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Abstrakt

Ćılem této práce je poskytnout uživatel̊um VO-CLOUD systému možnost
použ́ıt aktivńı učeńı pro klasifikaci astronomických objekt̊u na základě jejich
spektrálńıch vlastnost́ı.

V rámci systému VO-CLOUD bylo vytvořeno webové rozhrańı, kde uživate-
lé mohou aplikovat aktivńı učeńı s využit́ım konvolučńı neuronové śıtě se
zvolenými parametry. Program umožňuje vytvořit iniciálńı trénovaćı soubor
a následně v jednotlivých iteraćıch uživateli předkládá sadu spekter, u nichž
si byl klasifikačńı algoritmus neuronové śıtě nejméně jistý, k manuálńı kla-
sifikaci. Spolu s grafy p̊uvodńıch i předzpracovaných spekter jsou uživateli
zobrazována i j́ım zvolená metadata zahrnuj́ıćı údaje o daném astronomickém
objektu a technické údaje o daném spektru. Výsledky klasifikace je možno
spolu s poznámkami uložit do textového souboru a Elasticsearch databáze.
Tato nově vytvořená databáze obsahuje základńı údaje o řádově milionech
spekter z projektu LAMOST (Large Sky Area Multi-Object Fibre Spectrosco-
pic Telescope) i ondřejovské kolekce. V každé iteraci je rovněž vyhodnocena
úspěšnost klasifikačńıho algoritmu. V př́ıpadě, že přesáhne zvolenou hodnotu,
tj. v př́ıpadě, že parametry neuronové śıtě jsou již dostatečně optimalizovány,
je možno aktivńı učeńı ukončit a zobrazit nalezené zaj́ımavé objekty z vy-
braných klasifikačńıch tř́ıd.

Uživatelé VO-CLOUD systému budou mı́t nyńı možnost interaktivně kla-
sifikovat astronomické objekty pomoćı algoritmů aktivńıho učeńı.

Kĺıčová slova astronomická spektra, webová platforma, interaktivńı kla-
sifikace, strojové učeńı, hluboké učeńı, konvolučńı neuronové śıtě, virtuálńı
observatoř, VO-CLOUD, astroinformatika, Elasticsearch
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Abstract

The aim of this work is to provide VO-CLOUD system users the option to
use active learning methods to classify astronomical objects based on their
spectral properties.

A web-based interface integrated into the VO-CLOUD system has been
designed allowing users to apply active learning algorithms with used-defined
parameters using an underlying convolutional neural network. The software
allows to create the initial training set and then in iterations presents a set
of spectra where the classification algorithm had the highest uncertainty for
manual classification by the user. Along with the graphs of the original and
preprocessed spectra, the user is presented with preselected set of metadata in-
cluding information about the astronomical object and technical information
about the displayed spectra. Classification results together with comments
may be saved in a text file and an Elasticsearch database. This newly created
database contains basic information about millions of spectra from the LAM-
OST (Large Sky Area Multi-Object Fibre Spectroscopic Telescope) project,
as well as the Ondřejov collection. In each iteration the performance of the
classification algorithm is evaluated and, in case it reaches a predefined value,
i.e. in case the parameters of the neural network are sufficiently optimized, the
active learning process may be stopped and objects belonging to classification
classes of interest may be displayed.

In summary, VO-CLOUD users will now have the possibility to interac-
tively (re)classify astronomical objects using active learning algorithms.

Keywords astronomical spectra, web platform, interactive classification,
machine learning, deep learning, convolutional neural networks, virtual ob-
servatory, VO-CLOUD, astroinformatics, Elasticsearch
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Introduction

With the advent of new methods and improved equipment in the field of as-
tronomical spectrometry there is increasing need to analyze large amounts of
spectroscopy data. Automated analysis using artificial intelligence methods
will play an ever-increasing role.

This work intends to provide an interface allowing users of the virtual
observatory VO-CLOUD software system to apply active learning methods
to interactively classify astronomical spectra. Particular attention is given to
convolutional neural networks (CNN), one of the most commonly used deep
learning methods.

The thesis extends previous work of several bachelor and master students,
who contributed to the design of the VO-CLOUD platform [1, 2, 3, 4, 5, 6].

In the first part of my thesis, I present an analysis of the problem and
discuss available approaches. Then I present the solution and discuss its prop-
erties, performance and possible future developments.
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Chapter 1
Aims and Objectives

The goal of the thesis is to design an engine based on current VO-CLOUD
infrastructure allowing to conduct different scenarios of active learning of as-
tronomical spectra in order to identify candidates with given spectral fea-
tures and characteristic shapes. One of the crucial parts is the interactive
(re)classification/rejection of suggested candidates with the possibility to ob-
tain all important metadata and visualize them in different steps of processing.

The first objective is to analyze the typical workflow of active learning, sug-
gesting ideal capabilities of such a system and confronting them with those
available in VO-CLOUD.

Practical goals include designing missing modules and control logic and im-
plementing the platform, testing performance of the solution and suggesting
possible future improvements.

1.1 Functional Requirements

FR1: The active learning platform should be incorporated into the VO-
CLOUD system as a new type of task/job.

FR2: Users should be able to define the active learning task features in form
of a JSON configuration script.

FR3: Most commonly used JSON configurations should be predefined in
form of JSON configuration files stored in the VO-CLOUD system.

FR4: Users should be able to upload the data to be analyzed to the VO-
CLOUD server.

FR5: Users should have the option to prepare the initial training set by
labelling randomly selected samples from the data pool to be analyzed.
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1. Aims and Objectives

FR6: Users should have the option to prepare the initial training set by
labelling samples from a dataset different from the data pool to be analyzed.

FR7: Users should have the option to prepare the initial training set by
labelling samples from user-selected original data.

FR8: Users should be able to visualize the spectral profile of celestial ob-
jects of interest with optional zoom and display of values on mouseover. They
should have the option to visualize both the original record and the normal-
ized spectrum in the wavelength region of interest.

FR9: Users should be able to see metadata corresponding to the visualized
spectra.

FR10: Users should be able to manually label individual samples. Key-
board shortcuts should be considered in order to make labelling user-friendly
and efficient.

FR11: In each iteration, samples for teacher’s labelling should be selected
based on the degree of uncertainty of their classification — the most uncer-
tain samples first.

FR12: In each iteration, randomly selected samples should also be presented
for evaluation by the teacher/expert/oracle in order to estimate performance
accuracy of the algorithm. A predefined level of performance accuracy is typ-
ically the necessary condition for stopping the active learning procedure.

FR13: Users should be able to see performance accuracy of their labelling.

FR14: Users should be able to save and download the results of the labelling
session.

FR15: Users should be able to save and download the predictions of each
active learning iteration.

FR16: Users should be able to save and download the uncertainties asso-
ciated with the predictions of each active learning iteration.

FR17: Users should be able to visualize the predicted spectra of interest.

4



1.2. Non-Functional Requirements

1.2 Non-Functional Requirements

NFR1: A database containing metadata from LAMOST (Large Sky Area
Multi-Object Fiber Spectroscopic Telescope) archive should be established.

NFR2: The database should allow very fast fulltext search.

NFR3: The database should allow addition of new data categories such as
labelling results.

NFR4: The database design should minimize requirements on resources (es-
pecially storage space).
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Chapter 2
Analysis of the Problem

In this section I provide a short introduction to astronomical spectroscopy,
stellar classification and Be stars, the main objects of interest in this study.
Then I give a brief overview of active learning and convolutional neural net-
works. Finally, I present the VO-CLOUD project and its current state.

2.1 Astronomical Spectra

One of the main research areas of interest in the Astronomical Institute in
Ondřejov is spectroscopical analysis of celestial objects. Electromagnetic spec-
tra, typically represented in form of graphs of intensity of electromagnetic ra-
diation as a function of wavelength or frequency, provide substantial part of
what we know about the Universe, including information about surface tem-
perature, chemical composition, distance and relative velocity of stellar, as
well as non-stellar objects.

Foundations of optical spectroscopy were laid down at the beginning of
the 18th century by Isaac Newton when he used a prism to split the sunlight
[7]. About one hundred years later Fraunhofer improved the optical devices
significantly and for the first time observed discrete emission lines in fire light.
Curious whether he could observe similar lines in the sunlight, he discovered
the first dark absorption lines in the light of the Sun [8]. He then combined his
prism with a telescope to observe the spectra of nearby planets and various
stars such as Betelgeuse [9].

