achieve the most out of the parallel execution
and to evenly distribute the workload, it is recommended to have 2-4 times
more partitions than available executors.

2.2.4 MLlib

MLlib is Sparks’ collection of Machine Learnign algorithms as well as some
helper algorithms used for linear algebra [14]. It ships with algorithms used
for classification, regression, clustering as well as feature reduction and se-
lection. Unfortunately, the library does not implement any semi-supervised
algorithms.

The library is split into two main namespaces:

mllib This is a collection of lower-level APIs that accept and output RDDs.
MLlib is the older part of the whole library and still widely used and
actively developed. Apart from the machine learning algorithms it also
contains the linalg package, which implements various datatypes and
algorithms used for linear algebra.

ml This namespace groups together the new API. It is recommended to use
the algorithms from this package [14]. They accept DataFrames as input.

The linear algebra library is particularly useful for us, as it does imple-
ment several distributed versions of data structures and algorithms. For our
application we particularly need the implementations of distributed matrix
data types and operations on them.

RowMatrix The simplest Matrix structure. It is row-oriented, however the
rows do not have any meaningful indices. Each row represents a local
vector, which is a limitation in case we have lots of columns.

Despite the fact that the rows are not indexed, it does support operations
where it plays no role such as QR decomposition, SVD decomposition
or column-wise operations such as computing column statistics.

IndexedRowMatrix A very similar structure to the RowMatrix but with
indexed row. It supports a similar feature range as the RowMatrix. It is

20

2.2. Spark

especially useful when one uses e.g. BlockMatrix but needs to perform
row-wise operations, since it is possible to convert to/from other types
of matrices.

CoordinateMatrix A matrix where each non-zero element is explicitly defined.
It is particularly useful when both dimensions are huge and it is sparse.
It is also quite useful as a temporary matrix when we know what it
should contain. After it is constructed we convert it to BlockMatrix.

BlockMatrix This matrix is backed by an RDD of local matrices which
represent a small block of the whole matrix. It is the most feature-
complete type, as it supports operations between distributed matrices
as opposed to the rest of the types, which do not.

2.2.5 Inspection tools

Spark offers a Web-based UI through which one can monitor and inspect the
progress of a running job. The UI shows the stage in which the application is
as well as various metrics about the stages and executors. It is also possible
to visualise the execution as a directed acyclic graph. This graph represents
the flow of the transformations and actions.

We have chosen Spark as our distributed engine. The key reasons, as
described above, were:

1. A simple, yet powerful computational model. It keeps in line with the
simplicity of MapReduce, but allows more freedom.

2. Rich APIs. As machine learning was one of the areas for which Spark was
designed, it offers many API functions that are well suited for writing
machine-learning algorithms.

21

Chapter 3

Implementation

The main parts of our implementations are these modules:

Data preprocessing This module is responsible for converting the source
VOT files from LAMOST and CSV file with labels to a common format
used in the subsequent stages. It also performs preprocessing of the
spectra.

Graph models This module provides a standalone application as well as a
reusable library for using Label Propagation and Label Spreading mod-
els.

3.1 Data preprocessing module

The data preprocessing module was written in Python using Python bindings
in Spark. We have also made use of popular Python libraries NumPy, SciPy,
Pandas and Astropy [15, 16, 17, 18, 19]. We have decided to use these libraries
for their maturity, optimised operations and general acceptance in the Python
community.

The initial configuration is driven by a JSON configuration file, whose
description and example can be found in Section C.1. The module has two
major functions:

1. Data conversion and integration

2. Data preprocessing

The data conversion has been tailored for the particular application for
semi- supervised learning. The main input are the unlabelled spectra. They
can be supplied as either a FITS binary table or a VOTABLE file. In our case,
this would be the spectra from the LAMOST observatory. They are loaded
using Sparks’ wholeTextFiles function, which takes a path to a directory as

23

3. Implementation

its’ intput and returns its’ content as an RDD. Each spectrum is then loaded
into Pandas DataFrame.

The module supports transformation of raw spectra to normalized spectra.
Spectra are usually stored in logarithmic scale, so in order to get the physical
representation, we need to transform the values to the linear scale.

The import phase also introduces the labelled spectra into the dataset.
These can be either taken directly from the dataset, provided that we do the
labelling either manually or crossmatch with some labelled spectra. Another
option would be to directly import spectra from a labelled archive. We have
chosen this course of action, and took labelled spectra from Ondejov’s CCD-
700 archive. Since there has been some work done with these spectra [20, 21],
the VO-CLOUD already supports their conversion. Originally, the data are
spectra stored in FITS files, sorted into directories by their type and star. The
output of that module is a CSV file, where each line represents a spectrum.
Each line starts by a unique spectrum ID, followed by a sequence of entries,
where each entry is a given intensity on a particular wavelength. The line ends
with a integer denoting a class, which can be between 0 and 3, included. It also
produces a VOTABLE file, which contains metadata, such as the wavelength
range. We take these final results as an input of the conversion process.

Since the spectra are from different sources, they were taken with a vastly
different spectrographs with different resolution power. This means, that even
though the spectra have been cut to the same wavelength range, the step
between the measured points is different, resulting in a different length of the
feature vector. To solve this problem, we have to resample the spectra with
the higher resolution.

To resample the spectra, we first run them through a Gaussian convolu-
tion. The size of the kernel is chosen as a ratio of the resolution power of
the two sources. The convolution is done to remove the fine details of the
spectrum that the lower resolution spectrograph could not possibly capture.
Then we interpolate the intensities of the higher-resolution spectra with the
wavelengths of the lower-resolution spectra. The interpolation wavelengths
are computed by taking the maximum of the lowest wavelengths and a min-
imum of the highest wavelengths. The step between them is taken as a mean
step of wavelengths of all the spectra from the lower-resolution set. For the
pseudocode, see Figure 3.

When importing new spectra, we also need to make sure that they are
aligned with respect to the measured wavelength. There are inherent incon-
sistencies produced during the spectrography, so even though the spectra are
roughly aligned, there are bound to be some errors. This can be seen when
the spectra are plotted over each other. This would also affect the training of
models, since properties we want to wach for, such as peaks and absorption
would fall under different features. Fortunately, it is quite easy to remedy
this. We can reuse most of the work done in the resampling procedure, albeit
without the convolution. By interpolating over a common wavelength series,

24

3.2. Graph models

Algorithm 3: Spectra resampling

Data: Lo: original low resolution spectra, H: high resolution spectra
Result: Lh: high resolution spectra that were resampled to the same

resolution as Lo
1 begin
2 low, high = in parallel, aggregate over leftmost and rightmost values

of wavelenghts of Lo ∪H and return their supremum, resp. infimum
3 mean step = in parallel, compute mean(map(Lo, x:

x.wavelengths− x.wavelengths))
4 kernel size = resolution(H)/resolution(Lo)
5 interp wavelengths = range from low to high with mean step
6 interpolated = Map Has s
7 convoluted = Gaussian convolution(s.intensities, kernel size)
8 interpolated =

interp(s.wavelength, s.intensities, interp wavelengths)
9 yield interpolated

10 return Lh

we align each of the spectra to one common grid.