2.1.1 Continuous Spectra

In 1850s Kirchhoff and Bunsen offered an explanation of Fraunhofer’s obser-
vations: hot solid objects produce light with a continuous spectrum, hot gases
emitting light at specific wavelength are responsible for emission lines, while
cool gases surrounding hot objects are responsible for the absorption lines
[9, 10].
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2. Analysis of the Problem

Thermal radiation responsible for the continuous part of the spectra is ac-
tually generated by all matter with a temperature greater than absolute zero.
Gustav Kirchhoff introduced the term black body, an idealized opaque non-
reflective object absorbing all incident electromagnetic radiation regardless of
its frequency [11]. A black body in thermal equilibrium emits electromag-
netic radiation, called black body radiation. The shape of its characteristic
continuous radiation spectrum depends solely on temperature and was later
explained by Max Planck in his famous Planck’s law [12]:

Bλ = 2hc2

λ5(e
hc

λkBT − 1)
, (2.1)

where Bλ represents spectral radiance (energy emitted by a given surface per
unit solid angle, unit projected area, unit time, and unit frequency) measured
in W.sr−1m−2,

h is Planck’s constant (6.626 x 10−34m2kg/s,
c is the speed of light in vacuum (299 792 458 m/s),
kB is Boltzmann constant (1.38 x 10−23m2kg s−2K−1), and
T is the temperature (in K).

Figure 2.1 shows black body radiation spectra at temperatures correspond-
ing to major spectral classes of stars.

Figure 2.1: Black body radiation at temperatures typical for individual spec-
tral classes of stars
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2.1. Astronomical Spectra

Any real physical body emits a continuous spectrum similar in shape to
that of the black body of the same temperature. The ratio between the real
body and black body radiation is described by emissivity. Emissivity of real
bodies ranges from 0 to 1 (corresponding to the ideal black body) [13].

Discrete spectral lines are typically related to transitions of electrons be-
tween individual energy levels [14]. Atoms, ions and molecules have their
characteristic spectral lines [10, 15].

2.1.2 Spectral Classes

The most commonly used system of star classification is the Morgan-Keenan
system [16] where stars are assigned a spectral class corresponding to the Har-
vard spectral classification system and a luminosity class [17]. The Harvard
system groups the stars based on their surface temperature into classes O–M
(see Table 2.1) [18].

Table 2.1: Harvard star classification system [17]

Class Surface temperature Color Main sequence mass
O over 30 000 K blue over 16 MSun
B 10 000 – 30 000 K blue white 2.1 – 16 MSun
A 7 500 – 10 000 K white 1.4 – 2.1 MSun
F 6 000 –7 500 K yellow white 1.04 – 1.4 MSun
G 5 200 – 6 000 K yellow 0.8 – 1.04 MSun
K 3 700 – 5 200 K orange 0.45 – 0.8 MSun
M 2 400 – 3 700 K orange–red 0.08 – 0.45 MSun

Luminosity classes are labelled I to VII, where class I corresponds to su-
pergiants, II and III to giants, IV to subgiants and V to main sequence stars.
Classes VI and VII represent subdwarfs and white dwarfs, respectively [17].
Luminosity is the total amount of electromagnetic energy emitted by the star
(measured in watts) and is thus an absolute quantity in contrast to apparent
brightness and star magnitude that depend on the distance between the ob-
server and the star [19, 20].

2.1.3 Be Stars

Be stars are spectral B-type stars with emission lines [21]. Classical Be stars
are non-supergiant, main sequence stars that have or once had one or more
emission lines in Balmer series of hydrogen atom spectral lines resulting from
electron transitions from levels with principal quantum number n≥3 to levels
with n=2 [21]. As these lines are the most prominent features in hydrogen
atom visible spectrum, they are referred to as Hα (656 nm), Hβ (486 nm)...
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2. Analysis of the Problem

Figure 2.2: Example of an absorption peak from Ondřejov archive

Figure 2.3: Example of an emission peak from Ondřejov archive

lines, corresponding to transitions n=3 to n=2, n=4 to n=2, and so on [14, 22].
The emission character of the Balmer series lines in the spectrum of Be stars is
unusual, as absorption hydrogen lines (Fig. 2.2) are much more common. Ab-
sorption lines may be explained if we think of stars as hot objects surrounded
by a ”cool” atmosphere of absorbing gas, most commonly hydrogen gas [10].
If the star surface is too hot, most of the hydrogen atoms get ionized and
there is no absorption. Similarly, if the surface is relatively ”cold”, the light
does not have sufficient energy to cause electron transition from n=2 level
to higher levels and there are no absorption lines in the Balmer series region
either. Thus absorption Balmer series hydrogen lines are the most common
in stars with surface temperature about 9 000 K (spectral type A, weaker in
stars of spectral type B and F) [23].

Emission hydrogen lines (Fig. 2.3) are typically seen in the spectra of
spiral and irregular galaxies, active galactic nuclei, H II regions (insterstellar
regions with partially ionized hydrogen gas), and planetary nebulae. In Be
stars, the emission lines are supposed to originate from a hot nebulous ring
revolving around the star. The ring is formed by matter ejected from the

10



2.1. Astronomical Spectra

Figure 2.4: Example of a double emission peak from Ondřejov archive

rapidly rotating Be star equator region. The orientation of the Be star axis
with respect to the observer is then responsible for the observed wide range
of widths of these emission lines (Fig 2.4) [24].

Be stars have long been subject of studies at ASU CAS [25] and Ondřejov
archive contains approximately 13 000 spectra with Hα spectral lines [26].

2.1.4 Sources of Spectroscopic Data

Two main data sources of spectroscopic data are used in this study:

- Ondřejov archive available at ASU CAS Data Center [26] storing more than
17 000 spectra, of which approximately 13 000 contain the Hα line. The spec-
tra were acquired using the Perek 2 m telescope, a 700 mm camera with CCD
detection, and a Coudé spectrograph [27].

- LAMOST (Large Sky Area Multi-Object Fiber Spectroscopic Telescope)
archive presently containing about 10 million spectra (data release 6 version
1 - DR6v1) [28]. LAMOST is a reflective Schmidt telescope with active optics
located in the Hebei province southwest of Beijing. The focal surface is circular
with a diameter of 1.75 m and is tiled with 4000 fibre-positioning units, each
feeding an optical fibre which transfers light to one of sixteen 250-channel spec-
trographs. Each spectrograph has two 4k x 4k charge-coupled device (CCD)
cameras with a ’blue’ (370–590 nm) and a ’red’ (570–900 nm) channel. It is
able to collect light from faint celestial objects down to 20.5 magnitude [29].
The main scientific goals include the LAMOST Extra-galactic Spectroscopic
Survey (LEGAS) to explore the large-scale structure of the Universe and the
LAMOST Experiment for Galactic Understanding and Exploration (LEGUE)
to study stellar spectra, particularly spectra of metal-poor stars in the halo of
our galaxy [29].
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2. Analysis of the Problem

2.1.5 Spectral Data Storage Formats

The data are typically stored either in Flexible Image Transport System
(FITS) [30] or VOTable [31] format. Multiple spectra may be stored in comma-
separated-value (CSV) or hierarchical data format (HDF) files [32].

FITS format was designed specifically for astronomical data. The first
standard appeared in 1981 [33], the most recent version (4.0) was standardized
in 2016 [34]. FITS files contain 1 primary Header/Data Unit (HDU) segment
and any number of additional HDUs called extensions. Each segment contains
metadata stored in an ASCII header and an optional data unit that may
contain data stored either as integers (unsigned 8-bit or signed 16- or 32-
bit) or single (32-bit) or double (64-bit) precision floating point real numbers
[34]. Typically, the primary data unit contains 1D or 2D image, or 3D data.
Standard extensions may be either image or ASCII or binary table extensions
[30].

VOTable is an XML-based format recommended by the International Vir-
tual Observatory Alliance [35]. VOTable data may be used in the VO-CLOUD
environment, as well.