The module also supports feature reduction by running a Principal Com-
ponent Analysis on the data. PCA is widely used for feature reduction in
many applications of machine learning. PCA transforms the original features
into a set of linearly uncorrellated variables. The first component has the
highest possible variance and any subsequent component has highest possible
variance while also being orthogonal to the preceding components. We per-
form PCA using Sparks’ parallel implementation. It is performed after the
spectra have been resampled to the same resolution and aligned on the same
wavelengths.

The result is then saved to a location specified by the user. The output
location can be either on a local filesystem or on a distributed one, such as
HDFS. The output is not a single file but a sequence of files, with each file
per partition. Since we are assuming any other work done on the data shall
be done in Spark, we are not concatenating the files, as Spark can work with
such directory structures natively, modelling them as a single file.

3.2 Graph models

This module implements the graph models described in Section 1.4.1. The
algorithms we have implemented are Label Propagation and Label Spreading.
The pseudocode and general idea for these algorithms was already described
in the above-mentioned section. Here we shall describe the details specific for

25

3. Implementation

implementing them on Spark and with regards to our application.

The application is structured as described here. The main function and
initial data loading takes place in GraphSSL class. It parses the configuration
JSON, loads the input data and applies an appropriate model on them, ac-
cording to the passed configuration. The application expects a CSV file as
an input. It should have the following structure: the first column must be a
unique identifier. The preprocessing module uses the name of the spectrum.
The values that follow are the intensities on a given wavelength. Note, that
the actual value of the wavelength is of no interest for this algorithm. The
last column should be a label signifying the type of a spectrum. Unlabelled
spectra have a special value, in our case it is -1. All unlabelled spectra should
be at the end of the file, because we rely on that when we want to keep the
label distributions of labelled spectra unchanged.

The common parts of the algorithms, namely the construction of the dis-
tance matrix, transformations of input and output and others, reside in com-
mon class GraphClassifier. The interface of the class implements the in-
terface of other algorithms contained in Sparks’ MLlib library, so that it is
possible to use it in pipelines relying on MLlib. That means, it implements
method transform, which takes a DataFrame dataset as its’ input and outputs
a GraphClassifierModel. This model can be used for getting the transduced
labels as well as for classifying new points.

Even though both algorithms support various graph kernels and distance
functions, the sheer amount of data requires that we build a sparse distance
matrix. If we constructed a dense graph, where each node would be a neigh-
bour of other node, we would run out of memory soon enough, as the space
complexity would be Θ(n2) where n is the size of the dataset. Therefore we
have decided not to implement Gaussian kernel or any other similar method
and we build the graph using the KNN model.

The KNN itself can’t be implemented using a naive exact algorithm, since
that one would still need to compute distance between each data point, which
would not be feasible. Instead, we use an implementation that build approx-
imate KNN model using metric and spill trees [22].

3.2.0.1 Metric and spill trees

Metric trees are a variant of kd-trees. They model a spatial structure of
points. Each node represents a set of points and has two children, with each
representing a disjunct subset of its’ parent. The root represents all points. A
leaf node contains a small subset of points, potentially only one. The ideal way
of partitioning a node is to find the two points, a vl and vr that are furthest
appart, i. e. have the greatest pair-wise distance. However this has O(n2)
complexity w. r. t. the size of the set. Therefore, heuristical approaches can
be used. We might, for example, choose a random vl and then find a vr that

26

3.2. Graph models

Function BuildMetricTree(points, leaf size)

1 begin
2 if size(points) ¡ leaf size then
3 return Node(points=points, left=nil, right=nil)

4 Find vl and vr in points either using a heuristic, or finding an
actual pair such that their distance is the furthest possible

5 r = vl − vr
6 foreach point in points do
7 project point onto r
8 add to projected

9 median = median in projected
10 foreach point in projected do
11 if point is to the left of median then
12 add point to left subset

13 else
14 add point to right subset

15 return Node(points=points, left=BuildMetricTree(left subset,
leaf size), right=BuildMetricTree(right subset, leaf size))

is furthest from it. We might switch between these approaches based on the
size of the input.

After these pivot points are chosen we find a median point, vm. This
can be done by projecting all the points to r = ul − ur and then choosing the
median point from these. Now all the points that are to the left of this median
point will go to the left child and the others will go to the right child. For the
pseudocode of such a building procedure, see Function BuildMetricTree.

Searching on such a tree is done in an informed depth-first search. At each
internal node, we choose left or right point first based on whether the point
we are querying with is on the left or right side of the pivot. When used with
KNN, we also maintain a list of k nearest points we have have encountered. At
all levels it also checks whether any of the points can be nearer than already
found nearest neighbours. If not, then it can safely prune this node from the
search along with all its’ descendants. The problem is, that the search can find
a good-enough candidates quite quickly and then spend a lot of time searching
through the tree and cutting the branches.

A heuristical approach to this search, called a defeatist search is that we do
not attempt to find the very best candidates by searching through the whole
tree, but instead we opt to find ‘good-enough’ points as our NNs. This can
be done doing a simple BST search over the tree, therefore having O(log(n))
time complexity. However, in the standard metric tree where the nodes have

27

3. Implementation

Function BuildSpillTree(points, leaf size, buffer)

1 begin
2 if size(points) ¡ leaf size then
3 return Node(points=points, left=nil, right=nil)

4 Find vl and vr in points either using a heuristic, or finding an
actual pair such that their distance is the furthest possible

5 r = vl − vr
6 foreach point in points do
7 project point onto r
8 add to projected

9 median = median in projected

10 l = plane parallel to median at distance buffer
2 to the left from it.

11 r = plane parallel to median at distance buffer
2 to the right from it.

12 foreach point in projected do
13 if point is to the left of r then
14 add point to left subset

15 else
16 add point to right subset

17 return Node(points=points, left=BuildSpillTree(left subset,
leaf size), right=BuildMetricTree(right subset, leaf size))

disjoint sets of points, this method can lead to highly incorrect results. This is
evident when the query point q is close to the decision boundary, as then the
probability that the NN of q is on the other side of the pivot point is almost
the same, as the probability that it is on the side of q. Now a variant of the
metric trees is called a spill tree. The spill trees are very similar to metric
trees, except that they allow overlapping sets of points in sibling nodes. This
may seem counterintuitive, as it increase the complexity of the tree, however
it helps the heuristic search be more precise. The building of the tree is very
similar to the metric tree, however in addition to the median point, we also
choose points l and r such that they are both at distance d from the median
point, either to the left, or right, respectively. Then, when partitioning, we
assign each point to the left child if it is to the left of r and to the left child
if it is to the right of l. Therefore we introduce a buffer zone of points, that
are always searched, increasing the chance of finding a correct NN for a query
point near to the decision boundary.

Spill trees thus offer a better chance of discovering good neighbours during
the defeatist search. If our query point q is to the left of the decision point,
we search the points right of l. Conversely, if it is to the right of the decision
point, we search to the left of r. The points that belong to the buffer set are

28

3.2. Graph models

Algorithm 4: Distributed metric tree building

Data: points: our dataset
1 begin
2 Sample data and shuffle them to one machine
3 Build a metric tree using the procedure BuildMetricTree.
4 Map
5 each element from points to a leaft in metric tree. Output the

index of the tree as a key with the point

6 Partition the keys such that they are evenly distributed across the
computing nodes

7 Shuffle
8 Shuffle each point to a machine based on a key

9 Reduce
10 Run BuildSpillTree on each subset to create the leaf Spill Tree

searched in both cases.
The disadvantage of spill trees is that their depth might vary considerably,

depending on d. With d = 0, the spill tree is a metric tree, as none of the
points overlap. If, however d > |vl−vr|

2 , then each child inherits the entire set
of points of its parent and the tree growing might not even terminate.

A solution, which is used in our implementation, is called hybrid spill trees.
It is a tree that combines both metric and spill trees. We set a threshold p,
which determines, how we are going to partition a node. We choose a spill tree
strategy by default, however if the fraction of shared points is greater, that a
chosen p, we revert to a metric tree strategy. We label the nodes accordingly.
Then, when searching through the tree, we decide on whether we use and
exact DFS, or a defeatist search based on whether a node is a metric-tree
node or a spill-tree node, respectively.

3.2.0.2 Parallel Metric and Spill Trees

To distribute this structure, we need to find a suitable partitioning [23]. While
there is an option to simply partition the data into c parts, where c is a number
of worker machines. This creates a need to search across all of the partitions
during the search phase. This would be quite a waste of resources, for even
when it is possible to search the partitions in parallel, there is a better way.

We can build a metric tree over a random sample of data, that fits into
the memory of one machine. The leaf nodes of this metric tree are actually
hybrid trees, built on data in their partition. The reason we force the top
tree to be a metric tree is because it does not take as much memory space
as a spill tree, since the points do not overlap. We also have to determine
how big each of the spill trees should be. Ideally there should be at least one

29

3. Implementation

partition per computing machine, so there should be an upper limit u, such
that uc < M , where M is a total memory available for the whole computing
cluster. However, in practice, we may want to have more than one partition
per machine to better distribute work.

Also note, that building the whole structre requires massive amount of
data shuffling, as when it finishes, each partition must have the data phys-
ically present. This forces essentially each datapoint to move to the correct
partition, causing massive usage of network, which may potentially slow down
the process significantly.

The querying is then performed in a distributed manner. We find the
correct spill trees using the top metric tree. Then we perform a search in
parallel over the found spill trees, which will yield us the neighbours. To
eliminate the need to backtrack on the metric tree, we do not search only on
the assigned subtree, but also on the adjacent subtrees if the points there are
within a certain threshold. Therefore, we can search multiple paths in parallel
and only after they all return we choose the neighbours.

3.2.0.3 Graph construction

Running the KNN algorithm on our data yields a list of nearest neighbours.
We then transform the list into a distance matrix W ∈ Rn,n where n is the
size of the data set. For each pair of neighbours i, j we compute their distance
from each other and store it at Wi,j and Wj,i. This yields a symmetrical sparse
matrix, with at least k non-zero elements in each row. Note that the neigh-
bourship relation by itself is not symmetrical, therefore we explicitly set both
of the values at the same time. Spark does support several storage formats for
matrices. BlockMatrix is the most feature-complete, supporting distributed
matrix operations with matrices of the type, so we store everything by default
in this format. However it is non-trivial to construct one, so we either use
IndexedRowMatrix, which stores the matrix as an RDD of IndexedRows or a
CoordinateMatrix which stores the matrix as an RDD of records element as a
record of row position, column position and the value itself.

Everything was the same for Label Propagation and Label Spreading up
unto this point. The difference between these two models, as pointed out in
Section 1.4.1 is what graph representation we are using for propagating the
labels and whether the original labels can change (LP) or cannot (LS).

3.2.0.4 Label Propagation

With Label Propagation we construct a transition matrix from the matrix
created by the KNN algorithm, as described in Algorithm 5. A slight problem
is that none of Sparks’ distributed matrices support an inversion which we need
for inverting the degree matrix D, which is then multiplied with the adjacency
matrix. For performance reasons we chose not to do it using the inversion and

30

3.2. Graph models

Algorithm 5: Construction of a transition matrix for Label Propagation

Data: dataset
1 begin
2 Build a parallel hybrid tree for all the data
3 Map each point in dataset to
4 find nearest neighbours for point
5 Output the index of a point and a sparse vector with its’

non-null elements being the distances to the neighbours.

6 transition matrix=Map each row r to
7 sum =

∑n
i=1 ri

8 transformed row=foreach element in r do

9 yield element
sum

10 yield transformed row

11 return transition matrix.toBlockMatrix()

multiplication and instead we opted for a direct approach, where we compute
the resulting matrix directly, as the only thing that needs to be done is dividing
each element of the adjacency matrix in a row i with a corresponding element
Di,i.

Then we start iteratively propagating the labels in labelPropagationRec.
The iterations stop when we either reach a user-defined number of iterations
or when the label distributions converge. We check for the convergence of
labels by computing the absolute difference between the newly computed label
distribution and the one from the previous step, yielding a vector of differences
between probabilities of each label. We then compute a mean difference,
which we compare to a user-defined threshold. If the difference is at least
this threshold, we consider the distributions to be converged and we finish the
iterations. We also need to make sure to keep the original label distributions of
labelled data unchanged, so in each iteration we filter out the original known
labelling from the computed distributions and append them to the original
labels. This iterative process returns the label distributions as a RDD of
vectors. From these we can simply compute the inferred labels by returning
the index of the vector element with the highest probability.