2.1.6 Spectral Data Preprocessing

As Ondřejov and LAMOST spectrographs have different characteristics, it
was necessary to preprocess Ondřejov data in order to adjust their format to
that of the LAMOST data [3].

First, wavelength conversion from air (Ondřejov) to vacuum (LAMOST)
was applied [36]:

λv = nλa = (1 + 8.34254.10−5 + 2.406147.10−2

130− s2 + 1.5998.10−4

38.9− s2 )λa, (2.2)

where s = 104

λa
.

Second, as spectral resolution of the Ondřejov dataset is higher, Gaussian
blur and regridding to 140 points (as in LAMOST) was applied to Ondřejov
data.

Finally, scaling to zero mean and unit variance was applied to all spectra.
For details see [3].

2.2 Active Learning

Machine learning tasks may be classified into 3 basic classes: supervised, un-
supervised, and semi-supervised [37, ?]. In supervised learning, the whole
training data set is labelled by a teacher and is represented by paired input
and desired output values. The agent observes these example input–output
pairs and learns a function that maps the input to the output [37]. In unsuper-
vised learning, there is no labelling of the input data and the observations are
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2.2. Active Learning

Figure 2.5: Active learning occurs in iterative cycles

clustered based on their mutual similarities [38]. Semi-supervised approaches
fall between the previous two, where typically only a small fraction of the
training set is labelled by a teacher. Semi-supervised approaches are useful in
situations when relatively large amounts of unlabelled data are available and
manual labelling of all the data would be too time consuming [39].

Active learning represents a subcategory of semi-supervised machine learn-
ing where the learning algorithm in each iteration asks the user/teacher to
label a subset of sample data until convergence criteria are met (see Fig. 2.5)
[40].

The basic concept of active learning algorithms is very nicely described in
[40]: ”The key idea behind active learning is that a machine learning algorithm
can achieve greater accuracy with fewer training labels if it is allowed to choose
the data from which it learns. An active learner may pose queries, usually in
the form of unlabelled data instances to be labelled by an oracle (e.g., a human
annotator)(see Fig. 2.6). Active learning is well-motivated in many modern
machine learning problems, where unlabelled data may be abundant or easily
obtained, but labels are difficult, time-consuming, or expensive to obtain.”

2.2.1 Active Learning Scenarios

Three types of active learning scenarios may be distinguished [40]:

• query synthesis, where the learner (in our case the neural network
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2. Analysis of the Problem

Figure 2.6: Interaction between learner and teacher in active learning

classifier) constructs examples for labelling

• selective sampling, where unlabelled data come as a stream and the
learner decides whether to query the teacher

• pool-based active learning, where the learner chooses from a pool
for labelling.

In our case, pool-based active learning is applied.

2.2.2 Uncertainty Sampling

How to decide which sample to present for labelling? The most commonly used
method is uncertainty sampling, i.e. present the sample where the learner is
most uncertain. There are several measures that may be used to estimate the
level of uncertainty [40].

The least confidence (LC) measure φLC [41] is the simplest:
φLC(x) = 1− Pθ(y∗|x).

Here x represents a data sample, y∗ is the label with the highest probability
Pθ(y∗|x) under the model θ. The most informative sample – the most promis-
ing candidate to be presented for labelling is then:

xLC
∗ = argmax

x
(1− Pθ(y∗|x)),

where y∗ = argmax
x

Pθ(y|x) is again the class label with the highest posterior
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probability Pθ(y|x) under the model θ. The argmax
x

(f(x)) function selects the
argument x where function f(x) has its maximum. Similarly, the argmin

x
(f(x))

function selects the argument x where function f(x) has its minimum.
The smallest margin (SM) measure [42] selects samples with the small-

est difference between the most probable and the second most probable labels:
φSM (x) = Pθ(y1

∗|x)− Pθ(y2
∗|x) with the most promising candidate:

xSM
∗ = argmin

x
(Pθ(y1

∗|x)− Pθ(y2
∗|x)).

Our approach uses the entropy measure (ENT) [43]:
φENT (x) = −

∑
y Pθ(y|x)log2Pθ(y|x) with the most promising candidate:

xENT
∗ = argmax

x
(−

∑
y Pθ(yi|x)log2Pθ(yi|x)).

2.2.3 Query by Committee

Another way how to decide which sample to present for labelling is called
query-by-committee [44]. The idea is to use a committee θ(1), ..., θ(C) of models
trained on the current labelled set. Committee members vote on the individual
labellings. The most informative sample is the one about which the committee
disagrees the most. The two most commonly used measures of the level of
committee disagreement are the vote entropy and the average Kullback-Leibler
divergence [40].

In case of vote entropy (VE) [43] the most promising candidate for
labelling is: xV E

∗ = argmax
x

(−
∑
i
V (yi)
C log2

V (yi)
C ),

where V (yi) is the number of ”votes” for label yi and C is the number of
committee members.

The Kullback-Leibler divergence is a measure of the difference between
two probability distributions. The most informative sample is the one with
the largest average difference between the label distributions of any committee
member and the consensus [40].

2.3 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a class of deep feedforward neural
networks. Deep means that the networks contain multiple layers between
the input and the output layers, feedforward means that information flow
is unidirectional and that there are no cycles involved. In contrast to other
deep feedforward networks, convolutional networks contain layers that perform
convolution (Fig. 2.7), or more precisely sliding dot matrix multiplication.
Due to their translation invariance and better generalization capabilities in
comparison with fully connected networks, convolutional networks are very
popular in the field of image analysis and problems from many other disciplines
are often reformulated in form of images and later classified by CNNs. Detailed
description of the CNN used in our platform is included in the results section.
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2. Analysis of the Problem

Figure 2.7: Matrix convolution operation performed in convolutional neural
networks

2.4 VO-CLOUD

VO-CLOUD is a web-based platform developed at the Faculty of Information
Technology, CTU in Prague, in collaboration with the Astronomical Institute
of the Czech Academy of Sciences (ASU) in Ondřejov. Its architecture was
inspired by concepts used by the International Virtual Observatory Alliance
(IVOA), mainly by the Universal Worker Service (UWS) RESTful pattern
[45, 46]. Its main purpose is exploratory analysis of astronomical data, in
particular analysis of astronomical object spectra using machine learning ap-
proaches. Its design is optimally suited for performing complex time and
computational power consuming operations on big data stored remotely using
simple JSON configurations and nondemanding interactive computation out-
put visualization on a local computer or even on a cell phone.

The core of the system is the Java-based VO-CLOUD master server that is
presently deployed on the betelgeuse computer of the ASU using the WildFly
application server. It provides web interface for VO-CLOUD users allowing
them to formulate their requests, start computational tasks (“jobs”) and an-
alyze obtained results. Jobs get delegated to so called “workers”, software
engines responsible for carrying out particular types of tasks. The master
server also communicates with a PostgreSQL database where user accounts,
history of previous experiments, and the list of available workers are stored.
Fig. 2.8 shows the deployment diagram - modification of the deployment
diagram from [2].

2.4.1 Typical VO-CLOUD Workflow

Starting an analysis in VO-CLOUD is simple.

1. Login at: https://vocloud-dev.asu.cas.cz/vocloud-betelgeuse. In
case this is the first time you use the platform, you will have to fill the regis-
tration form to obtain your username and password.

2. Upload the data to be analyzed by selecting the Manage filesystem op-
tion in the main menu bar. Place the data into your subfolder of the DATA
folder. In case you wish to reanalyze data that you already uploaded before,
you may skip this point.
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Figure 2.8: VO-CLOUD deployment diagram modified from [2]

3. Use the Create new job in the main menu bar to select the desired task
(worker).

4. Create a JSON configuration file defining all necessary parameters of your
requested task. You may either write or upload your own JSON script or
select a precreated configuration.

5. Save and run your task.

6. Review the obtained results by pressing the Details button that appears
next to your job in the job list section (Jobs option in the main menu bar).
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Chapter 3
Realization

To provide active learning capabilities, the VO-CLOUD system was mod-
ified at various levels and a new active learning module was added. VO-
CLOUD system is available at https://vocloud-dev.asu.cas.cz/vocloud-
betelgeuse.