3.2.0.5 Label Spreading

This algorithm is very similar to Label Propagation, with the difference be-
ing that we use Graph Laplacian instead of a simple transitive matrix. The
computation of Graph Laplacian is also a bit more complex, as it involves
multiplication of three matrices, instead of just two. We again need to com-
pute the inversion, but we use the same property of diagonal matrices as in
Label Propagation. However, contrary to Label Propagation we do not need

31

3. Implementation

Algorithm 6: Construction of the normalized Graph Laplacian for La-
bel Spreading

Data: dataset
α

1 begin
2 Build a parallel hybrid tree for all the data
3 Map each point in dataset to
4 find nearest neighbours for point
5 Output the index of a point and a sparse vector with its’

non-null elements being the distances to the neighbours.

6 degree rdd=Map each row r to
7 yield (r,

∑n
i=1 ri)

8 graph laplacian=Map each pair values ((r1, d1), (r2, d2)) from
degree rdd to

9 if r1.index = r2.index then
10 yield MatrixEntry(r1.index, r2.index,α

11 else if r1.index 6= r2.index and they are adjacent then
12 yield MatrixEntry(r1.index, r2.index, α√

d1d2
)

13 else
14 yield MatrixEntry(r1.index, r2.index,0)

15 return graph laplacian.toBlockMatrix()

to keep the original distributions, as these are controlled by parameter α as
described in Section 1.4.1.2.

3.3 Problems and limitations we have encountered

There we several obstacles that we have encountered during the development.
First, we were unable to setup a cluster in Ondřejov observatory, as no appro-
priate hardware was purchased. Thus, we had to rely on a Hadoop cluster in
CESNET’s Metacentrum.

First of them was linear algebra library in Spark. Internally it uses nu-
merical JVM-compatible library Breeze2, which offers powerful features and
is inspired by Python’s Numpy. Spark however wraps around Breezy’s Vec-
tor and Matrix types without also exposing the same interface. This does
pose some problems, as we needed to access some of Breezy’s capabilities.
For this we have created a collection of helper functions in VectorUtils and

2https://github.com/scalanlp/breeze

32

https://github.com/scalanlp/breeze

3.3. Problems and limitations we have encountered

MatrixUtils. These convert Sparks’ non-distributed vectors and matrices
into Breeze’s.

Another issue we have encountered is that the conversion from BlockMatrix

to IndexedRowMatrix and vice-versa does not always yield the correct res-
ult. If a row in a given matrix is completely zeroed out, not even a refer-
ence to it is included in the destination matrix, leading to various problems
when transforming the rows. Upon investigation, we have discovered that
the ommision happens, because internally, the matrix is first converted to
CoordinateMatrix and from this intermediary matrix it is converted to the
desired format. Because of this we have implemented our own conversion in
MatrixUtils, which includes even the rows which have been zeroed out.

3.3.1 Vocloud integration

Unfortunately we were not able to integrate with vo-cloud [3] because of in-
sufficient hardware resources on their part. There is currently only one server
that would be possible to use as a computing node and it makes no sense to
setup a cluster there. New servers were supposed to be purchased and in-
stalled, but alas as of April 2016 they were not. Therefore we have decided
not to integrate until the situation will change. The integration itself should
not be, however, too difficult, provided that the cluster will be completely
separate and will only serve for Hadoop/Spark jobs.

To integrate it, one would have to extend the Job class in vocloud project
and write the appropriate logic. This would mainly consist of running the
spark-submit command with appropriate parameters.

There would be some obstacles, however. As of now, Vocloud does not in-
tegrate with the Hadoop ecosystem at all, so we would need to either extend
its’ filesystem functionality to be able to seemlessly integrate with HDFS or
implement at least the capability to send and receive data from HDFS filesys-
tem. Vocloud now acts as sort of a resource manager, since it tracks which
job runs on what worker. This would also have to change, since it would be
highly unfair if this “spark-submitting” job would be considered equal to the
other jobs, that actually do some work.

33

Chapter 4

Stellar spectra

In this chapter we shall describe the dataset, what exactly stellar spectra are
and what challenges their processing poses.

4.1 The significance of a spectrum

Spectra are created by separating the light coming out of a star into different
wavelengths. The intensity of the light on these wavelengths is then measured.
The drops in the intensity are called absorptions and the raises emissions. The
spectral line is also called a continuum.

Measuring a spectrum of a star reveals much about the nature of the
measured object. Each element, that is present in the atmosphere of a star
has its’ own unique signature. This signature is represented as a series of
absorptions or emissions at particular wavelengths. It may also reveal the
stage of the evolution of that particular star.

4.2 Description of the dataset

The dataset is comprised of stellar spectra. The spectra are cut around the
Hα line, which is about 656.28 nm. Our goal is to classify these spectra into
four types based on the shape of the line.

• a pure emission (type 0)

• an emission with a central absorption (type 1)

• a pure absorption (type 2)

• an absorption line with an emission also called a shell line (type 3)

Representatives for the types are plotted in Figure 4.1. To illustrate the
fine difference between type 2 and type 4 we provide detailed plot of the

35

4. Stellar spectra

6
3
0
0

6
4
0
0

6
5
0
0

6
6
0
0

6
7
0
0

1 2 3 4 5 6

6
3
0
0

6
4
0
0

6
5
0
0

6
6
0
0

6
7
0
0

0
.8

1
.0

1
.2

1
.4

1
.6

1
.8

2
.0

F
ig

u
re

4.1:
E

x
am

p
les

o
f

sp
ectra

w
ith

p
u

re
em

ission
(left)

an
d

an
em

ission
w

ith
an

ab
sorp

tion
(righ

t)

6
3
0
0

6
4
0
0

6
5
0
0

6
6
0
0

6
7
0
0

0
.6

0
.7

0
.8

0
.9

1
.0

6
3
0
0

6
4
0
0

6
5
0
0

6
6
0
0

6
7
0
0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

F
ig

u
re

4.2:
E

x
am

p
les

of
sp

ectra
co

n
ta

in
in

g
a

p
u

re
ab

sorp
tion

(left)
an

d
an

ab
sorp

tion
lin

e
w

ith
an

em
ission

(righ
t)

36

4.2. Description of the dataset

6550 6560 6570 6580

0.5

1.0

1.5

2.0

2.5

3.0

3.5

6550 6560 6570 6580

1.0

1.5

2.0

2.5

3.0

Figure 4.3: Details of spectra containing an absorption line with an emission
(left) and an emission with a central absorption (right)

profiles for the an emission with a central absorption and an absorption line
with an emission in Figure 4.3.

The dataset comes from two sources. The labelled part, having around
2000 samples, was taken in Ondřejov observatory using their 2 metre spec-
trograph. This spectrograph can measure one star at a time. We shall also
refer to this spectrograph as CCD700. The spectral resolution power, is about
13000 in Hα. SRP, or R is given by equation R = λ

∆λ , where λ is a concrete
wavelength and ∆λ is the smallest detectable difference between wavelengths.
The resoluting spectra, cut around Hα have intensities measured on around
1800 wavelengths, from 6200 nm to 6800 nm. The spectra are quite detailed,
with many small emissions and absorptions around the line, however the main
distinguishing feature of different types, the central emission/absorption is
very recognizable. The spectra on Figures 4.1 and 4.3 come from CCD700.
The unlabelled data come from the first data release from LAMOST observat-
ory in China. Their spectrograph is quite different from Ondřejov, as it can
scan a huge area of sky at once, producing multiple spectra in parallel. The
DR1 contains around 2 000 000 spectra, however we only work with around
1 000 000, due to technical reasons, specified in Section 5.1. The resolution
power is smaller than the 2m spectrograph, so the spectra are fairly rough and
not nearly as much detailed. We also lose the distinction between the pure
emission spectra, and the double-peaked spectra. For this reason, we have
decided to only have a binary label, with 0 meaning the spectrum is of an
absorption type and 1 meaning it is of an emission type, which also includes
the former types 1 and 3. For an example of how the resulting spectra look
like, see Figure 4.4.

The labelled data were converted from FITS files to a CSV on the Vocloud
system, using the preprocessing job that is already available there. Aside from
the conversion they were also aligned to the same wavelength. This needs to
be done as there are some inherent inaccuracies during the exposition of the
spectra. If it had not been done, the features in each column would not
actually have the same “meaning”. In addition, we also apply a Gaussian

37

4. Stellar spectra

6300 6350 6400 6450 6500 6550 6600 6650 6700
0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

CCD700

LAMOST

Figure 4.4: An example of a spectrum from LAMOST archive plotted against
a spectrum of the same star from CCD700. Note that it depicts less finer
details than CCD700 spectra.

convolution on the CCD700 spectra, so that they lose their finer details.
The result can be seen on Figure 4.5, where we plotted the same spectra as

in Figure 4.4, however CCD700 spectrum has been resampled. Note that we
have lost the double peak even in the original spectrum. This further supports
our decision to merge the emission spectra into one single type.

The unlabelled data from LAMOST are stored as raw, logarithmic scale
spectra in FITS format. The FITS files contain the entire measured wavelength,
unlike CCD700, which only contained spectras cut around Hα. Both LAM-
OST and CCD700 spectra are fed to the distributed preprocessing job in
Spark. It parses the FITS files, converts the spectrum from a logarithmic
scale to the the wavelength scale. The user can also specify which part of
wavelength they want to include. For our experiments, we have chosen the
range of 6200 nm to 6800 nm.

38

4.2. Description of the dataset

6300 6350 6400 6450 6500 6550 6600 6650 6700
0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

CCD700 convoluted

LAMOST

Figure 4.5: Spectra of the same star plotted against each other. The spectrum
from CCD700 has been resampled.

39

Chapter 5

Experiments

In this chapter we describe the execution environment we used to run our
experiments on as well as the methodology we used. We also present the
results of our experiments.

5.1 Execution environment

Originally we were supposed to use machines installed in Ondřejov. However,
they were not provided in time, so we have decided to find an alternative.
We ended up deciding between using AWS service Elastic MapReduce (AWS
EMR) or using the Czech academic grid Metacentrum.

AWS EMR is a managed service, where the user can provision a Hadoop
cluster for themselves. A user can choose the type of the machines from the list
of standard AWS instances, as well as the size of the cluster. The configuration
of the cluster is done automatically, although user can customise parts of it.
Even though this provides a very flexible way of provisioning a Hadoop cluster,
we have decided against it for financial reasons.

Thus we have decided to use the Metacentrum grid. This grid is open for
use by the whole Czech academic society, including researchers, students or
teachers. We have chosen this They do have a operable Hadoop cluster that
is open for all users of Metacentrum. The cluster has Hadoop 2.6 installed
along with Spark 1.5.0. It is made of 24 computing nodes, each with 12 cores
and 128 GB RAM. The HDFS storage has capacity of 1 PB, however the
replication factor is 4 therefore the effective capacity is 250 TB.

Unfortunately we have also encountered several problems. First, the ex-
ecutor nodes do not have any common mountpoint and therefore the only
shared storage is the HDFS. This means we also had to put the raw spec-
tra on HDFS for them to be processed by the preprocessing job. This is far
from an ideal use-case, as HDFS does not cope well with lots of small files
for reasons described in Section 2.1.1. The fact that HDFS is the only com-
mon filesystem also posed problem with running the preprocessing job, as only

41

5. Experiments

some of the Python libraries were originally present on the executor nodes and
having a way of storing all the common dependencies on a mounted filesystem
would help us with that. There is also a limit to how many files can be in
one folder, which is 220 in case of Metacentrum. Therefore, instead of the
original 2 000 000 we only decided to classify a sample that would fit onto the
filesystem.

5.2 Data survey

Before we begin with the experiments themselves, let’s explore the structure
of the data a bit to get a sense of how they look like. We do this to gain
better understanding of the structure of the dataset as in how are the data
distributed and how well the classess align to discrete clusters. We do this
to test the Cluster Assumption mentioned in Section 1.3.2. We have used a
small subset of the data with 10 000 samples.

To visualise the dataset, we used two methods to embed the data into a two
dimensional space. The first method we used was the Principal Component
Analysis transformation where we took the top two principal components.
We have also used a method called TSNE, which was specifically designed to
embed data in two- or three-dimensional space. It constructs a probability
distribution over pairs of samples where the probabibility of being picked
increases with the similarity of the objects. It constructs this distribution
in both high-dimensional space and in the low-dimensional space. It then
minimizes the Kullback–Leibler divergence, which is a measure of similarity
between two distributions.

The results of the PCA decomposition are present in Figure 5.1. It is
quite evident that the data do create two major clusters, with several spectra
spread in between them. One of the clusters is composed of the members
of the emission-type spectra, which includes also the double emission spec-
tra and emission with absorption spectra. The second cluster is composed of
absorption spectra and most of the spectra from LAMOST. This would sug-
gest that most of the spectra in the LAMOST archive are of the absorption
type. However there are some LAMOST spectra that belong to the emission
cluster, which would suggest that they are the most likely candidates for being
interesting spectra.