The implementation of the active learning module uses a combination of
several technologies:

- Java EE, Java Server Faces (JSF), Enterprise Java Beans (EJB) and Wild-
Fly application server for VO-CLOUD master server web interface
- Python and its specialized libraries for the implementation of the active
learning algorithm
- JavaScript for interactive web page design
- Elasticsearch database system for storing metadata and results of the active
learning process.

Following sections describe the individual necessary modifications in detail.

Figure 3.1: Starting active learning job in VO-CLOUD environment
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3. Realization

3.1 VO-CLOUD Web Interface

3.1.1 Adding Active Learning Task Option to VO-CLOUD

The active learning option has been added to the VO-CLOUD web interface
menus. This step does not require any underlying software modifications and
can be done directly within the VO-CLOUD environment. With administra-
tor priviledges it is possible to add new workers and define their properties
using the Admin option in the main VO-CLOUD menu. However, at this
point the system is not able to run the active learning job as it lacks the def-
inition of the interface with the software used to implement the worker.

For this purpose, the XML configuration file describing the individual workers
had to be modified. Active learning option and its settings were added and the
Universal Worker System (UWS) was recompiled and deployed to VO-CLOUD
using the WildFly application server running at the betelgeuse computer of
the Astronomy Institute. This finally allowed VO-CLOUD and VO-CLOUD
users to communicate with the Python-based active learning software.

The uws-config.vocloud-betelgeuse.xml configuration file adapted from[1]:

<?xml version="1.0" encoding="utf-8"?>
<ns:uws-settings

xmlns:xsi=’http://www.w3.org/2001/XMLSchema-instance’
xmlns:ns=’http://vocloud.ivoa.cz/universal/schema’
xsi:schemaLocation=’http://vocloud.ivoa.cz/universal/schema

configSchema.xsd’>
<ns:vocloud-server-address>http://localhost:8080/vocloud-be-

telgeuse</
ns:vocloud-server-address>

<ns:local-address>http://localhost:8080</ns:local-address>
<ns:max-jobs>2</ns:max-jobs>
<ns:description>Universal UWS worker</ns:description>
<ns:default-execution-duration>3600</ns:default-execution-

duration>
<ns:max-execution-duration>3600</ns:max-execution-duration>

<ns:workers>
<ns:worker>

<ns:identifier>active learning</ns:identifier>
<ns:description>Active learning</ns:description>
<ns:restricted>true</ns:restricted>
<ns:binaries-location>/usr/local/workers/active

learning</ns: binaries-location>
<ns:exec-command>
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<ns:command>python3</ns:command>
<ns:command>${binaries-location}/run-active-

learning.py
</ns: command>

<ns:command>${config-file}</ns:command>
</ns:exec-command>

</ns:worker>
<ns:worker>

<ns:identifier>preprocessing</ns:identifier>
<ns:description>Preprocessing</ns:description>
<ns:restricted>true</ns:restricted>
<ns:binaries-location>/usr/local/workers/preprocess-

ing<
/ns:binaries-location>

<ns:exec-command>
<ns:command>python3</ns:command>
<ns:command>${binaries-location}/run preprocess-

ing.py
</ns:command>

<ns:command>${config-file}</ns:command>
</ns:exec-command>

</ns:worker>
<ns:worker>

<ns:identifier>som</ns:identifier>
<ns:description>SOM</ns:description>
<ns:restricted>false</ns:restricted>
<ns:binaries-location>/usr/local/workers/som</ns:bi-

naries-
location>

<ns:exec-command>
<ns:command>python3</ns:command>
<ns:command>${binaries-location}/run.py</ns:com-

mand>
</ns:exec-command>

</ns:worker>
<ns:worker>

<ns:identifier>rdf</ns:identifier>
<ns:description>RDF</ns:description>
<ns:restricted>false</ns:restricted>
<ns:binaries-location>/usr/local/workers/rdf</ns:bi-

naries-loca-tion>
<ns:exec-command>

<ns:command>python3</ns:command>
<ns:command>${binaries-location}/runRF.py</ns:com-
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mand>
<ns:command>${config-file}</ns:command>

</ns:exec-command>
</ns:worker>

</ns:workers>
</ns:uws-settings>

The Java code for VO-CLOUD was downloaded from https://github.com/
vodev/vocloud to /home/mazeltom/vocloud folder at the betelgeuse server
at ASU CAS and compiled using the mvn package -Pvocloud-betelgeuse
command in the appropriate folder. For deployment, the ssh -L 9900:local-
host:9900 betelgeuse command was used for remote login as root and the
WildFly JBoss utility was used for deployment.

3.1.2 Starting New Active Learning Job

VO-CLOUD server GUI interface was modified to allow users to select de-
sired active learning parameters when starting an active learning job. An
active learning job in VO-CLOUD may be started in the following way.

1. Use the Create new job in the main menu bar to select the desired task
(worker)(Fig. 3.1).

2. Create a JSON configuration file defining all necessary parameters of your
requested task. You may either write or upload your own JSON script or
select a precreated configuration(Figs. 3.2, 3.3, 3.4).

3. Save and run your task (Fig. 3.4).

Another substantial modification was the inclusion of a web page display-
ing the results together with the visualization of the spectra of selected objects
(Figs. 3.5, 3.6, 3.7, 3.8). An important additional functionality is the display
of metadata associated with the spectra. Importantly, users can manually
reclassify the objects and store labels and comments in the underlying Elas-
ticsearch database. All these additions were done by modifying the underlying
XHTML template and the JavaScript code included in it.

When an active learning job is started, the XHTML template (file named
spectra list html.template) is ”filled” by the run-active-learning.py
Python script, i.e. the placeholders in the XHTML template get replaced by
data supplied by the Python script. For example, all instances of ${md} in the
JavaScript are substituted by metadata generated in Python. The replacement
is performed by the html code = html template.substitute({”list”:””.join
(spectra list), ”labels2add fname”: labels2add fname, ”spectra2add fname”:
spectra2add fname, ”md”: metadata, ”comments”: comment list, ”cats”: cat-
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Figure 3.2: Specifying new active learning job

egories str, ”fname”: fname list, ”prediction”: prediction list, ”cat”: cat list,
”lab”: label list, ”oracle perf”: oracle perfest list, ”random sample size”: ran-
dom sample size, ”mdcols” : metadata2show})” command in the generate
spectra function.

3.1.3 Displaying Results and Labelling

Figures 3.5, 3.6, 3.7, 3.8 show the typical workflow in displaying and labelling
the results of a neural network iteration and available functions for displaying
spectra and metadata of samples preselected for labelling. The typical order
of steps is the following:

1. In the Jobs window go to the Details. This will open a window displaying
the list of spectra to be labelled. The user may view both the preprocessed
and the original spectra (see Fig. 3.9), as well as their corresponding metadata.

2. Start labelling the individual samples by clicking on the radio button
with the selected label or by using the corresponding keybord shortcut (Alt +
number).

3. Label all the presented samples. In case you want to change the previ-
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Figure 3.3: Selecting precreated configuration

Figure 3.4: Simple JSON configuration to create initial training set
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Figure 3.5: List of jobs - going to details

ous label, you may use the Previous button or you may simply click on the
name of the spectra.

4. You may review all your labellings together with the metadata using the
All metadata button. You may also view the individual or multiple spectra at
any time, you may also use the available zoom in function.

5. When you are satisfied with the labels, you may save them by pressing
the Save button and download the CSV file containing spectra IDs together
with the corresponding labels and comments Download labels and the CSV file
containing the labels together with the processed spectra (Download labelled
spectra). These files may then be uploaded to the folder of your choice in the
VO-CLOUD filesystem and added in the next iteration to the Elasticsearch
database ("labels2database csv" in the JSON configuration file) and to the
training set ("training set addition csv" in the JSON configuration file).

6. You may view the performance estimate, i.e. the percentage of samples
from the performance-estimate set where your label equalled the neural net-
work prediction by pressing the Performance button. This will also allow you
to see the overall statistics, i.e. the number of samples in individual categories.

7. Start a new iteration using the configuration stored in the new config.json
file.
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Figure 3.6: List on the left allows to select a spectrum for evaluation. Table
on top includes preselected metadata. Panel in the middle allows to classify
the visualized spectra and add comments.