On Figure 5.2 we see a similar situation but perhaps with less clear clusters.
This was created by a TSNE embedding. At the center is the cluster containing
almost all the LAMOST spectra along with most of the absorption spectra.
This structure is then surrounded by loose clusters of the other types and
sometimes LAMOST spectra that are the most likely candidates for being of
an emission type.

42

5.2. Data survey

15 10 5 0 5

0

3

2

1

0

1

2

3

1

1 0 -1

Figure 5.1: Structuring of the data after a PCA decomposition.

15 10 5 0 5 10 15

0

10

5

0

5

10

1

1 0 -1

Figure 5.2: Structuring of the data after a TSNE embedding.

43

5. Experiments

0 10 20 30 40
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

f1

precision

recall

Figure 5.3: Dependency of the accuracy of Label Propagation with regards to
the number of neighbours.

5.3 Experiments

We performed experiments on both the LAMOST dataset and on some of the
well known datasets from UCI and similar repositories. We measured both
the accuracy of the methods on a particular problem and also scalability in
terms of both time and space requirements. We also compare with some other,
supervised methods.

5.3.1 LAMOST DR1 dataset

Due to the sheer amount of data in the dataset we have chosen to measure the
accuracy only on a small subset. We measure both the simple accuracy and the
F1 measure. We also provide confusion matrix. To simulate the conditions of
the usual semi-supervised learning problem, we have used a k-fold validation,
where contrary to how it’s usually done, we have used a larger testing set than
a training set. The reason why we have used k-fold strategy is that it offers
an easy way to test multiple subsets of the original data set and compute
an average score. We measure these metrics for both Label Propagation and
Label Spreading, with various settings of k and α.

5.3.1.1 Label Propagation

First we depict the performance of Label Propagation with regards to k, which
can be interpreted as the density of a graph. We have measured the F1 score
and accuracy for number of neigbours 1 ≤ k ≤ 50 to find how it influences
the classification performance of the algorithm. As expected, it rises with
the k until a certain threshold, where it just hits a plateau or even decreases

44

5.3. Experiments

0 10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0

f1

precision

recall

Figure 5.4: Dependency of the accuracy of Label Spreading with regards to
the number of neighbours.

meaning that the model overfitted. We can also see, that the precision is fairly
high for all values of k, meaning that if the model assigns a particular class,
it has a high chance of being correct. However the recall is fairly low with low
k since the model mis- identifies a lot of spectra. The results are presented in
Table 5.1 and Figure 5.3.

Table 5.1: F1 score of Label Propagation for different number of neighbours.
Bold k is the one with the best F1 score.

k f1 precision recall

0 0.184051 0.908555 0.192816
10 0.694096 0.823854 0.659328
20 0.783299 0.783908 0.791889
30 0.813179 0.824732 0.825840
40 0.784870 0.783486 0.811993
50 0.772476 0.774841 0.803129

5.3.1.2 Label Spreading

Next we measured the performance of Label Spreading with regards to the
number of neighbours and setting of α. Recall, that α specifies how strongly
the algorithm preserves the original labels in the training set. Setting of
α = 1.0 will force the original labels to stay the same. We have tested the
number of neighbours in the same ranges as in the Label Propagation case.
For α, we chose values 0.0 ≤ α ≤ 1.0 with step 0.1. We have tested the various

45

5. Experiments

0 2 4 6 8 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

f1

precision

recall

Figure 5.5: Dependency of the accuracy of Label Spreading on α.

settings of these values first separately and then with fixed best k and fixed
best α.

As we can see on Figure 5.4 and Table 5.2, the progression of accuracy
loosely follows the same path as in case of Label Propagation. We see that
it slightly increases with the number of neighbours until it hits a threshold
where the increase stops.

The results in Figure 5.5 and Table 5.3 show, that the performance of the
model is more-or-less the same with regards to α, as long as α > 0.0. This
implies that spectra that are of the same type are actually quite close to each
other and therefore reinforce the labels of each other quite a lot.

Let’s move on to the measurements of computation time. We have taken
this metric from metrics that the Sparks’ web UI reports for each job that
was run. We have measured the performance for various sizes of the dataset
to measure how it scales in terms of number of data. We present results for
both the preprocessing job as well as for both algorithms.

Table 5.2: Classificaiton performance of Label Spreading for different number
of neighbours. Bold k is the one with the best F1 score.

k f1 precision recall

0 0.019282 0.010636 0.103129
10 0.693463 0.823321 0.658806
20 0.781369 0.781788 0.790324
30 0.812377 0.825084 0.825029
40 0.783979 0.782363 0.811472
50 0.772143 0.775240 0.802955

46

5.3. Experiments

Table 5.3: Classification performance of Label Spreading for different value of
α.

α f1 precision recall

0.0 0.183413 0.905268 0.192468
0.1 0.704628 0.839553 0.667034
0.2 0.704547 0.839571 0.666976
0.3 0.704055 0.838588 0.666280
0.4 0.703886 0.838368 0.666165
0.5 0.703259 0.837099 0.665759
0.6 0.703050 0.836747 0.665875
0.7 0.703032 0.836182 0.665817
0.8 0.701011 0.833884 0.664021
0.9 0.699154 0.832271 0.662862
1.0 0.693463 0.823321 0.658806

5.3.1.3 Preprocessing

The preprocessing job is mainly dependent on the size of size of the data. If
we are not doing PCA transformation, there are also no user-set parameters
that could influence either time or space complexity. We do not consider the
time it takes to load or store the data in HDFS.

Table 5.4: Time scalability of preprocessing

sizes time (seconds) time increase

0.2 1080.0 1.000000
0.4 2230.0 2.064815
0.6 3830.0 3.546296
0.8 4320.0 4.000000
1.0 5423.0 5.021296

Table 5.4 and Figure 5.6 show that the preprocessing job scales quite
well with regards to the size of the data. This is because the job is quite
straightforward with nonexistent dependencies between the data. There is
minimal amount of shuffling, which is done only at the beginning when we
distribute the data evenly among the workers and at the end when we sort
them by the label.

5.3.1.4 Label Propagation

The time of computation of Label Propagation also increases linearly. The
slowest stages by far are the matrix multiplication stages. They are heavy on

47

5. Experiments

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

sizes

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Figure 5.6: Time dependency on the size of the data for preprocessing.

Table 5.5: Time scalability of Label Propagation

sizes time (seconds) time increase

0.2 552.0 1.00
0.4 780.0 1.41
0.6 1020.0 1.85
0.8 4320.0 7.83
1.0 5423.0 9.82

the shuffling for they need to send the block matrices to all the appropriate
machines in order to multiply them with all the correct positions.