Figure 3.7: All metadata button provides an option to see metadata of all
preselected records
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Figure 3.8: Viewing multiple spectra

Figure 3.9: Viewing both preprocessed and original spectra
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3.2 Active Learning Worker

The actual implementation of the active learning worker was done in Python.
The main run-active-learning.py file referenced in the UWS XML con-
figuration file contains the main executable, the run preprocessing and the
generate spectra functions. The run preprocessing function parses the

JSON configuration input file and executes functions corresponding to the se-
lected JSON options. The generate spectra function prepares the list of
spectra along with the corresponding metadata and fills the xhtml template.
The naming of the functions and the overall structure of the code was designed
to be similar to the Python codes performing other types of jobs available in
the VO-CLOUD system, especially preprocessing.

3.2.1 Parsing Input JSON Configuration File

The JSON configuration is parsed by the run preprocessing function con-
tained in the run-active-learning.py file.

The main settings optionally defined in the JSON configuration file are
the following:

Input:
- learning session name: optional project name
- iteration num: 0 - initial training set preparation, 1.. - individual itera-
tions
- training set csv: CSV file containing IDs and labels of spectra in the
training set (if not specified, the labelling-only regime is triggered)
- training set addition csv: CSV file containing IDs and labels of spectra
to be added to the training set (typically created in previous iteration)
- pool csv: CSV file containing all preprocessed spectra to be analyzed (in
our case the LAMOST DR2 database containing about 4 million spectra)
- poolnames csv: CSV file containing IDs of all preprocessed spectra to be
analyzed (presently significantly improves the speed)
- labels2add csv: CSV file containing IDs, labels and comments of spectra
evaluated in previous iteration

Classification:
- categories: classes of spectra (e.g. [”single peak”, ”double peak”, ”other”])

Output:
- batch size: number of spectra to be analyzed
- random sample size: number of randomly selected spectra to be analyzed,
default: 0
- oracle csv: CSV file containing IDs of spectra to be analyzed by the ”ora-
cle” (expert) - typically spectra where the active learning algorithm finds the
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highest degree of uncertainty, default: ”oracle.csv”
- performance estimation csv: CSV file containing IDs of spectra randomly
selected from the pool(names), default: ”perf-est.csv”

Metadata display:
- metadata2show: list of metadata items to be displayed, e.g. [”filename”,
”class”, ”subclass”, ”mag1”, ”ra”, ”dec”, ”prediction”, ”label”, ”iteration”,
”set”] - used by default

3.2.2 Examples of JSON configuration files:

Iteration 0 - preparing the initial training set:
{

"run active learning":"yes",
"learning session name":"single double peak",
"pool csv":"/data/vocloud/filesystem/DATA/active-learning/

pool.csv"
}

Iteration 0 - preparing the initial training set (faster version):
{

"run active learning":"yes",
"learning session name":"single double peak",
"pool csv":"/data/vocloud/filesystem/DATA/active-learning/

pool.csv",
"poolnames csv": "/data/vocloud/filesystem/DATA/active-learn-

ing/poolnames.csv"
}

Iteration 1 - active learning (simple):
{

"run active learning": "yes",
"learning session name":"single double peak",
"training set csv":"/data/vocloud/filesystem/DATA/active-learn-

ing/training-set.csv",
"iteration num": 1,

"pool csv":"/data/vocloud/filesystem/DATA/active-learning/
pool.csv",

"poolnames csv":"/data/vocloud/filesystem/DATA/active-learning/
poolnames.csv",

"random sample size": 30,

29



3. Realization

"batch size": 130
}

Iteration 1 - active learning (complex):
{

"run active learning": "yes",
"learning session name":"single peak double peak",
"training set csv":"/data/vocloud/filesystem/DATA/active-learn-

ing/training-set.csv",
"pool csv":"/data/vocloud/filesystem/DATA/active-learning/

pool.csv",
"metadata2show":["filename","class","subclass","mag1","ra",

"dec","prediction","label","iteration","set"],

"training set addition csv": "",
"iteration num": 1,

"csv spectra file names":"/data/vocloud/filesystem/DATA/active-
learning/poolnames.csv",

"csv spectra file":"/data/vocloud/filesystem/DATA/active-learn-
ing/pool.csv",

"performance estimation csv":"/data/vocloud/filesystem/DATA/ac-
tive-learning/perf-est.csv",

"oracle csv":"/data/vocloud/filesystem/DATA/active-learning/or-
acle.csv",

"csv spectra file2":"csv spectra file2.csv",

"random sample size": 30,
"batch size": 130

}

Iteration 2 - active learning with labels from previous iteration be-
ing stored in the Elasticsearch database:
{

"run active learning": "yes",
"learning session name":"single double peak",
"training set csv":"/data/vocloud/filesystem/DATA/active-learn-

ing/training-set.csv",

"pool csv":"/data/vocloud/filesystem/DATA/active-learning/pool.
csv",

"poolnames csv":"/data/vocloud/filesystem/DATA/active-learning
/poolnames.csv",

"metadata2show": ["filename","class","subclass","mag1","ra",
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"dec","prediction","label","iteration","set"],

"training set addition csv":"/data/vocloud/filesystem/DATA/ac-
tive-learning/spectra2add 1.csv",

"labels2database csv": "/data/vocloud/filesystem/DATA/active-
learning/ labels2add 1.csv",

"iteration num": 2,

"performance estimation csv": "/data/vocloud/filesystem/DATA/
active-learning/perf-est.csv",

"oracle csv": "/data/vocloud/filesystem/DATA/active-learning/
oracle.csv",

"csv spectra file2":"csv spectra file2.csv",

"random sample size": 30,
"batch size": 130

}

3.2.3 HTML Page Generation

The HTML page containing the spectra to be analyzed is generated by the
generate spectra function contained in the run-active-learning.py file.

This function replaces all placeholders in the spectra list.html.template
file. Metadata get imported either from the Elasticsearch database, from a
CSV file or from original FITS files. The rest of the input comes from the
parsed JSON input file.

3.2.4 Required Python Libraries

Several non-standard Python libraries are required and had to be installed, in
particular:

- astropy handling astronomy data [47]
- pandas data analysis [48]
- keras neural network interface [49, 50]
- tensoflow-gpu interface with TensorFlow [51]
- matplotlib data visualization [52]
- numpy high-level mathematical functions [53]
- scipy scientific computing [54]
- scikit-learn free machine learning library [55]
- elasticsearch communication with Elasticsearch database [56]

3.2.5 Data handling Support Functions

Most data handling support functions are defined in the data handler.py
file. It includes functions that enable reading spectra and metadata from
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both CSV and FITS files. Most functions were modified or taken directly
from the data handler.py file of the preprocessing job [2].

The load set al function is used to extract spectral data for samples the
names of which are contained the supplied list. The function produces files
containing the preprocessed spectra used by the neural network classification,
as well as the original (”raw”) spectra. The load metadata set function
allows to import required metadata from CSV files.

The spectra rebinning and normalize functions are applied when
original FITS files are used for labelling.

3.2.6 Active Learning Core

Individual active learning iterations are performed by functions defined in the
activecnn.py file prepared together with its support functions by Ondřej
Podsztavek in frames of his bachelor and master thesis [3].

The support functions are included in the files contained in the active cnn
folder. The model is defined in the get model function in the model.py file.
The structure of the network and the information flow is depicted in Figure
3.10. The input has 140 channels corresponding to normalized values of binned
spectrum intensity in wavelength region between 6519 and 6732. The network
then involves 3 cycles of 1D convolution (individual cycles containing 2 layers
with 64, 128 and 256 3-pixel filters with rectified linear unit activation function
and 2-pixel maxpooling) followed by 2 fully connected layers with 512 units
each and with a dropout probability of 0.5 (Fig. 3.11). The output layer
has 3 channels with softmax activation corresponding to three classification
categories (single peak, double peak and other) [3].

The convolutional layers are used for feature extraction. In each of the
three convolutional cycles two convolutions are followed by maxpooling with
pool size 2, stride 2 (i.e. non-overlapping regions) and no padding. The role
of maxpooling is to reduce dimensionality, reduce the risk of overfitting and
improve translational invariance provided by the convolutional layers. The
2 fully connected layers fulfill the task of mapping the extracted features to
the predefined classifier categories. Dropout (randomly disconnected nodes)
is applied to reduce the possibility of overfitting.