5.3.1.5 Label Spreading

As we can see, the Label Spreading algorithm shows similar tendencies as
Label Propagation. This is because at the core of the algorithms are very
similar, and they simply multiply the matrices. However, the construction of
the Graph Laplacian is quite a costly operation, as it needs to go over each
possible pair in the distance matrix, therefore the job takes longer to finish.

48

5.4. Classification results

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

sizes

500

1000

1500

2000

2500

Figure 5.7: Time dependency on the size of the data for Label Propagation.

Table 5.6: Time scalability of Label Spreading

sizes time (seconds) time increase

0.2 2655 1.000000
0.4 10623 4.000126
0.6 25568 9.627965
0.8 49159 18.511108
1.0 86395 32.532321

5.4 Classification results

Before we present the results, let us reiterate the steps in the whole process
once again:

1. We have converted the LAMOST spectra from FITS files. During this
conversion, we have ran what is called a “rebinning to wavelength scale”,
since the spectra are originally stored in logarithmic scale.

2. We have performed a Gaussian convolution on the CCD700 spectra in
order to remove the details that are not present in LAMOST spectra.

49

5. Experiments

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

sizes

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

Figure 5.8: Time dependency on the size of the data for Label Spreading.

3. We have resampled all the data to one common wavelength axis. This
is done in order to remove some inherent inaccuracies that can be intro-
duced during when the spectra are taken.

4. We have cut the spectra around the Hα line.

5. We have applied a MinMax scaling on each spectrum individually. This
caused the minimum value of a spectrum flux to be equal to 0 and the
maximum value to be equal to 1.

6. We have binarised the labels, so that label 0 stands for absorption spec-
tra and label 1 stands for all the other potentially interesting spectra.

7. Finally, the classification algorithm is run and we build our model that
then classifies the candidates.

Recall, if you will, Figures 5.1 and 5.2. They show the structure of a small
subsample of our dataset — some 10 000 spectra. Now let’s review whether
our graph algorithms can capture the structure.

As we can see on Figure 5.9, which corresponds to Figure 5.1 except with
the training data removed, the classification does confirm what PCA visual-
isation suggested: that the data were in fact well separated into two major

50

5.4. Classification results

15 10 5 0 5

0

3

2

1

0

1

2

3

1

1 0

Figure 5.9: Classification visualised by PCA.

15 10 5 0 5 10 15

0

10

5

0

5

10

1

1 0

Figure 5.10: Classification visualised by TSNE.

51

5. Experiments

clusters, with one containing the absorption spectra and the other containing
the rest. It appears, however, that some spectra in both clusters were clas-
sified to a different type than the majority of spectra in said cluster. This
would suggest that in reality they are more close to the spectra in the other
cluster, but for some reason the PCA has transformed their features in such
a way that they appear in the wrong cluster. It is also quite clear, that the
amount of type 1 spectra is significantly less than of type 2.

The resulting candidate set did contain several interesting spectra. There
are shapes, that were not present in the original labelled dataset, as seen on
Figure 5.11. Appart from the expected emission spectra there were also shapes
such as shifted emissions. The algorithm also classified several absorption
spectra as emissions. These are the spectra that can be seen on Figures 5.9
and 5.10 as ones residing in the emission cluster.

This shows that the algorithm can really take advantage of the clustering
assumption. It has correctly classified the spectra according to the clusters
we see in Figures 5.9 and 5.10.

52

5.4. Classification results

50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0

(a) Emission spectrum.

50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0

(b) Spectrum with absorption around
Hα but with a very strong shifted emis-
sion

50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0

(c) Double peak emission

50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0

(d) Emission in absorption

50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0

(e) Shifted emission

Figure 5.11: Examples of detected spectra.

53

Conclusion

In this thesis we have attempted a semi-supervised learning-based approach to
the problem of classifiying stellar spectra. The semi-supervised approach was
chosen because algorithms belonging to this class were specifically designed to
solve problems, where there are much more unlabelled data than labelled.

We have implemented a distributed preprocessing job, that converts the
data from FITS files and optionally rescales them from logarithmic scale to
linear wavelengths. It also applies a Gaussian convolution on high-resolution
spectra from CCD700 so that they have similar level of details like the lower-
resolution LAMOST spectra. This makes sure that we can actually use the
CCD700 spectra as our labelled part of the training set. It also rebins them
to one unified wavelength range.

We have implemented two graph-based classification algorithm called La-
bel Propagation and Label Spreading. These algorithms create a graph rep-
resentation of the data where the label propagates along the edges to the
neighbours. Furthermore, we have implemented them on Spark so that we
may cope with large amount of data.

The source codes for the preprocessing application and the graph al-
gorithms are available on the attached electronic medium as well as on the
following URLs:

Preprocessing https://github.com/palicand/vocloud_spark_import

Graph https://github.com/palicand/graph_ssl

We have ran the classification on approximately 1 000 000 of LAMOST
spectra. Appart from the expected emission-line spectra we have discovered
several unexpected and interesting spectra. The full classification result is
stored on the attached electronic medium in form of a CVS file.

55

https://github.com/palicand/vocloud_spark_import
https://github.com/palicand/graph_ssl

Bibliography

[1] Borne, K. D. Astroinformatics: data-oriented astronomy research and
education. Earth Science Informatics, volume 3, no. 1, 2010: pp. 5–17,
ISSN 1865-0481, doi:10.1007/s12145-010-0055-2. Available from: http:

//dx.doi.org/10.1007/s12145-010-0055-2

[2] Borne, K. D. Science User Scenarios for a Virtual Observatory Design
Reference Mission: Science Requirements for Data Mining. ArXiv Astro-
physics e-prints, Aug. 2000, astro-ph/0008307.

[3] Koza, J. Design and implementation of a distributed platform for data
mining of big astronomical spectra archives. Bachelor’s thesis, Czech
Technical University in Prague, Faculty of Information Technology, 2015.

[4] Chapelle, O.; Schölkopf, B.; Zien, A.; et al. Semi-supervised learning.
2006.

[5] Pedregosa, F.; Varoquaux, G.; Gramfort, A.; et al. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research, volume 12,
2011: pp. 2825–2830.

[6] Seeger, M. A taxonomy for semi-supervised learning methods. Technical
report, MIT Press, 2006.

[7] Kingma, D. P.; Mohamed, S.; Rezende, D. J.; et al. Semi-supervised
learning with deep generative models. In Advances in Neural Information
Processing Systems, 2014, pp. 3581–3589.

[8] Dean, J.; Ghemawat, S. MapReduce: simplified data processing on large
clusters. Communications of the ACM, volume 51, no. 1, 2008: pp. 107–
113.