The active learning scripts are based on Keras, a free open-source library
written in Python [49, 50]. It may run both on top of Theano and TensorFlow.
Theano is a free open-source Python library for mathematical operations, in
particular those involving matrix manipulations [57]. TensorFlow is a free
open-source Python library developed specially for machine learning applica-
tion [51]. Both Theano and TensorFlow can be efficiently run on multiple
CPU or GPU units.
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Figure 3.10: Convolutional network workflow [3]

Figure 3.11: Final dense layers with 0.5 droupout. The real network uses
Dense(512), Dense(512) and Dense(3) [3].
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3.2.7 Network Training

The original training set was created based on data from the Ondřejov library.
Briefly, the Ondřejov dataset was split into training, validation and test set
[3]. The training set comprising approximately 70 % of the whole dataset
was used for optimization of the individual weight functions, the validation
set representing around 20 % of the dataset was used for hyperparameter and
architecture optimization, and the remaining 10 % data were used for testing
for neural network evaluation [3].

As most of the spectra belong to the absorption class and the other
two categories (single peak emission spectra and double peaks) are relatively
rare, SMOTE balancing was applied [3]. SMOTE (Synthetic Minority Over-
sampling Technique) aims to improve the distribution balance by artificially
creating additional underrepresented samples [58]. SMOTE can be imported
from the imblearn Python library [3].

The categorical cross-entropy loss function is used as network optimization
function. In general, the cross-entropy (CE) function is defined as [59, 60]

CE = −
C∑
i

tilog(f(si)) (3.1)

where ti represent the ground truth, si are the CNN scores, and f is the
activation function. In the case of our convolutional network applying the
softmax function in the last step with only one positive class sp this equation
reduces to

CE = −log esp∑C
i e

si
(3.2)

In each iteration, newly labelled spectra are added to the initial training
set. As output, we obtain a list of spectra where the active learning algorithm
found the highest cross-entropy values. This list saved in the oracle.csv
file is then presented to the teacher (oracle) for labelling. In addition, ran-
dom spectra are selected for performance estimation. Once the percentage
of correct predictions, i.e. the CNN predictions matching the labels given
by the oracle (the expert teacher), in the performance estimate set exceeds a
predefined level, the active learning process may be terminated.

3.3 Elasticsearch Database for Storing Metadata

One of the objectives of the project was to store the results of the active
learning classification together with the most important metadata informa-
tion about the classified objects. For this purpose the Elasticsearch engine
has been selected as it provides very fast full-text search allowing to quickly
select suitable candidate spectra for further analysis, as well as an easy and
economical way of adding additional columns with spare entries [61].
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Elasticsearch is a free open-source full-text search engine with an HTTP
JSON interface developed in Java. Its first version was released in 2010 by
Shay Banon [61]. Elasticsearch is based on Apache Lucene library that allows
very fast full text indexing and search and also a fuzzy search based on edit
distance. Elasticsearch together with a data collection and log-parsing engine
called Logstash and an analytics and visualization platform Kibana form an
integrated solution referred to as the Elastic or ELK stack [61].

Elasticsearch has many features that make it ideally suitable for our project.
Elasticsearch is [62]:

• NoSQL, non-relational

• open-source

• horizontally scalable, distributable over hardware devices

• very fast at fulltext search

• reliable

Elasticsearch is built for speed [62]. Elasticsearch does not have transactions in
the typical sense. There is no way to rollback an already submitted document.
Changes are visible after the index gets refreshed, i.e. typically once per
second.

Elasticsearch has been installed on the betelgeuse server of the Astro-
nomical Institute of the Czech Academy of Sciences.

3.3.1 Elasticsearch Installation

The installation process is relatively simple.

1. Download: curl -L -O https://artifacts.elastic.co/downloads/
elasticsearch/elasticsearch-6.7.0.tar.gz.

2. Archive extraction: tar -xvf elasticsearch-6.7.0.tar.gz

3. Starting the program: ./elasticsearch-6.7.0/bin/elasticsearch.

3.3.2 Examples of Usage

Index creation:
curl -XPUT ’http://localhost:9200/lamost-dr5-v3/’

Adding a document:
curl -XPUT ’http://localhost:9200/lamost-dr5-v3/1’ -d ’{

"doc" : {
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"ra":"72.030839",
"dec" : "44.839599",
"prediction" : "double peak"

}
}’

Partial update:
curl -XPOST ’http://localhost:9200/lamost-dr5-v3/1/ update’-d’{

"doc":{
"label": "single peak",
"comment": "not insteresting"

}
}´

Retrieving a document (in this case based on its id):
curl -XGET h́ttp://localhost:9200/lamost-dr5-v3/1´

Searching for a document:
curl -XGET http://localhost:9200/candidates-metadata-test1/

search?q=single
curl -XGET http://localhost:9200/lamost-dr5-v3/ search?q=file-

name:spec-56298-HD110736N135131B01 sp05-092

Deleting records:
curl -XDELETE localhost:9200/candidates-metadata-test1

Getting database statistics:
curl -XGET "http://localhost:9200/ cat/shards?v"

3.3.3 Elasticsearch.py

Elasticsearch.py is a Python library allowing communication with Elastic-
search databases [56].

Installation is simple:
pip install elasticsearch.

Establishing connection to database:
from elasticsearch import Elasticsearch
es=Elasticsearch([{’host’:’localhost’,’port’:9200}])

Storing data:
doc={’ra’:’21.896694’,’dec’:’62.614417’,’prediction’:’double

peak’,’filename’:’a201306110029.fits’,’timestamp’:datetime.now()}
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es.index(index=’ondrejov’, doc type=’doc’, id=’a201306110029’,
body = doc)

Partial update:
es.update(index=’lamost-dr5-v3’,doc type=’doc’,id=’spec-55967-

GAC- 073N44 V4 sp15-074’,body={’doc’:{’label’:"double peak’,’com-
ment’:’interesting’ }})

Retrieving data:
res=es.get(index=’ondrejov’,doc type=’doc’,id=’a201306110029’)
print res[’ source’]

Deleting data:
es.delete(index=’ondrejov’,doc type=’doc’,id=’a201306110029’)

Simple search:
res=es.search(index=’lamost-dr5-v3’,body={’query’:{’match all’:

{}}})
res= es.search(index=’lamost-dr5-v3’,body={’query’:{}})

Match operator - close matches:
res= es.search(index=’ondrejov’,body={’query’:{’match’:{’file-

name’: ’a201306110029’}}}, size=1)

Term operator - exact matches:
res=es.search(index=’ondrejov’,body=’query’:’term’:’file-

name’:’a201306110029’,size=1)

Bool and filter operator:
res= es.search(index=’lamost-dr5-v3’,body={

’query’:{
’bool’:{

’must’:{
’match’:{

’prediction’:’double peak’
}

},
"filter":{

"range":{
"mag1":{

"lt":1
}

}
}
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}
}

})
print res[’hits’][’hits’]

3.3.4 Building Elasticsearch Database

Currently, two separate databases (indices in terms of Elasticsearch language)
are available, one, called ondrejov, for the Ondřejov dataset and one, labelled
lamost-dr2, for LAMOST DR2 (data release 2). They were established by
importing spectral metadata stored in comma-separated-value files using the
Logstash tool for parsing log files. This was done directly at the betelgeuse
computer after logging in with user rights.

As new and new LAMOST data releases get published, additional databases
will be added. Presently, data from LAMOST DR5 (data release 5) version 3
are being processed and lamost-dr5-v3 database will be available soon.

The command used to establish the LAMOST database was:
logstash -f metadata-lamost.conf

with the following metadata-lamost.conf configuration file:

input {
file {

path=>"/home/mazeltom/workers/active-learning/data/lamost-
dr2-metadata.csv"

start position => "beginning"
sincedb path => "/dev/null"

}
}
filter {

csv {
separator => ","
columns => ["filename", "obsid", "designation", "obsdate",

"lmjd","mjd","planid","spid","fiberid","ra obs","dec obs","snru",
"snrg","snrr","snri", "snrz", "objtype", "class", "subclass","z",
"z err", "magtype", "mag1", "mag2", "mag3", "mag4","mag5", "mag6",
"mag7","tsource","fibertype","tfrom","tcomment","offsets", "off-
set v","ra","dec","fibermask"]

}
mutate {convert => ["obsid","integer"] }
mutate {convert => ["lmjd","integer"] }
mutate {convert => ["mjd","integer"] }
mutate {convert => ["fiberid","integer"] }
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mutate {convert => ["fibermask","integer"] }
mutate {convert => ["mjd","integer"] }
mutate {convert => ["spid","integer"] }
mutate {convert => ["ra obs","float"] }
mutate {convert => ["dec obs","float"] }
mutate {convert => ["offset v","float"] }
mutate {convert => ["mag1","float"] }
mutate {convert => ["mag2","float"] }
mutate {convert => ["mag3","float"] }
mutate {convert => ["mag4","float"] }
mutate {convert => ["mag5","float"] }
mutate {convert => ["mag6","float"] }
mutate {convert => ["mag7","float"] }
mutate {convert => ["snru","float"] }
mutate {convert => ["snrg","float"] }
mutate {convert => ["snrr","float"] }
mutate {convert => ["snri","float"] }
mutate {convert => ["snrz","float"] }
mutate {convert => ["z","float"] }
mutate {convert => ["z err","float"] }
mutate {convert => ["ra","float"] }
mutate {convert => ["dec","float"] }

}
output {

elasticsearch {
hosts => "http://localhost:9200"
index => "lamost-dr2"

}
stdout { codec => rubydebug }

}

Similarly, the command used to establish the Ondřejov database was:
logstash -f metadata-ondrejov.conf

with the following metadata-ondrejov.conf configuration file:

input {
file {

path => "/home/mazeltom/workers/active-learning/data/ondrejov-
metadata.csv"

start position => "beginning"
sincedb path => "/dev/null"

}
}
filter {
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csv {
separator => ","
columns => ["id","dec","gratang","detector","expval","ob-

ject", "dichmir","chipid","ra","specfilt","label","date-obs"]
}

mutate {convert => ["gratang","float"] }
mutate {convert => ["expval","float"] }
mutate {convert => ["specfilt","integer"] }

}
output {

elasticsearch {
hosts => "http://localhost:9200"
index => "ondrejov"

}
stdout { codec => rubydebug }

}

3.4 Typical Workflow of an Active Learning
Experiment

Typical active learning experiment proceeds in the following steps. The indi-
vidual configuration files and their settings are described in detail in section
3.2.2.

• Prepare the data pool to be analyzed. You may consider creating a new
folder at https://vocloud-dev.asu.cas.cz/vocloud-betelgeuse/fi-
lesystem/secured/index.xhtml?path=DATA%2F. Just use the New Fold-
er menu item at this website.
Ideally, the spectra to be analyzed will be in a CSV file (e.g. pool.csv)
prepared in a preprocessing step (preprocessing job) available at VO-
CLOUD (Create job -> Restricted job -> Preprocessing). You may also
use a CSV file prepared in advance externally (e.g. the pool.csv file in
the AL-LAMOST-DR2 folder or the ondrejov.csv file in the AL-ondrejov
directory at https://vocloud-dev.asu.cas.cz/vocloud-betelgeuse/
filesystem/secured/index.xh-tml?path=DATA%2F).
Alternatively, a folder containing original FITS files may be used, as pre-
processing capabilities are included in the active learning Python script.
In preprocessing, a predefined wavelength region of raw FITS spectra is
normalized and rebinned so that in the output preprocessed.csv file
all spectra have values for the same wavelengths in the same wavelength
region normalized to zero mean and unit variance. The CSV file is as-
sumed to have a single-line header containing ’id’ in the first column
and spectral wavelengths in all the others.
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• Optionally, you may add a csv file containing the filenames of the spec-
tra (e.g. the poolnames.csv file in the active-learning folder at
https://vocloud-dev.asu.cas.cz/vocloud-betelgeuse/filesystem/
secured/index.xhtml?path=DATA%2F). This file is also expected to
have a header ’id’.

• Prepare a training set CSV file containing preprocessed spectra of al-
ready labelled samples. The file is expected to have a header containing
’id’ and ’label’ in the first two columns and spectral wavelengths in
all the others. For the Be star project, the already labelled Ondřejov
dataset is available (the training set.csv file in the active-learning
directory at https://vocloud-dev.asu.cas.cz/vocloud-betelgeuse/
filesystem/secured/index.xhtml?path=DATA%2F)).

The labels are stored in numerical format, 1 corresponding to a single
peak, 2 to a double peak, 0 represents ”other” spectra.

• In case you would like to prepare your own training set, you may use any
pool CSV file or original FITS files and label them in a separate labelling-
only session (iteration 0). For LAMOST DR2 you may use the pool.csv
file in LAMOST-DR2 folder, for the Ondřejov dataset the ondrejov.csv
file in the AL-ondrejov folder at https://vocloud-dev.asu.cas.cz/
vocloud-betelgeuse/filesystem/secured/index.xhtml?path=DATA%
2F).

The labelling session is started using the Create job -> Standard jobs ->
Active learning menu items in the VO-CLOUD menu. Precreated JSON
configuration files for the labelling-only session are stored at https://
vocloud-dev.asu.cas.cz/vocloud-betelgeuse/filesystem/secured/
index.xhtml?path=CONFIG%2Factive_learning%2F.

For labelling data from a CSV file, you may use the labeling csv lamost.
json configuration file, for labelling data from FITS files, you may use
the labeling fits JSON files.

Start the job using the Save and run button at the bottom of the page.
When it is finished, go to the Details and label the presented spec-
tra using the radio buttons or the ”Alt + number” keyboard shortcut.
When you are done with the labelling, press the Save button to down-
load/store the labels. The labels may then be uploaded to the folder of
your choice using the Manage filesystem -> Append new files -> Direct
upload sequence.

• Once you have your pool and training set data prepared, you are ready to
start the actual active learning session (iteration 1). Again, use the Cre-
ate job -> Standard jobs -> Active learning sequence. Precreated JSON
configuration files are available at VO-CLOUD. The active learning
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3. Realization

iteration1 simple.json file contains the minimal necessary configu-
ration, the active learning iteration1 complex.json file has many
optional settings on top of that.
After setting the JSON configuration file, just hit the Save and run
button to start the job. Select an appropriate session name ("learning
session name" parameter in the JSON configuration). See section 3.2.2
for details.

• When the job is finished, go to the Details and label the presented
samples (see section 3.1.3).
Spectra from the oracle.csv file where the neural network detected
the highest uncertaintly (entropy) levels have white background, sam-
ples designated for performance estimation are highlighted in green, and
potentially interesting (candidate) spectra are highlighted in yellow.

Several functions have been added for users’ comfort.
Many times, when clicking or using the keyboard shortcuts too fast, you
realize that you might want to go back and correct your label. For that
purpose, the Previous button was included.
In case you wish to see all the samples, i.e. their metadata, predictions
and labels, just use the All metadata button.
The Save button allows you to download the already assigned labels
(Download labels), as well as the CSV file containing the processed spec-
tra (Download labelled spectra). These files may then be uploaded to
the folder of your choice in the VO-CLOUD filesystem and added in
the next iteration to the Elasticsearch database ("labels2database
csv" parameter in the JSON configuration file) and to the training set
("training set addition csv" parameter in the JSON configuration
file).
The Performance button allows you to view the performance estimate,
i.e. the percentage of samples from the performance-estimate set where
your label equalled the neural network prediction. The overall statistics,
i.e. the number of samples in individual categories, is shown, as well.

Several CSV files get created in the course of the iteration.
These include the candidate.csv file containing the list of potentially
interesting spectra, as well as their labels predicted by the network,
the oracle.csv, perf-est.csv, and to label csv.csv files contain-
ing the IDs of the spectra presented for labelling, and the spectra.txt,
csv spectra file2.csv, raw spectra data.txt, and raw spectra wa-
velengths.txt files containing the processed and raw spectral data.
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Importantly, a file called new config.json representing JSON configu-
ration for the eventual next iteration is created, as well.
Finally, the index.html representing the displayed content and the com-
prehensive results.zip file are available in the job folder, as well.