[9] Senger, H.; Gil-Costa, V.; Arantes, L.; et al. BSP cost and scalab-
ility analysis for MapReduce operations. Concurrency and Computa-
tion: Practice and Experience, 2015: pp. n/a–n/a, ISSN 1532-0634,

57

http://dx.doi.org/10.1007/s12145-010-0055-2
http://dx.doi.org/10.1007/s12145-010-0055-2
astro-ph/0008307

Bibliography

doi:10.1002/cpe.3628, cpe.3628. Available from: http://dx.doi.org/
10.1002/cpe.3628

[10] Ullman, J. D. Designing Good MapReduce Algorithms. XRDS,
volume 19, no. 1, Sept. 2012: pp. 30–34, ISSN 1528-4972,
doi:10.1145/2331042.2331053. Available from: http://doi.acm.org/
10.1145/2331042.2331053

[11] HDFS Architecture Guide. https://hadoop.apache.org/docs/r2.7.2/
hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html, accessed:
2016-05-07.

[12] Apache Hadoop YARN. https://hadoop.apache.org/docs/r2.7.2/
hadoop-yarn/hadoop-yarn-site/YARN.html, accessed: 2016-05-07.

[13] Zaharia, M.; Chowdhury, M.; Franklin, M. J.; et al. Spark: Cluster
Computing with Working Sets. In Proceedings of the 2Nd USENIX
Conference on Hot Topics in Cloud Computing, HotCloud’10, Berke-
ley, CA, USA: USENIX Association, 2010, pp. 10–10. Available from:
http://dl.acm.org/citation.cfm?id=1863103.1863113

[14] Machine Learning Library (MLlib) Guide. http://spark.apache.org/
docs/latest/mllib-guide.html, accessed: 2016-05-07.

[15] Walt, S. v. d.; Colbert, S. C.; Varoquaux, G. The NumPy Array: A
Structure for Efficient Numerical Computation. Computing in Science &
Engineering, volume 13, no. 2, 2011.

[16] Jones, E.; Oliphant, T.; Peterson, P.; et al. SciPy: Open source scientific
tools for Python. 2001–, [Online; accessed 2016-03-27]. Available from:
http://www.scipy.org/

[17] McKinney, W. Data Structures for Statistical Computing in Python. In
Proceedings of the 9th Python in Science Conference, edited by S. van der
Walt; J. Millman, 2010, pp. 51 – 56.

[18] McKinney, W. pandas: a Foundational Python Library for Data Analysis
and Statistics.

[19] Astropy Collaboration; Robitaille, T. P.; Tollerud, E. J.; et al. Astropy:
A community Python package for astronomy. Astronomy and Astro-
physics, volume 558, Oct. 2013: A33, doi:10.1051/0004-6361/201322068,
1307.6212.

[20] Lopatovský, L. Application of Self-Organizing Maps in Astroinformat-
ics. Bachelor’s thesis, Czech Technical University in Prague, Faculty of
Information Technology, 2014.

58

http://dx.doi.org/10.1002/cpe.3628
http://dx.doi.org/10.1002/cpe.3628
http://doi.acm.org/10.1145/2331042.2331053
http://doi.acm.org/10.1145/2331042.2331053
https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html
https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html
https://hadoop.apache.org/docs/r2.7.2/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/r2.7.2/hadoop-yarn/hadoop-yarn-site/YARN.html
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://www.scipy.org/
1307.6212

Bibliography

[21] Palička, A. Application of Random Decision Forests in Astroinformat-
ics. Bachelor’s thesis, Czech Technical University in Prague, Faculty of
Information Technology, 2014.

[22] Liu, T.; Moore, A. W.; Yang, K.; et al. An investigation of practical
approximate nearest neighbor algorithms. In Advances in neural inform-
ation processing systems, 2004, pp. 825–832.

[23] Liu, T.; Rosenberg, C.; Rowley, H. A. Clustering Billions of Images with
Large Scale Nearest Neighbor Search. In Applications of Computer Vis-
ion, 2007. WACV ’07. IEEE Workshop on, Feb 2007, ISSN 1550-5790,
pp. 28–28, doi:10.1109/WACV.2007.18.

59

Appendix A

Acronyms

SSL Semi-supervised learning

SVM Support Vector Machine

TSVM Transductive Support Vector Machine

61

Appendix B

Contents of enclosed CD

candidates.zip.........a zipped text file with the found candidates .1

readme.txt the file with CD contents description

src.......................................the directory of source codes
graph ssl implementation of graph algorithms
thesis..............the directory of LATEX source codes of the thesis
vocloud preprocessing.........implementation of preprocessing job

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

63

Appendix C

Configuration files

C.1 Data preprocessing

1 {
2 ” input ” : ”path/ to / input ” ,
3 ” output ” : ”path/ to /ouput ” ,
4 ” l a b e l e d ” : {
5 ” f i l e ” : ”path/ to / l a b e l e d / f i l e ” ,
6 ”metadata ” : ”path/ to / l a b e l e d / f i l e ”
7 } ,
8 ”pca ” : {”k ” : 40} ,
9 ” p a r t i t i o n s ” : 40 ,

10 ” l a b e l ” : true ,
11 ” p l o t ” : true ,
12 ” cut ” : {
13 ” low ” : 6300 ,
14 ” high ” : 6700
15 }
16 }

65

C. Configuration files

C.2 Graph job

1 {
2 ” inputData ” : ”path/ to / f i l e s / generated /by/ p r e p r o c e s s i n g ” ,
3 ”outputData ” : ” out . csv ” ,
4 ” neighbourhoodKernel ” : ”knn ” ,
5 ” kerne lParameters ” : {”k ” : 10 , ” b u f f e r S i z e ” : 50 .0}
6 ”method ” : ” LabelSpreading ” ,
7 ”methodParameters ” : {” alpha ” : 0 . 9} ,
8 ” p a r t i t i o n s ” : 24 ,
9 }

66

	Introduction
	Machine Learning
	Astroinformatics

	Semi-Supervised Learning
	Supervised and Unsupervised Learning
	Semi-Supervised Learning
	Assumptions for Semi-Supervised Learning
	Classes of Semi-Supervised Learning

	Massively Parallel Environments
	MapReduce paradigm
	Spark

	Implementation
	Data preprocessing module
	Graph models
	Problems and limitations we have encountered

	Stellar spectra
	The significance of a spectrum
	Description of the dataset

	Experiments
	Execution environment
	Data survey
	Experiments
	Classification results

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD
	Configuration files
	Data preprocessing
	Graph job