• Further iterations are run similarly. The only difference is that at the
beginning, labels from the previous iteration may be added to the train-
ing set (training set addition csv in the JSON configuration file)
and to the Elasticsearch database (labels2database csv in the JSON
configuration file). The iteration number is set by the iteration num
parameter in the JSON configuration.

• Once the performance values get consistently acceptable, the session
might be ended. To review the spectra of potentially interesting (candi-
date) objects, use the "show candidates":"yes" setting in the JSON
configuration.
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Chapter 4
Discussion

4.1 User Experience

The user interface has been designed with the intention to be as user-friendly
and flexible as possible. It was developed in close collaboration with its current
users. Many features have been added or modified based on their wishes and
comments.

4.1.1 User Interface Features

• In order to facilitate starting a new active learning job, the most com-
monly used JSON configurations have been prepared and uploaded to
VO-CLOUD, so that users may load them according to the task they
want to perform.

• Care was taken to make labelling as user-friendly and fast as possible.
Users have two options, they may use mouse-click to select the radio
button corresponding to their chosen label or they may use keyboard
shotcuts (Alt + number corresponding to their choice).

• Care was taken to provide users with as much available information
as possible. Therefore, not only the preprocessed spectra analyzed by
the neural network, but also the raw spectra (the whole wavelength
range) and metadata, such as object type (star, galaxy), spectral class,
magnitude, right ascension, declination, etc.

• The system is very flexible. Users may choose what information should
be displayed, number and names of label categories. On the other hand,
almost fully automatic workflow may be used, as well.

• The spectra are displayed with a zoom-in, zoom-out option.
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• Individual iterations are designed as separate jobs. Users may choose to
abort or rerun them, save the labels in the Elasticsearch database, etc.

• Labels and labelled spectra may be downloaded as comma-separated-
value files.

• Users have the option to display neural network performance estimate,
as well as basic statistical analysis of its predictions.

4.2 Performance

The amount of data available for analysis keeps growing (see Table 4.1).
Therefore, performance is one of the key parameters to keep in mind. As
mentioned in [3], the use of GPU improves performance significantly. In our
case, the convolutional network was trained on GPU GeForce GTX 980 with
2 048 CUDA cores and 4 GB of memory.

Table 4.1: LAMOST data release 6 version 1 [28]

Survey Objects Stars Galaxies QSO Unknown
Pilot 958 679 832 886 8 197 1 386 116 210
First year 1 684 724 1 538 644 12 752 6 066 127 262
Second year 1 636 474 1 510 053 30 388 6 304 89 729
Third year 1 644 300 1 520 759 26 364 8 979 88 198
Fourth year 1 702 528 1 552 325 39 433 14 462 96 308
Fifth year 1 402 454 1 230 129 35 729 15 258 121 338
Sixth year 889 947 781 620 20 003 7 718 80 606
Total 9 919 106 8 966 416 172 866 60 173 719 651

The training of the neural network is the most time-consuming step tak-
ing approximately 8–15 minutes. In addition to that, the time necessary for
retrieval of processed spectra from a CSV file, raw spectra import from origi-
nal FITS files and retrieval of metadata from the Elasticsearch database was
tested. The time for preparation of 100 and 1 000 randomly selected samples
from LAMOST DR2 release for labelling and to run a complete active learning
iteration including saving the predictions of the neural network, as well as the
spectra of potentially interesting objects, in relation to the size of the pool is
shown in Table 4.2.
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Table 4.2: Time to prepare 100 and 1 000 spectra for labelling and to run a
complete active learning iteration (mean ± SD in s, N = 10)

Data pool size 100 spectra 1 000 spectra Complete iteration
1000 22.8 ± 1.0 172.3 ± 9.3 974 ± 166

10 000 24.9 ± 1.5 187.4 ± 11.5 785 ± 156
100 000 30.3 ± 0.9 230.7 ± 11.1 1015 ± 250

1 000 000 46.5 ± 3.0 324.6 ± 12.2 1264 ± 215
4 136 482 88.0 ± 3.4 545.9 ± 12.0 2046 ± 213

Further optimization of the code is planned to be done in near future.

4.3 Possible Future Improvements

In future, the system could/should be improved in many ways and additional
capabilities could be added to it. For instance:

• A capability of saving and visualizing the state of the neural network in
each iteration might be added.

• A separate VO-CLOUD job for just visualizing the spectra and their
metadata, maybe also with the possibility of adding comments and la-
bels, might be added.

• The Elasticsearch database could be exploited much more, e.g. it could
be used for statistical analysis of the candidates, etc.

• The metadata table could be made interactive.

• Presently, CSV files are used to store most of the data. While this is
very user-friendly, as data in this format may be easily visualized and
analyzed, the data require a lot of storage space and more time to trans-
fer. Alternatively, HDF5 file format with its efficient data compression,
could be used. This option might be added.

• Performance of the system may be improved. Presently, complete ac-
tive learning iterations involving the whole LAMOST database (millions
of spectra) take more than 10 minutes. In course of the development,
the system was continuously analyzed and many optimizations were ap-
plied in order to improve the performance. Nevertheless, many further
improvements are still possible.

• User interface could be improved in order to make certain operations
more user-friendly.
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• Metadata visualization capabilities could be added to other available
VO-CLOUD job types.

• An option to use other data sources and to create additional databases
could be added.

• Docker technology was considered for easier deployment of the module.
Nevertheless, due to the complex interconnections with the VO-CLOUD
system, it would be necessary to containerize the whole VO-CLOUD
system. This option might be added in the future.

• The infrastructure, in particular the possibility to visualize the prepro-
cessed and raw spectra of promising candidates together with their meta-
data, may be used in combination with other VO-CLOUD capabilities,
such as self-organizing maps [5], random decision forests [6], as well
as dimensionality reduction approaches, such as the principal compo-
nent analysis (PCA) [63] or t-distributed stochastic neighbour embed-
ding (tSNE) [64].

The system is still under development. For current state, as well as future
developments, please see
https://vocloud-dev.asu.cas.cz/vocloud-betelgeuse and
https://github.com/tomasma/vocloud-active-learning.
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Conclusion

The main goals of the thesis have been fulfilled. An active learning module
has been added to the current VO-CLOUD infrastructure allowing to conduct
different scenarios of active learning of astronomical spectra in order to iden-
tify candidates with given spectral features and characteristic shapes. The
engine allows interactive (re)classification/rejection of suggested candidates.
It also allows to obtain all important metadata and to visualize different steps
of data processing.

VO-CLOUD users will now have the possibility to apply active learning
methods to interactively classify astronomical spectra and to visualize the re-
sults. The infrastructure, in particular the possibility to visualize the prepro-
cessed and raw spectra of promising candidates together with their metadata,
may be used in combination with other VO-CLOUD capabilities, such as self-
organizing maps, random decision forests, as well as dimensionality reduction
approaches, such as the principal component analysis (PCA) or t-distributed
stochastic neighbour embedding (tSNE).

In future, many possible improvements might be envisaged. For instance,
an option to visualize the state of the neural network could be added. The
Elasticsearch database could be exploited much more, e.g. it could be used
for statistical analysis of the candidates, etc.
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Appendix A
List of Abbreviations

ASU Astronomical Institute

CAS Czech Academy of Sciences

CNN Convolutional Neural Network

CSV Comma-Separated Values

EJB Enterprise Java Beans

FITS Flexible Image Transport System

GUI Graphical User Interface

Java EE Java Enterprise Edition

JSF Java Server Faces

JSON JavaScript Object Notation

LAMOST Large Sky Area Multi-Object Fiber Spectroscopic Telescope

PCA Principal Component Analysis

QSO Quasi-Stellar Object

RDF Random Decision Forest

REST Representational State Transfer

SOM Self-Organizing Map

SQL Structured Query Language

tSNE t-Distributed Stochastic Neighbor Embedding

UWS Universal Worker Service

57



A. List of Abbreviations

VO Virtual Observatory

XHTML EXtensible HyperText Markup Language

XML EXtensible Markup Language
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Appendix B
Contents of Enclosed CD

readme.txt.............................brief description of CD content
src

impl..........................................source code directory
thesis..............................LATEX source code of the thesis

text..............................................thesis text directory
thesis.pdf .............................. thesis text in PDF format
zzp.txt....................................thesis task in plain text
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